
C ti S h R itiC ti S h R itiContinuous Speech RecognitionContinuous Speech Recognition

Continuous Speech RecognitionContinuous Speech Recognition
3 M h 20 03 M h 20 03 March 20103 March 2010

Preview of TopicsPreview of Topics
 Topics so far: Isolated word recognition

 Today: continuous speech recognition, including: Today: continuous speech recognition, including:
 Notion and construction of a sentence HMM
 Review construction of search trellis from sentence HMM (or any graphical

model))
 Non-emitting states for simplifying sentence HMM construction
 Modifying the search trellis for non-emitting states

 To cover later
 The word-level back-pointer table data structure for efficient retrieval of the

best word sequence from the search trellis
 N i id ti d b d b l t i New pruning considerations: word beams, and absolute pruning
 Measurement of recognition accuracy or errors
 The generation of word lattices and N-best lists

 The A* algorithm and the Viterbi N best list algorithm

3 March 2010

 The A* algorithm and the Viterbi N-best list algorithm

Isolated Word vs Continuous SpeechIsolated Word vs Continuous Speech

 A simple way to build a continuous speech recognizer:
 Learn Templates for all possible sentences that may be spoken
 E.g. record “delete the file” and “save all files” as separate

templates
 F i b d UI di For a voice-based UI to an editor

 Recognize entire sentences (no different from isolated word
recognition)g)

 Problem: Extremely large number of sentences possible
 Even a simple digit recognizer for phone numbers: A billion

possible phone numbers!
 Cannot record every possible phone number as template

3 March 2010

 Cannot record every possible phone number as template

Templates for “Sentences”Templates for “Sentences”
 Recording entire sentences as “templates” is a

reasonable idea

 But quickly becomes infeasible as the number of
sentences increasessentences increases

 Inflexible: Cannot recognize sentences for which no g
template has been recorded

3 March 2010

Other Issues with Continuous SpeechOther Issues with Continuous Speech

 Much greater variation in speaking rate
 Having to speak with pauses forces one to speak more uniformly
 Greater variation demands better acoustic models for accuracy

 More pronounced contextual effects
 Pronunciation of words influenced by neighboring words

 “Did you” -> “Dijjou”

 Spontaneous (unrehearsed) speech may include mispronunciations,
false-starts, non-words (e.g. umm and ahh)

 Difficult to account for all of these
 Need templates for all pronunciation and disfluency variants
 Just how many templates will we record for each sentence?

3 March 2010

y p

Treat it as a series of isolated word Treat it as a series of isolated word
recognition problems?recognition problems?

T H I S C A R

?T H I S C A R

T H E S C A R ?
 Record only word templates
 Segment recording into words, recognize individual words

 But how do we choose word boundaries?
 Choosing different boundaries affects the results

 E g “This car” or “This scar”? “The screen” or “This green”? E.g. This car or This scar ? The screen or This green ?

 Similar to reading text without spaces:
ireturnedandsawunderthesunthattheraceisnottotheswiftnorthebattletothestrongneit

3 March 2010

ireturnedandsawunderthesunthattheraceisnottotheswiftnorthebattletothestrongneit
heryetbreadtothewisenoryetrichestomenofunderstandingnoryetfavourtomenofskillbu
ttimeandchancehappenethtothemall

Recording only Word TemplatesRecording only Word Templates

D E S C A R T H E S C A R? ?

 Brute force: Consider all possibilities

T H I S C A R T H I S C A R? ?

 Brute force: Consider all possibilities
 Segment recording in every possible way
 Run isolated word recognition on each segment
 Select the segmentation (and recognition) with the lowest total cost of

match
 I.e. cost of best match to first segment + cost of best match to second..

 Quickly gets very complex as the number of words increases
 Combinatorially high number of segmentations

3 March 2010

 Compounded by fact that number of words is unknown

A Simple SolutionA Simple Solution
 Build/Record word templates

 Compose sentence templates from word templates

 Composition can account for all variants, disfluencies
etc.
 We will see how.. We will see how..

