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Preview of Topics

1 Topics so far: Isolated word recognition

[1 Today: continuous speech recognition, including:

Notion and construction of a sentence HMM

Review construction of search trellis from sentence HMM (or any graphical
model)

Non-emitting states for simplifying sentence HMM construction
Modifying the search trellis for non-emitting states

[0 To cover later

The word-level back-pointer table data structure for efficient retrieval of the
best word sequence from the search trellis

New pruning considerations: word beams, and absolute pruning
Measurement of recognition accuracy or errors

The generation of word lattices and N-best lists
[0 The A* algorithm and the Viterbi N-best list algorithm
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Isolated Word vs Continuous Speech

A simple way to build a continuous speech recognizer:
B Learn Templates for all possible sentences that may be spoken

B E.g.record “delete the file” and “save all files” as separate
templates

[0 For a voice-based Ul to an editor

B Recognize entire sentences (no different from isolated word
recognition)

Problem: Extremely large number of sentences possible

B Even asimple digit recognizer for phone numbers: A billion
possible phone numbers!

B Cannot record every possible phone number as template
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Templates for “Sentences”

[0 Recording entire sentences as “templates” is a
reasonable 1dea

[0 But quickly becomes infeasible as the number of
sentences 1ncreases

[1 Inflexible: Cannot recognize sentences for which no
template has been recorded
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Other Issues with Continuous Speech

[0 Much greater variation in speaking rate
B Having to speak with pauses forces one to speak more uniformly
B Greater variation demands better acoustic models for accuracy

[0 More pronounced contextual effects

B Pronunciation of words influenced by neighboring words
O “Did you” -> “Dijjou”

[0 Spontaneous (unrehearsed) speech may include mispronunciations,
false-starts, non-words (e.g. umm and ahh)

[0 Difficult to account for all of these

B Need templates for all pronunciation and disfluency variants
B Just how many templates will we record for each sentence?
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Treat 1t as a series of 1solated word

recognition problems?
THISCAR

THIS|ICAR ?

THE|ISCAR .

Record only word templates
B Segment recording into words, recognize individual words

[0 But how do we choose word boundaries?

B Choosing different boundaries affects the results
[0 E.g. “This car” or “This scar’”? “The screen” or “ 77

[0 Similar to reading text without spaces:

ireturnedandsawunderthesunthattheraceisnottotheswiftnorthebattletothestrongneit
heryetbreadtothewisenoryetrichestomenofunderstandingnoryetfavourtomenofskillbu
ttimeandchancehappenethtothemall
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Recording only Word Templates

DI ESCAR| ? THEISCAR|?

TH| ISCAR|? THISCAR|?

[0 Brute force: Consider all possibilities
B Segment recording in every possible way
B Run isolated word recognition on each segment

B Select the segmentation (and recognition) with the lowest total cost of
match

[0 I.e. cost of best match to first segment + cost of best match to second..

0 Quickly gets very complex as the number of words increases
B Combinatorially high number of segmentations
B Compounded by fact that number of words 1s unknown
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A Simple Solution

[0 Build/Record word templates
0 Compose sentence templates from word templates

[0 Composition can account for all variants, disfluencies
etc.

B We will see how..
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Building Sentence Templates

0 Build sentence HMMs by concatenating the HMMs for the
individual words

B e.g. sentence “red green blue”

start o—»&—»&—»&—»&—»&—»&—»&—»&—»&—»&—» end

red green blue

B The sentence HMM looks no different from a word HMM
B Can be evaluated just like a word HMM

[0 Caveat: Must have good models for the individual words
B Ok for a limited vocabulary application

[0 FE.g. command and control application, such as robot control
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Handling Silence

[0 People often pause between words 1n continuous speech
B Often, but not always!
B Not predictable when there will be a pause

[0 The composed sentence HMM fails to allow silences in the spoken
Input

start ——8—8——-8—-8—-8—-8—8 -8 8- enc

red green blue

B If the input contained “[silence] red green [silence] blue [silence]”, it
would match badly with the sentence HMM

[0 Need to be able to handle optional pauses between words
B Optional because they may or may not occur
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Sentence HMM with Optional Silences

[0 Optional silences can be handled by adding a silence HMM between
every pair of words, but with a bypass:

silence

) 4
v

¢

blue
bypass transitions

[0 The “bypass” makes it optional: The person may or may not pause

B If there is a pause, the best match path will go through the silence
HMM

B Otherwise, it will be bypassed

[0 The “silence” HMM must be separately trained

B On examples of recordings with no speech in them (not strictly silence)
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Composing HMMs for Word Sequences

O Given HMMs for word1 and word2
B Which are both Bakis topology

[ [ [ [ [ [
» » » » » »

wordl word2

[0 How do we compose an HMM for the word sequence “word1 word2”
B Problem: The final state in this model has only a self-transition

B According the model, once the process arrives at the final state of
wordl (for example) it never leaves

B There is no way to move into the next word
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Introducing the Non-emitting state

[0 So far, we have assumed that every HMM state models some
output, with some output probability distribution

[0 Frequently, however, it is useful to include model states that do not
generate any observation

B To simplify connectivity

Such states are called non-emitting states or sometimes null states
NULL STATES CANNOT HAVE SELF TRANSITIONS
Example: A word model with a final null state

O O O
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HMMs with NULL Final State

[0 The final NULL state changes the trellis
B The NULL state cannot be entered or exited within the word

O O O O
O O O O
O O O O
O O
||

O O
| |

WORD1 (only 5 frames)

v— 0O O O O

[0 If there are exactly 5 vectors in word 5, the NULL state may only
be visited after all 5 have been scored
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The NULL final state

wordl Next word

[ > < ]

[0 The probability of transitioning into the NULL final state at any
time ¢ 1s the probability that the observation sequence for the word

will end at time ¢
[0 Alternately, it represents the probability that the observation will
exit the word at time ¢
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Connecting Words with Final NULL States

QIS
T

HMM for wordl HMM for word?2

(DS CACICIC )
NS AN

HMM for word1l HMM for word?2

[0 The probability of leaving word 1 (i.e the probability of going to the
NULL state) 1s the same as the probability of entering word2

B The transitions pointed to by the two ends of each of the colored
arrows are the same

3 March 2010



Retaining a Non-emitting state between words

[0 In some cases it may be useful to retain the non-emitting state as a
connecting state

B The probability of entering word 2 from the non-emitting state 1s 1.0
B This is the only transition allowed from the non-emitting state
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Retaining the Non-emitting State

HMM for word1l HMM for word?2

1.0

HMM for word1l HMM for word2

HMM for the word sequence “word2 word1l”
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A Trellis With a Non-Emitting State
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Feature vectors
(time)

001000000

e300 86 &0 080

00000000

008900869

0000900000

00000000
[0 Since non-emitting states are not

no “time”

assoclated with observations, they have

In the trellis this is indicated by showing them between time marks

Non-emitting states have no horizontal edges — they are always exited instantly
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Viterb1 with Non-emitting States

[0 Non-emitting states affect Viterbi decoding
B The process of obtaining state segmentations

[0 This 1s critical for the actual recognition algorithm for word
sequences
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Viterbi through a Non-Emitting State
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Feature vectors

HH ”HHH ”H H :(time)

[0 At the first instant only the first state may be entered
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Viterbi through a Non-Emitting State

CPIOM
[

TPIOM

o Z
® ¢ Feature vectors

HH ”HHH ”H H :(time)

[0 At t=2 the first two states have only one possible entry path
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Viterbi through a Non-Emitting State

CPIOM
[

i /-

() ...‘;‘
*

TPIOM

® o ¢ Feature vectors

HH ”HHH ”H H :(time)

[0 At t=3 state 2 has two possible entries. The best one must be
selected
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Viterbi through a Non-Emitting State