3 March 2010

Building Sentence TemplatesBuilding Sentence Templates

 Build sentence HMMs by concatenating the HMMs for the
individual words
 e g sentence “red green blue” e.g. sentence red green blue

endstart

 The sentence HMM looks no different from a word HMM
 Can be evaluated just like a word HMM

red green blue

 Can be evaluated just like a word HMM

 Caveat: Must have good models for the individual words
 Ok for a limited vocabulary application Ok for a limited vocabulary application

 E.g. command and control application, such as robot control

3 March 2010

Handling SilenceHandling Silence
 People often pause between words in continuous speech

 Often, but not always!
 Not predictable when there will be a pause Not predictable when there will be a pause

 The composed sentence HMM fails to allow silences in the spoken
inputinput

endstart

 If the input contained “[silence] red green [silence] blue [silence]”, it
ld h b dl i h h HMM

red green blue

would match badly with the sentence HMM

 Need to be able to handle optional pauses between words
O

3 March 2010

 Optional because they may or may not occur

Sentence HMM with Optional SilencesSentence HMM with Optional Silences
 Optional silences can be handled by adding a silence HMM between

every pair of words, but with a bypass:

silence

red green blue

bypass transitions

 The “bypass” makes it optional: The person may or may not pause
 If there is a pause, the best match path will go through the silence

HMM
 Otherwise, it will be bypassed

 The “silence” HMM must be separately trained

3 March 2010

 On examples of recordings with no speech in them (not strictly silence)

Composing HMMs for Word SequencesComposing HMMs for Word Sequences
 Given HMMs for word1 and word2

 Which are both Bakis topology

word1 word2

 How do we compose an HMM for the word sequence “word1 word2”
 Problem: The final state in this model has only a self-transition
 According the model once the process arrives at the final state of  According the model, once the process arrives at the final state of

word1 (for example) it never leaves
 There is no way to move into the next word

3 March 2010

Introducing the NonIntroducing the Non--emitting stateemitting state
 So far, we have assumed that every HMM state models some

output, with some output probability distribution
 Frequently however it is useful to include model states that do not Frequently, however, it is useful to include model states that do not

generate any observation
 To simplify connectivity

 Such states are called non-emitting states or sometimes null states
 NULL STATES CANNOT HAVE SELF TRANSITIONS
 E l A d d l ith fi l ll t t Example: A word model with a final null state

3 March 2010

HMMs with NULL Final StateHMMs with NULL Final State
 The final NULL state changes the trellis

 The NULL state cannot be entered or exited within the word

 If there are exactly 5 vectors in word 5 the NULL state may only

WORD1 (only 5 frames)

3 March 2010

 If there are exactly 5 vectors in word 5, the NULL state may only
be visited after all 5 have been scored

The NULL final stateThe NULL final state

t
word1 Next word

 The probability of transitioning into the NULL final state at any
time t is the probability that the observation sequence for the word time t is the probability that the observation sequence for the word
will end at time t

 Alternately, it represents the probability that the observation will
exit the word at time t

3 March 2010

exit the word at time t

Connecting Words with Final NULL StatesConnecting Words with Final NULL States

HMM for word2HMM for word1

HMM for word1 HMM for word2

 The probability of leaving word 1 (i.e the probability of going to the
NULL state) is the same as the probability of entering word2
 The transitions pointed to by the two ends of each of the colored

arrows are the same

3 March 2010

arrows are the same

Retaining a NonRetaining a Non--emitting state between wordsemitting state between words

 In some cases it may be useful to retain the non-emitting state as a
connecting state
 The probability of entering word 2 from the non-emitting state is 1.0
 This is the only transition allowed from the non-emitting state

3 March 2010

Retaining the NonRetaining the Non--emitting Stateemitting State

HMM for word2HMM for word1

1.0

HMM for word2HMM for word1

HMM for the word sequence “word2 word1”

3 March 2010

A Trellis With a NonA Trellis With a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 Since non-emitting states are not associated with observations, they have
no “time”
 In the trellis this is indicated by showing them between time marks

3 March 2010

t
y g

 Non-emitting states have no horizontal edges – they are always exited instantly

ViterbiViterbi with Nonwith Non--emitting Statesemitting States
 Non-emitting states affect Viterbi decoding

 The process of obtaining state segmentations

 This is critical for the actual recognition algorithm for word
sequences

3 March 2010

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 At the first instant only the first state may be entered

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 At t=2 the first two states have only one possible entry path

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 At t=3 state 2 has two possible entries. The best one must be
selected

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 At t=3 state 2 has two possible entries. The best one must be
selected

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 After the third time instant we an arrive at the non-emitting state.
Here there is only one way to get to the non-emitting state