CPIOM
[

TPIOM

o ,0 /C
® o ¢ Feature vectors

HH ”HHH ”H H :(time)

[0 At t=3 state 2 has two possible entries. The best one must be
selected
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Viterbi through a Non-Emitting State

CPIOM
[

TPIOM

@ e
T Zdt Feature vectors
H H H H H H H H H . (time)

[0 After the third time instant we an arrive at the non-emitting state.
Here there is only one way to get to the non-emitting state
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Viterbi through a Non-Emitting State

®

S e

S

(@

N o @)
O -

*
*

T T .‘. "¢ Featur_e vectors
1| | |  (time)

[0 Paths exiting the non-emitting state are now in word?2

TPIOM

B States in wordl are still active
B These represent paths that have not crossed over to word2
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Viterbi through a Non-Emitting State

o

S e

S

o

N o O
® L 3

TPIOM

¢ *—0
i /:/j‘ "¢ Feature vectors
H H H H H H H H H . (time)

[0 Paths exiting the non-emitting state are now in word?2

B States in wordl are still active
B These represent paths that have not crossed over to word2

3 March 2010




Viterbi through a Non-Emitting State

o
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Feature vectors

HH ”HHH ”H H :(time)

[0 The non-emitting state will now be arrived at after every
observation instant
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Viterbi through a Non-Emitting State

o

§ o c
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o 000‘0

Feature vectors

HH ”HHH ”H H :(time)

[0 “Enterable” states in word2 may have incoming paths either from
the “cross-over” at the non-emitting state or from within the word

B Paths from non-emitting states may compete with paths from emitting
states
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Viterbi through a Non-Emitting State

CPIOM
[
Q

| /

® . ‘ >0—@ Feature vectors

HH ”HHH ”H H :(time)

[0 Regardless of whether the competing incoming paths are from
emitting or non-emitting states, the best overall path is selected

TPIOM
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Viterbi through a Non-Emitting State

o
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o 0001

Feature vectors

HH ”HHH ”H H :(time)

[0 The non-emitting state can be visited after every observation
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Viterbi through a Non-Emitting State

CPIOM
@
S Y,
@

TPIOM
O o
Q\.

% S

O /. /‘—»H 20
T "o e—e :.'. ~® Featu r_e vectors
1| | |  (time)

[0 At all times paths from non-emitting states may compete with
paths from emitting states

3 March 2010




Viterbi through a Non-Emitting State

e o
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TPIOM

® . ‘ > @ ~® Feature vectors

HH ”HHH ”H H :(time)

[0 At all times paths from non-emitting states may compete with
paths from emitting states

B The best will be selected
B This may be from either an emitting or non-emitting state




Viterbi with NULL states

[0 Competition between incoming paths from emitting and non-
emitting states may occur at both emitting and non-emitting states

[0 The best path logic stays the same. The only difference 1is that the
current observation probability is factored into emitting states

[0 Score for emitting state (as probabilities)
I:)u (S’t) — I:)(Xu,t | S) maxs'(Pu (Sl’t _1)P(S | Sl) |s'e{emitting}’ I:)u (S',t)P(S | Sl) |s'e{nonemitting})
[0 Score for non-emitting state

Pu (S,t) = maXS.(Pu (Sl1t _1)P(S | Sl) |s'e{emitting}’ I:)u (Sl’t)P(S | Sl) |s'e{nonemitting})

[0 Using log probabilities
Iog(Pu (S,t)) = Iog(P(Xu,t | S))+ maxs'(log(Pu (Slit _1))+ IOg(P(S | Sl))'s'e{emitting}’ Iog(Pu (Slit))+ |Og(P(S | Sl))ls'e{nonemitting})

Iog(Pu (S,t))= maxs.(log(Pu (Sllt _1))+ |Og(P(S | SI))ls‘e{emitting}' Iog(Pu (Slit))+ |Og(P(S | Sl))ls'e{nonemitting})
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Speech Recognition as String Matching

é
4
my
8?
Ei W
*—o—o—o—o—o— —0=0= = = = —0=0-e
DATA

[0 We find the distance of the data from the “model” using the Trellis
for the word

Pick the word for which this distance 1s lowest

Word = argmin 4 distance(data, model(word))

Using the DTW / HMM analogy
® Word = argmax 4 probability(data | model(word))

O 0O O

O Alternately, argmax, .4 logprobability(data | model)

B Alternately still: argmin_ .4 —logprobability(data | model)

WOor



Speech Recognition as Bayesian Classification

[0 Different words may occur with different frequency
B EKE.g.aperson may say “SEE” much more frequently than “ZEE”

[0 This must be factored in

B If we are not very sure they said “SEE” or “ZEE”, choose “SEE”
[0 We are more likely to be right than if we chose ZEE

[0 The basic DTW equation does not factor this in

B Word =argmax .4 probability(data | word) does not account for prior
bias

[0 Cast the problem instead as a Bayesian classification problem
B Word =argmax 4 p(word) probability(data | word)
B “p(word)” is the a priori probability of the word
B Naturally accounts for prior bias
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Statistical pattern classification

0 Given data X, find which of a number of classes C;, C,,...Cy it
belongs to, based on known distributions of data from C;, C,, etc.

d Bayesian Classification:

Class = C; : 1 = argmax; log(P(C))) + log(P(X| C))

— \

a priori probability of C; Probability of X as given by
the probability distribution of Cj

O The a priori probability accounts for the relative proportions of the classes

— If you never saw any data, you would guess the class based on these
probabilities alone

d P(X|C;) accounts for evidence obtained from observed data X
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Isolated Word Recognition as Bayesian Classification

asses are wordads

> Data are instances of spoken words

B Sequence of feature vectorsg|derived from speech signal,

&uhn
ik

/
/ M '
J BV — PP

50'00/
| 2 Y s

1 Bayesian classification:
Recognized_Word = argmax,,.4 l10g(P(word)) + log(P(X| word))

O P(word) is a priori probability of word

1 Obtained from our expectation of the relative frequency of occurrence of
the word

— [ P(X|word) is the probability of X computed on the probability distribution —
function of word



Computing P(X|word)

0 P(X|word) is computed from the HMM for the word
B HMDMs are actually probability distributions

[0 Ideally P(X|word)is computed using the forward
algorithm

[0 In reality computed as the best path through a Trellis
B A priori probability P(word) is factored into the Trellis

Q) )

. =‘ >‘ >.\
‘ “ A ‘ hon-emitting absorbing

state
\ \ \/
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Factoring in a priori probability into Trellis

HMM for Odd HMM for Even
& & °* o060 °
BestPathLogProb(X,0dd) BestPathLogProb(X,Even)
o 0 0 <L
/}/ —0 0 0 O
—0 0 0 0
A v
IR IR
Log(P(Odd)) Log(P(Even))

The prior bias is factored in as the edge penalty at the entry to the trellis
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Time-Synchronous Trellis: Odd and Even

O m Merged
@ @ Cj final states

BestPath LogProb(X,Odd)

Log(P(Odd)) --\-

(uan3z‘x)qoadboyredisag
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Time Synchronous DecodeOdd and Even

[0 Compute the probability of best path

B Computations can be done in the log domain. Only additions
and comparisons are required

BestPathLogProb(X,0dd)

Log(P(Odd)) --

(uan3z‘x)qoadboyredisag
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Decoding to classify between Odd and Even

[0 Compare scores (best state sequence probabilities) of all competing

words
[0 Select the word sequence corresponding to the path with the best
score Score(X,0dd)
i
>
A
/ Score (5( ,Even)
.
Log(P(Odd)) --
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Decoding isolated words with word HMMs

[0 Construct a trellis (search graph) based on the HMM for
each word

B Alternately construct a single, common trellis

[0 Select the word corresponding to the best scoring path
through the combined trellis
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Why Scores and not Probabilities