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 Paths exiting the non-emitting state are now in word2
 States in word1 are still active

3 March 2010

t These represent paths that have not crossed over to word2

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 Paths exiting the non-emitting state are now in word2
 States in word1 are still active

3 March 2010

t These represent paths that have not crossed over to word2

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 The non-emitting state will now be arrived at after every
observation instant

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 “Enterable” states in word2 may have incoming paths either from
the “cross-over” at the non-emitting state or from within the word

P h f i i i h h f i i

3 March 2010

t Paths from non-emitting states may compete with paths from emitting
states

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 Regardless of whether the competing incoming paths are from
emitting or non-emitting states, the best overall path is selected

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 The non-emitting state can be visited after every observation

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 At all times paths from non-emitting states may compete with
paths from emitting states

3 March 2010

t

Viterbi through a NonViterbi through a Non--Emitting StateEmitting State

W
ord22

W
orrd1

Feature vectors
(time)

 At all times paths from non-emitting states may compete with
paths from emitting states

3 March 2010

 The best will be selected
 This may be from either an emitting or non-emitting state

Viterbi with NULL statesViterbi with NULL states
 Competition between incoming paths from emitting and non-

emitting states may occur at both emitting and non-emitting states

 The best path logic stays the same. The only difference is that the
current observation probability is factored into emitting states

 Score for emitting state (as probabilities)

 }{'}{'', |)'|(),'(,|)'|()1,'(max)|(),(gnonemittinsuemittingsustuu ssPtsPssPtsPsxPtsP 

 Score for non-emitting state

 }{'}{'' |)'|(),'(,|)'|()1,'(max),(gnonemittinsuemittingsusu ssPtsPssPtsPtsP 

 Using log probabilities

 }{}{ |)|(),(,|)|(),(),(gnonemittinsuemittingsusu 

            }{'}{'', |)'|(log),'(log,|)'|(log)1,'(logmax)|(log),(log gnonemittinsuemittingsustuu ssPtsPssPtsPsxPtsP  

3 March 2010

          }{'}{'' |)'|(log),'(log,|)'|(log)1,'(logmax),(log gnonemittinsuemittingsusu ssPtsPssPtsPtsP  

Speech Recognition as String MatchingSpeech Recognition as String Matching

L
M

O
D

E

DATA

 We find the distance of the data from the “model” using the Trellis
for the word

 Pick the word for which this distance is lowest Pick the word for which this distance is lowest
 Word = argmin word distance(data, model(word))
 Using the DTW / HMM analogy

 W d b bilit (d t | d l(d))

3 March 2010

 Word = argmax word probability(data | model(word))
 Alternately, argmaxword logprobability(data | model)

 Alternately still: argminword –logprobability(data | model)

Speech Recognition as Bayesian ClassificationSpeech Recognition as Bayesian Classification

 Different words may occur with different frequency
 E.g. a person may say “SEE” much more frequently than “ZEE”

 This must be factored in
 If we are not very sure they said “SEE” or “ZEE”, choose “SEE”

 We are more likely to be right than if we chose ZEE We are more likely to be right than if we chose ZEE

 The basic DTW equation does not factor this in
 Word = argmax probability(data | word) does not account for prior  Word = argmax word probability(data | word) does not account for prior

bias

 Cast the problem instead as a Bayesian classification problem Cast the problem instead as a Bayesian classification problem
 Word = argmax word p(word) probability(data | word)
 “p(word)” is the a priori probability of the word
 Naturally accounts for prior bias

3 March 2010

 Naturally accounts for prior bias

Statistical pattern classification

 Given data X, find which of a number of classes C1, C2,…CN it
belongs to, based on known distributions of data from C1, C2, etc.
 Bayesian Classification:y

Class = Ci : i = argmaxj log(P(Cj)) + log(P(X|Cj))

Probability of X as given by
the probability distribution of Cj

a priori probability of Cj

 The a priori probability accounts for the relative proportions of the classes
– If you never saw any data, you would guess the class based on these y y y g

probabilities alone
 P(X|Cj) accounts for evidence obtained from observed data X

3 March 2010

 Cl d

Isolated Word Recognition as Bayesian Classification
 Classes are words

Data are instances of spoken words
 Sequence of feature vectors derived from speech signal,