[1 Trivial reasons

B Computational efficiency: Use log probabilities and
perform additions instead of multiplications

[0 Use log transition probabilities and log node probabilities
[0 Add log probability terms — do not multiply

B Underflow: Log probability terms add — no underflow
[0 Probabilities will multiply and underflow rather quickly

[J Deeper reason
B Using scores enables us to collapse parts of the trellis
B This is not possible using forward probabilities
B We will see why in the next few slides
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Statistical classification of word seguences

4 Given data X, find which of a number of classes C,, C,,...C it belongs to,
based on known distributions of data from C,, C,, etc.

O Bayesian Classification:

Class = C; : 1 = argmax; P(C;)P(X|C))
[0 Classes are word sequences

[0 Data are spoken recordings of word sequences
[0 Bayesian classification

word,,word,,...,word , =
arg max,,g wa, .wa, LP (X [wdy, wd,,...,wd )P(wd,,wd,,...,wd )}

e P(wd,,wd,,wd,..) is a priori probability of word sequence wd,,wd,,wd,..
— Is the word sequence “close file” more common than “delete file”..

e P(X|wd;,wd,,wds,..) is the probability of X computed on the HMM for the
word sequence wd,,wd,,wd,

» Ideally must be computed using the forward algorithm
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Decoding continuous speech

First step: construct an HMM for each possible word sequence

[ [ »
» > >

HMM for word 1 HMM for word2

» » »
> > >

Combined HMM for the sequence word 1 word 2

Second step: find the probability of the given utterance on the HMM for
each possible word sequence

e P(X|wd,,wd,,wdj..) is the probability of X computed on the probability
distribution function of the word sequence wd,,wd,,wd,..

— HMMs now represent probability distributions of word sequences
— Once again, this term must be computed by the forward algorithm
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Bayesian Classification between word sequences

¢ Classifying an utterance as either “Rock Star” or “Dog Star”
¢ Must compare P(Rock,Star)P(X|Rock Star) with P(Dog,Star)P(X|Dog Star)
¢ This is the complete forward score at the final trellis node

P(Rock,Star)P(X|Rock Star) P(Dog,Star)P(X|Dog Star
\\‘ \\‘
f O o £ (Z f O fe) Jl> JZ
i _
é —] § — O O O i
~:0 o o O
I i1 1 1 1 1 1 1 I i1 1 1 1 1 1 1 .
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Bayesian Classification between word sequences

¢ The a priori probability of the word sequences (P(Rock Star), P(Dog Star))
can be spread across the Trellis without changing final probabilities

P(Rock,Star)P(X]Rock Star) P(Dog,Star)P(X|Dog Star)
\
P(Star|Rock) AN P(StarLDog) AN
%

>
> oS
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Sy, \ ity \
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* e o
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'O
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L3 RENA . o
LRE b, e e
o To %’ * To %%
o e o ¢ o e, e 9
3 .
* * * ' * * * '
Sttt o) o e - S O o) (e} I
SR RS y e o ‘e Ny (
. -
. . LIUREN . o] e,
C L .
s " ‘s *e ‘e
. (3 * * < /
v g g -
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*
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* & * jo. *

* >
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.

Rock [ Star ==—p@
o
o0
H—0o
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0
o—0

— § ——0 0 o
~.4—0 o (o] O
T T T T T T Y Y A T T T T T T T
P(Rock) P(Dog)
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Decoding between word sequences

¢ In reality we find the score/cost of the best paths through the trellises
¢ Not the full forward score
¢ l.e. we perform DTW based classification, not Bayesian classification

Score(Rock Star) Score(Dog Star)
Log (}P (Star|Rock)) AN Log(P,§Star| Dog)) N .
% N \
: P 4Tk
B
f ’o‘ ‘0. ‘e ’~,
X o \
é 8 — 0 i C
% )
1 1 1 1 1 1 § 1 . 1 0 11 1 1 1
Log(P(Rock)) Log(P(Dog))
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Time Synchronous Bayesian Classification between word
seguences