 Bayesian classification:
Recognized Word = argmax log(P(word)) + log(P(X| word))Recognized_Word = argmaxword log(P(word)) + log(P(X| word))
 P(word) is a priori probability of word

 Obtained from our expectation of the relative frequency of occurrence of
th d

3 March 2010

the word
 P(X|word) is the probability of X computed on the probability distribution

function of word

Computing P(X|word)

 P(X|word) is computed from the HMM for the word
 HMMs are actually probability distributions

 Ideally P(X|word)is computed using the forward
algorithm

 I lit t d th b t th th h T lli In reality computed as the best path through a Trellis
 A priori probability P(word) is factored into the Trellis

non-emitting absorbingg g
state

3 March 2010

Factoring in a priori probability into Trellis

HMM for Odd HMM for Even

BestPathLogProb(X,Odd) BestPathLogProb(X,Even)

Log(P(Odd)) Log(P(E en))

3 March 2010

Log(P(Odd)) Log(P(Even))
The prior bias is factored in as the edge penalty at the entry to the trellis

Time-Synchronous Trellis: Odd and Even

Merged
final states

BestPathLogProb(X,Odd)

B
esstPathLoggProb(X

,

Log(P(Odd))

Even)

3 March 2010 Log(P(Even))

Time Synchronous DecodeOdd and Even

 Compute the probability of best path
 Computations can be done in the log domain. Only additions

and comparisons are required
BestPathLogProb(X,Odd)

B
esstPathLoggProb(X

,

Log(P(Odd))

Even)

3 March 2010 Log(P(Even))

Decoding to classify between Odd and Even

 Compare scores (best state sequence probabilities) of all competing
words

 Select the word sequence corresponding to the path with the best
Score(X,Odd)score

Score(X Even)Score(X,Even)

Log(P(Odd))

3 March 2010 Log(P(Even))

Decoding isolated words with word HMMs

 Construct a trellis (search graph) based on the HMM for (g p)
each word
 Alternately construct a single, common trellis

 Select the word corresponding to the best scoring path
th h th bi d t llithrough the combined trellis

3 March 2010

Why Scores and not ProbabilitiesWhy Scores and not Probabilities
 Trivial reasons
 Computational efficiency: Use log probabilities and

f ddi i i d f l i li iperform additions instead of multiplications
 Use log transition probabilities and log node probabilities
 Add log probability terms – do not multiplyg p y p y

 Underflow: Log probability terms add – no underflow
 Probabilities will multiply and underflow rather quickly

 Deeper reason
 Using scores enables us to collapse parts of the trellisg p p f
 This is not possible using forward probabilities
 We will see why in the next few slides

3 March 2010

Statistical classification of word sequences

 Given data X, find which of a number of classes C1, C2,…CN it belongs to,
based on known distributions of data from C1, C2, etc.

 Bayesian Classification:

 Classes are word sequences
 Data are spoken recordings of word sequences

Class = Ci : i = argmaxj P(Cj)P(X|Cj)

 Bayesian classification:

)}()|({maxarg
,...,, 21 N

wdwdwdPwdwdwdXP
wordwordword 

)},...,,(),...,,|({maxarg 2121,...,, 21 NNwdwdwd wdwdwdPwdwdwdXP
N

• P(wd1,wd2,wd3..) is a priori probability of word sequence wd1,wd2,wd3..
Is the word sequence “close file” more common than “delete file”– Is the word sequence close file more common than delete file ..

• P(X| wd1,wd2,wd3..) is the probability of X computed on the HMM for the
word sequence wd1,wd2,wd3

3 March 2010

wo d seque ce wd1,wd2,wd3

• Ideally must be computed using the forward algorithm

Decoding continuous speech
First step: construct an HMM for each possible word sequence

HMM for word 1 HMM for word2

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for
each possible word sequence

• P(X| wd1,wd2,wd3..) is the probability of X computed on the probability
distribution function of the word sequence wd1,wd2,wd3..
– HMMs now represent probability distributions of word sequences

3 March 2010

HMMs now represent probability distributions of word sequences
– Once again, this term must be computed by the forward algorithm

Bayesian Classification between word sequences

 Classifying an utterance as either “Rock Star” or “Dog Star”
 Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)

P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

 This is the complete forward score at the final trellis node

ta
r

ta
r

k
S
t

S
t

Ro
ck

D
og

3 March 2010

P(Rock Star) P(Dog Star)