P(Rock,Star)P(X]|Rock Star)

*

l o
O (o] -
O (o] (o} l
l‘...
O o o o '~..
.,..
....
Y

[
VLS L Il P(Dog,Star)P(X|Dog Star)
—0 o) o) (o] I

Star =——

Dog

o—0O

Rock [ Star

|\ e
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Time synchronous decoding to classify between word

sequences
Score(Dog_Star)
@ B! Ilv ......
J, N Il Score(Rock Star)
§ ? o o I
S Use best path score
5 o To determine
&5
&
I
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Decoding to classify between word sequences

_ The best path through
Dog Star lies within the
dotted portions of the trellis

@ . There are four transition
' RN~ points from Dog to Star in
this trellis
6 o o L There are four different sets
| S S| L paths through the dotted
% I S S trellis, each with its own
g best path

Star =——

Dog

Rock [ Star

|\ e
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Decoding to classify between word sequences

SET 1 and its best path

_ The best path through
Dog Star lies within the
dotted portions of the trellis

@ ll There are four transition
o o o I points from Dog to Star in
_ R I this trellis
o Q 0

Star =—@

Dog

¢ ) . There are four different sets
5 L 4 L paths through the dotted

6 & & b trellis, each with its own
best path

Rock [ Star

|\ e
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Star =—@

Decoding to classify between word sequences

SET 2 and its best path

Dog

Rock [ Star

|\ e

@
%
|

| The best path through

Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

. There are four different sets

paths through the dotted
trellis, each with its own
best path
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Star =—@

Decoding to classify between word sequences

SET 3 and its best path

Dog

O
O
o—0©O

Rock [ Star

|\ e

@
%
|

| The best path through

Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

. There are four different sets

paths through the dotted
trellis, each with its own
best path
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Star =—@

Decoding to classify between word sequences

SET 4 and its best path

Dog

Rock [ Star

|\ e

|
GT

| The best path through

Dog Star lies within the
dotted portions of the trellis

There are four transition
points from Dog to Star in
this trellis

. There are four different sets

paths through the dotted
trellis, each with its own
best path
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Decoding to classify between word sequences

The best path through

Dog Star is the best of

the four transition-specific
best paths

4 AR l max(dogstar) =
L Rat RN I max ( dogstarl, dogstar2,
R It RS I dogstar3, dogstar4 )
O (o} -
O (o} (@]
O o o (o}

Star =—@

Dog

o—©0O

Rock [ Star

|\ e
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Star =—@

Dog

Decoding to classify between word sequences

|

Rock [ Star

|\ e

Similarly, for Rock Star
the best path through

| the trellis is the best of

the four transition-specific
best paths
max(rockstar) =

max ( rockstarl, rockstar2,
rockstar3, rockstar4 )
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Star =—@

Decoding to classify between word sequences

Dog

|
%

Rock [ Star

|\ e

Then we’d compare
the best paths
through Dog Star and
Rock Star

max(dogstar) =
max ( dogstarl, dogstar2,
dogstar3, dogstar4 )

max(rockstar) =

max ( rockstarl, rockstar2,
rockstar3, rockstar4)

Viterbi =

max(max(dogstar),
max(rockstar) )

3 March 2010




Decoding to classify between word sequences

Star =—@

max(max(dogstar),

5 o L <4 argmax is commutative:
O 2 o L

max(rockstar) )

l
| I
O o o o Il :ax(
T 77 7 9 I max(dogstarl, rockstarl),
o7 max(dogstar2, rockstar2),
— o 9 - max (dogstar3,rockstar3),
— o o o max(dogstar4,rockstar4)
- o) o o o )
O o o (%
—1 ¢ ° o o

Dog

o—©0O

Rock [ Star

—0 (9 (] @

|\ e
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Max (dogstarl, rockstarl)