Bayesian Classification between word sequences

 The a priori probability of the word sequences (P(Rock Star), P(Dog Star))
can be spread across the Trellis without changing final probabilities

P(Star|Rock) P(Star|Dog)

P(Dog,Star)P(X|Dog Star)P(Rock,Star)P(X|Rock Star)

ta
r

ta
r

k

S
tS
t

Ro
ck

D
og

3 March 2010

P(Rock) P(Dog)

Decoding between word sequences

 In reality we find the score/cost of the best paths through the trellises
 Not the full forward score
 I e we perform DTW based classification not Bayesian classification

Log(P(Star|Rock)) Log(P(Star|Dog))
Score(Dog Star)Score(Rock Star)

 I.e. we perform DTW based classification, not Bayesian classification

ta
r

ta
r

k

S
tS
t

Ro
ck

D
og

3 March 2010

Log(P(Rock)) Log(P(Dog))

Time Synchronous Bayesian Classification between word
sequences

P(Rock,Star)P(X|Rock Star)
S
ta

r
D

og

P(Dog,Star)P(X|Dog Star)

S
ta

r
Ro

ck

3 March 2010

R

Time synchronous decoding to classify between word
sequences

Score(Dog Star)
S
ta

r
D

og

Score(Rock Star)

S
ta

r

Use best path score
To determine

Ro
ck

3 March 2010

R

Decoding to classify between word sequences

The best path through

S
ta

r

p g
Dog Star lies within the
dotted portions of the trellis

There are four transition

D
og

There are four transition
points from Dog to Star in
this trellis

S
ta

r

There are four different sets
paths through the dotted
trellis, each with its own

Ro
ck

best path

3 March 2010

R

Decoding to classify between word sequences

SET 1 and its best path

The best path through

S
ta

r

dogstar1

p g
Dog Star lies within the
dotted portions of the trellis

There are four transition

D
og

There are four transition
points from Dog to Star in
this trellis

S
ta

r

There are four different sets
paths through the dotted
trellis, each with its own

Ro
ck

best path

3 March 2010

R

Decoding to classify between word sequences

SET 2 and its best path

The best path through

S
ta

r

dogstar2

p g
Dog Star lies within the
dotted portions of the trellis

There are four transition

D
og

There are four transition
points from Dog to Star in
this trellis

S
ta

r

There are four different sets
paths through the dotted
trellis, each with its own

Ro
ck

best path

3 March 2010

R

Decoding to classify between word sequences

SET 3 and its best path

The best path through

S
ta

r

dogstar3

p g
Dog Star lies within the
dotted portions of the trellis

There are four transition

D
og

There are four transition
points from Dog to Star in
this trellis

S
ta

r

There are four different sets
paths through the dotted
trellis, each with its own

Ro
ck

best path

3 March 2010

R

Decoding to classify between word sequences

SET 4 and its best path

The best path through

S
ta

r

dogstar4

p g
Dog Star lies within the
dotted portions of the trellis

There are four transition

D
og

There are four transition
points from Dog to Star in
this trellis

S
ta

r

There are four different sets
paths through the dotted
trellis, each with its own

Ro
ck

best path

3 March 2010

R

Decoding to classify between word sequences

The best path through

S
ta

r

p g
Dog Star is the best of

the four transition-specific
best paths

D
og

max(dogstar) =
max (dogstar1, dogstar2,

dogstar3, dogstar4)

S
ta

r
Ro

ck

3 March 2010

R

Decoding to classify between word sequences
S
ta

r
D

og Similarly, for Rock Star
the best path through

S
ta

r

the best path through
the trellis is the best of

the four transition-specific
best paths

Ro
ck

best paths
max(rockstar) =

max (rockstar1, rockstar2,
rockstar3, rockstar4)

3 March 2010

R

Decoding to classify between word sequences

Then we’d compare
the best paths

S
ta

r

p
through Dog Star and
Rock Star

D
og

max(dogstar) =
max (dogstar1, dogstar2,

dogstar3, dogstar4)

S
ta

r

max(rockstar) =
max (rockstar1, rockstar2,

rockstar3, rockstar4)

Ro
ck

Viterbi =
max(max(dogstar),

max(rockstar))

3 March 2010

R

Decoding to classify between word sequences

argmax is commutative:

S
ta

r

g

max(max(dogstar),
max(rockstar))