For a given entry point
tl the best path through STAR
| is the same for both trellises

Star =—@

max(max(dogstar),

Dog

max(dogstar2, rockstar2),
| max (dogstar3,rockstar3d),
ANIS. * max(dogstar4,rockstar4)

. . .
. .
e * o* )

@ r l
ll max(rockstar) )
o o —_
% (o] o I max (
i I max(dogstarl, rockstarl)),

We can choose between
Dog and Rock right here

ecause the futures of these
paths are identical

Rock [ Star
o
O

|
@
@
@
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Max (dogstarl, rockstarl)

g
n
B We select the higher scoring
: of the two incoming edges
here
- O
e
20
si:
% This portion of the
trellis is now deleted
‘ [6) (o) [}
X
8 (] Q
o
I o (<) (<
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Max (dogstar2, rockstar?)

t1

Similar logic can be applied
at other entry points to

Star

1 Star =—>@

O
@ max(max(dogstar),

Dog

——
\
— |
‘\k

Rock f==——p' Star

? max(rockstar) )
O (ID o -
0 (o] (o] o— max (
max(dogstarl, rockstarl),
—0 o) o o—
max(dogstar2, rockstar?),
] v | max (dogstar3,rockstar3d),
— IR max(dogstar4,rockstar4)
_ )
0 (0] (o] (o]
s (<) (] (<
. —0 o (<) (<

|\ e
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Max (doqgstar3, rockstar3)

t1

Similar logic can be applied
at other entry points to

Star

1 Star =—>@

O
O o
max(max(dogstar),

Dog

Rock f==——p' Star

i ? ll max(rockstar) )
O (ID o -
0 (o] (o] o— I max (
I max(dogstarl, rockstarl),
—0 o) e} o—
max(dogstar?2, rockstar?),
] S max (dogstar3,rockstar3),
_ '?" max(dogstar4,rockstar4)
_ L+ )
0 (0] (o] (o]
s (<) (] (<
. —0 o (<) (<

|\ e
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Max (doqgstard, rockstar4)

otl
f Lo L /| Similar logic can _be applied
# at other entry points to

g T 7 T Star

« el o o 5>

T max(max(dogstar),
i — max(rockstar) )
O (ID o o— -

8 —1 90 0 o) o— max (

o max(dogstarl, rockstarl),
-7 T max(dogstar2, rockstar2),
= max (dogstar3,rockstar3),
— max(dogstar4,rockstar4)

_ )
0 (0] (o] (o]

X

8 s (<) (] (<

o
. —0 o (<) (<

|
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Decoding to classify between word sequences

Star =——@

O o o L

Q) o o o

Dog

Rock

|

Lok L CZSimilar logic can be applie

at other entry points to
Star

This copy of the trellis

_-z:_l-;—‘for STAR is completely

removed
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Decoding to classify between word sequences

¢ The two instances of Star can be collapsed into one to form a smaller
trellis

Star =——@

Dog

i
=

/

Rock
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Language-HMMSs for fixed length word sequences

Dog

/ Star ——>@
Rock

We will represent the
vertical axis of the
trellis in this simplified
manner




The Real “Classes”

Dog Star Dog

/. / Star —@
Rock Star Rock

[0 The actual recognition 1s DOG STAR vs. ROCK STAR

B ie. the two items that form our “classes” are entire phrases

[0 The reduced graph to the right is merely an engineering

reduction obtained by utilizing commonalities in the two
phrases (STAR)

B Only possible because we use the best path score and
not the entire forward probability

[0 This distinction affects the design of the recognition system
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Language-HMMSs for fixed length word sequences

P(Dog) P(Star|Dog)

/-@—9—9—-0—>0

P(Rock)\+Q—>Q—>Q—> (Star|Rock)

[0 The word graph represents all allowed word sequences in our
example

Each word is an HMM—>Q—>Q—>@—>O

B The set of all allowed word sequences represents the allowed “language”

[0 At a more detailed level, the figure represents an HMM composed of
the HMMs for all words in the word graph

B This is the “Language HMM” — the HMM for the entire allowed language

[0 Thelanguage HMM represents the vertical axis of the trellis

B It is the trellis, and NOT the language HMM, that is searched for the best
path
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Language-HMMSs for fixed length word sequences

brigade”
Cannon to right of them
Cannon to left of them
Cannon in front of them

Cannon behind them

P(of|cannon to right) i
; P(them|cannon to right of)

)/

right »| of >

P(right|cagnon to)

i [0 Recognizing one of four lines from “charge of the light
=
=
G
2
i

P(to]cannon) P(left|cannon to) P(of|cannon to left
~ - 7’
7’
P(cannon 4
(canngn) left ——>[of}—>
Sa ] p ~
o P(frontlcannon in (them]cannon to left of)
Cannon ( | | P?of|cannon in front)

1 »| front p=——>|0f >

-
P(inJcannon)”

P(behind]cannon)= — —=

»behind 1

P(them]cannon behind)
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Where does the graph come from

The graph must be specified to the recognizer

B What we are actually doing is to specify the complete
set of “allowed” sentences in graph form

May be specified as an FSG or a Context-Free
Grammar

B CFGs and FSG do not have probabilities associated
with them

B We could factor in prior biases through probabilistic

FSG/CFGs

B In probabilistic variants of FSGs and CFGs we
assoclate probabilities with options
[0 E.g.1in the last graph
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Simplification of the language HMM through lower context
Ianguage models

[0 Recognizing one of four lines from “charge of the light brigade”
[0 If we do not associate probabilities with FSG rules/transitions

Each word is an HMM—>Q—>Q—>@—>O

&—|Cannon

behind
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Language HMMs for fixed-length word sequences: based
on a grammar for Dr. Seuss

breeze

Each word is an HMM—>Q—>Q—>@—>O

freez
trees
three p=—>

trees’ p—>

No probabilities specified — a person may utter any of these phrases
at any time
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Language HMMs for fixed-length word sequences:
command and control grammar

open

—»| edit

Each word is an HMM—>Q—>Q—>@—>O

delete

> files
marked

close

No probabilities specified — a person may utter any of these
phrases at any time
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L anquage HMMSs for arbitrarily long word sequences

[0 Previous examples chose between a finite set of known
word sequences
[0 Word sequences can be of arbitrary length

B EK.g. set of all word sequences that consist of an arbitrary number
of repetitions of the word bang

bang

bang bang

bang bang bang
bang bang bang bang

B Forming explicit word-sequence graphs of the type we’ve seen so
far 1s not possible
[0 The number of possible sequences (with non-zero a-priori probability)
1s potentially infinite

[0 Even if the longest sequence length is restricted, the graph will still be
large
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Each word is an HMM—>Q—>Q—>@—>O

L anguage HMMSs for arbitrarily long word sequences

O

Arbitrary word sequences can be
modeled with loops under some
assumptions. E.g.:

O

A “bang” can be followed by another
“bang” with probability P(“bang”).
B P(“bang”) = X;

P(Termination) = 1-X;

[0 Bangs can occur only in pairs with -X
probability X
[0 A more complex graph allows more

complicated patterns X

[0 You can extend this logic to other
. -X
vocabularies where the speaker says
other words in addition to “bang”

B e.g. “bang bang you're dead”
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L anquage HMMSs for arbitrarily long word sequences

Constrained set of word sequences with
constrained vocabulary are realistic

B Typically in command-and-control situations
[0 Example: operating TV remote

B Simple dialog systems
[0 When the set of permitted responses to a query is restricted

Unconstrained word sequences : Natural
Language

B State-of-art large vocabulary decoders

B Later in the program..
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QUESTIONS?

Next up:
Specifying grammars
Pruning

Simple continuous unrestrcted speech

OOo00oaad

Backpointer table

[0 Any questions on topics so far?
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