D
og

=
max (
max(dogstar1, rockstar1),
max(dogstar2 rockstar2)

S
ta

r

max(dogstar2, rockstar2),
max (dogstar3,rockstar3),
max(dogstar4,rockstar4)
)

Ro
ck

)

3 March 2010

R

Max (dogstar1, rockstar1)

For a given entry point
the best path through STAR
is the same for both trellises

t1

S
ta

r

max(max(dogstar),
max(rockstar))

D
og

max(rockstar))
=
max (
max(dogstar1, rockstar1),
max(dogstar2 rockstar2)

S
ta

r

max(dogstar2, rockstar2),
max (dogstar3,rockstar3),
max(dogstar4,rockstar4)
)

Ro
ck

We can choose between
Dog and Rock right here
because the futures of these

3 March 2010

R because the futures of these
paths are identical

Max (dogstar1, rockstar1)

t1

S
ta

r

We select the higher scoring
f h i i d

D
og

of the two incoming edges
here

S
ta

r This portion of the
trellis is now deleted

Ro
ck

trellis is now deleted

3 March 2010

R

Max (dogstar2, rockstar2)

Similar logic can be applied
•t1

S
ta

r

at other entry points to
Star

max(max(dogstar),
max(rockstar))

D
og

max(rockstar))
=
max (
max(dogstar1, rockstar1),
max(dogstar2 rockstar2)

S
ta

r

max(dogstar2, rockstar2),
max (dogstar3,rockstar3),
max(dogstar4,rockstar4)
)

Ro
ck

3 March 2010

R

Max (dogstar3, rockstar3)

Similar logic can be applied
•t1

S
ta

r

at other entry points to
Star

max(max(dogstar),
max(rockstar))

D
og

max(rockstar))
=
max (
max(dogstar1, rockstar1),
max(dogstar2 rockstar2)

S
ta

r

max(dogstar2, rockstar2),
max (dogstar3,rockstar3),
max(dogstar4,rockstar4)
)

Ro
ck

3 March 2010

R

Max (dogstar4, rockstar4)

Similar logic can be applied
•t1

S
ta

r

at other entry points to
Star

max(max(dogstar),
max(rockstar))

D
og

max(rockstar))
=
max (
max(dogstar1, rockstar1),
max(dogstar2 rockstar2) max(dogstar2, rockstar2),
max (dogstar3,rockstar3),
max(dogstar4,rockstar4)
)

Ro
ck

3 March 2010

R

Decoding to classify between word sequences

Similar logic can be applied

S
ta

r

g pp
at other entry points to

Star

D
og

This copy of the trellis
for STAR is completely

removed

Ro
ck

3 March 2010

R

Decoding to classify between word sequences

 The two instances of Star can be collapsed into one to form a smaller
trellis

S
ta

r
D

og
Ro

ck

3 March 2010

R

Language-HMMs for fixed length word sequences

Rock Dog Star

Rock

Dog

Star=

We will represent the
vertical axis of the

S
ta

r

vertical axis of the
trellis in this simplified

manner

D
og

Ro
ck

3 March 2010

R

The Real “Classes”

DogDog Star

Rock

Dog

Star

Rock Star

Dog Star

 The actual recognition is DOG STAR vs. ROCK STAR

RockRock Star

g
 i.e. the two items that form our “classes” are entire phrases

 The reduced graph to the right is merely an engineering
reduction obtained by utilizing commonalities in the two y g
phrases (STAR)
 Only possible because we use the best path score and

not the entire forward probability

3 March 2010

 This distinction affects the design of the recognition system

Language-HMMs for fixed length word sequences

P(Dog) P(Star|Dog)

P(Rock) P(Star|Rock)

 a
n

H
M

M

 The word graph represents all allowed word sequences in our
example
 The set of all allowed word sequences represents the allowed “language”Ea

ch
 w

or
d

is

 At a more detailed level, the figure represents an HMM composed of
the HMMs for all words in the word graph
 Thi i h “L HMM” h HMM f h i ll d l This is the “Language HMM” – the HMM for the entire allowed language

 The language HMM represents the vertical axis of the trellis
 It is the trellis, and NOT the language HMM, that is searched for the best

3 March 2010

 It is the trellis, and NOT the language HMM, that is searched for the best
path

Language-HMMs for fixed length word sequences

 Recognizing one of four lines from “charge of the light
brigade”

Cannon to right of them
Cannon to left of them
Cannon in front of them
Cannon behind them

 a
n

H
M

M

right

P(|)

P(right|cannon to)

P(of|cannon to right)

P(of|cannon to left)

of them

P(them|cannon to right of)

P(left|cannon to)Ea
ch

 w
or

d
is

to

Cannon

leftP(cannon)

P(to|cannon) P(of|cannon to left)

of them
P(front|cannon in)

P(of|cannon in front)
P(them|cannon to left of)

P(left|cannon to)

of

Cannon

themfrontinP(in|cannon)

P(them|cannon in front of)

P(of|cannon in front)

3 March 2010

behindP(behind|cannon)

P(them|cannon behind)
them

Where does the graph come fromWhere does the graph come from
 The graph must be specified to the recognizer
 What we are actually doing is to specify the complete

t f “ ll d” t i h fset of “allowed” sentences in graph form

 May be specified as an FSG or a Context Free  May be specified as an FSG or a Context-Free
Grammar
 CFGs and FSG do not have probabilities associated CFGs and FSG do not have probabilities associated

with them
 We could factor in prior biases through probabilistic

FSG/CFGFSG/CFGs
 In probabilistic variants of FSGs and CFGs we

associate probabilities with options

3 March 2010

associate probabilities with options
 E.g. in the last graph

Simplification of the language HMM through lower context
language models

 Recognizing one of four lines from “charge of the light brigade”
 If we do not associate probabilities with FSG rules/transitions

right a
n

H
M

M

to

g

left

Ea
ch

 w
or

d
is

ofCannon them

frontin

behind

3 March 2010

Language HMMs for fixed-length word sequences: based
on a grammar for Dr. Seuss

freezy

breeze

made a
n

H
M

M

y

trees

Ea
ch

 w
or

d
is

these freeze

three trees

trees’ cheese

No probabilities specified – a person may utter any of these phrases

3 March 2010

No probabilities specified a person may utter any of these phrases
at any time

Language HMMs for fixed-length word sequences:
command and control grammar

file
open

 a
n

H
M

M

delete

file

all

edit

Ea
ch

 w
or

d
is

delete
files

close
marked

No probabilities specified – a person may utter any of these

3 March 2010

No probabilities specified a person may utter any of these
phrases at any time

Language HMMs for arbitrarily long word sequences

 Previous examples chose between a finite set of known
word sequences

 Word sequences can be of arbitrary length Word sequences can be of arbitrary length
 E.g. set of all word sequences that consist of an arbitrary number

of repetitions of the word bang
bangbang
bang bang
bang bang bang
b b b bbang bang bang bang
……

 Forming explicit word-sequence graphs of the type we’ve seen so
f i t iblfar is not possible

 The number of possible sequences (with non-zero a-priori probability)
is potentially infinite

 Even if the longest sequence length is restricted, the graph will still be

3 March 2010

g q g , g p
large

Language HMMs for arbitrarily long word sequences

 Arbitrary word sequences can be
modeled with loops under some
assumptions. E.g.:

b

X

1-X
 A “bang” can be followed by another

“bang” with probability P(“bang”).
 P(“bang”) = X;

P(Termination) = 1-X;

bang

X a
n

H
M

M

P(Termination) = 1-X;

 Bangs can occur only in pairs with
probability X

 A l h ll

bang
1-X

bang

Ea
ch

 w
or

d
is

 A more complex graph allows more
complicated patterns

 You can extend this logic to other
b l i h h k 1-X

X

Yvocabularies where the speaker says
other words in addition to “bang”
 e.g. “bang bang you’re dead”

bang
1-X

bang
Y

1-Y

3 March 2010

Language HMMs for arbitrarily long word sequences

 Constrained set of word sequences with
constrained vocabulary are realistic
 Typically in command-and-control situations
 Example: operating TV remote

 Simple dialog systems
 When the set of permitted responses to a query is restricted

 Unconstrained word sequences : Natural
Language
 State-of-art large vocabulary decoders
 Later in the program..

3 March 2010

QUESTIONS?QUESTIONS?
 Next up:
 Specifying grammars
 P i Pruning
 Simple continuous unrestrcted speech
 Backpointer table

 Any questions on topics so far? Any questions on topics so far?

3 March 2010

