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English or German?

The European Commission has just announced that English, and not German, will be the 

official language of the European Union.

But, as part of the negotiations, the British Government conceded that English spelling had 

some room for improvement and has accepted a 5- year phase-in plan that would 

become known as "Euro-English".
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English or German?

In the first year, "s" will replace the soft "c“. The hard "c" will be dropped in favour of "k".  

This should klear up konfusion, and keyboards kan have one less letter.

In the sekond year the troublesome "ph" will be replaced with "f".  This will make words 

like fotograf 20% shorter.

In the 3rd year Governments will enkourage the removal of double letters which have 

always ben a deterent to akurate speling. Also, the horibl mes of the silent "e" will go 

away.

By the 4th yer people wil be reseptiv to steps such as replasing "th" with "z" and "w"with

"v".

During ze fifz yer, ze unesesary "o" kan be dropd from vords kontaining "ou" and after ziz

fifz yer, ve vil hav a reil sensi bl riten styl.  Zer vil be no mor trubl or difikultis and 

evrivun vil find it ezi tu understand ech oza.  Ze drem of a united urop vil finali kum

tru.

Und efter ze fifz yer, ve vil al be speking German like zey vunted in ze forst plas!
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Why is Garbled Text Recgonizable?

• E.g.:

– Also, al wil agre that the horibl mes of the silent "e" 

in the languag is disgrasful and it should go away.

• Why do we think horibl should be horrible and 

not broccoli or quixotic?

• May sound like a silly question, but one of the 

keys to speech recognition
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Why is Garbled Text Recgonizable?

• Possible reasons:

– Words “look” recognizable, barring spelling errors

• E.g. publik

– Words “sound” recognizable when sounded out

• E.g. urop

– Context provides additional clues

• E.g. oza in “ … each oza.”

• Of these, which is the most rudimentary?  Most 

complex?

31 Jan 2011 5



How to Automate German -> English?
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How to Automate German -> English?

• Start with simple problem:

– Treat each word in isolation

– Handle spelling errors only (surface feature)

• In other words:

– Ignore “sounding like” and “context” aspects
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How to Automate German -> English?

• Only unknown: The compare box
– Exactly what is the comparison algorithm?

Word1

Word2

Word3

Word-N

Dictionary

compare

compare

compare

compare

Input word

Best
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Relation to Speech Recognition?

• Isolated word recognition scenario

Word1

Word2

Word3

Word-N

Recordings (templates)

compare

compare

compare

compare

Spoken input word

Best
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Problems in Comparing Strings?



String Comparison

• If the only spelling mistakes involve substitution errors, 

comparison is easy:

– Line up the words, letter-for-letter, and count the number of 

corresponding letters that differ:

P  U  B  L  I  K

P  U  B  L  I  C

P  U  B  L  I  K

P  E  O  P  L  E

– But what about words like agre (agree)?  How do we “line up” 

the letters?
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String Comparison

• In general, we consider three types of string errors:
– Substitution: a template letter has been changed in the input

– Insertion: a spurious letter is introduced in the input

– Deletion: a template letter is missing from the input

• These errors are known as editing operations

P  U  B  L  I  K

P  U  B  L  I  C

P  O  T  A  T  O  E

P  O  T  A  T  O

A  G  R      E

A  G  R  E E
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String Comparison

• Why did we pick the above alignments?  Why not some other 

alignment of the letters:

P  U B  L      I  K
P      U  B L I  C

A  G      R E
A  G  R E E
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String Comparison

• Why did we pick the above alignments?  Why not some other 

alignment:

P  U B  L      I  K
P      U  B L I  C

A  G      R E
A  G  R E E

• Because these alignments exhibit a greater edit 

distance than the “correct” alignment
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String Comparison Problem

• Given two arbitrary strings, find the minimum edit 

distance between the two:

– Edit distance = the minimum number of editing 

operations needed to convert one into the other

– Editing operations: substitutions, insertions, deletions

– Often, the distance is also called cost

• This minimum distance is a measure of the 

dissimilarity between the two strings

• Also called the Levenshtein distance
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String Comparison Problem

• How do we compute this minimum edit distance?

• With words like agre and publik, we could eyeball 

and “guess” the correct alignment

• Such words are familiar to us

• But we cannot “eyeball and guess” with unfamiliar 

words

• Corollary: ALL words are unfamiliar to computers!

– We need an algorithm
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String Comparison Example

• Hypothetical example of unfamiliar word:

– Template: ABBAAACBADDA

– Input: CBBBACCCBDDDDA

• Other alignments are possible

• Which is the “correct” (minimum distance) alignment?

• Need an algorithm to compute this!

DDC CB

DB B A C B DA

B

B

A C B D DC

A

A

template

input

insertions

deletionssubstitution

A A A
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String Edit Distance Computation

• Measuring edit distance is best visualized as a 2-D diagram of the template being 

aligned or warped to best match the input

– Two possible alignments of template to input are shown, in blue and red

Z

Y

X

C

B

A

A B C D E F G input

template

= Correct or substituted

= Input character inserted

= Template character deleted

A  B  C  X  Y  Z
A  B  C  D  E  F  G

A  B      C      X  Y  Z
A  B  C  D  E  F      G

Distance = 4

Distance = 6

The arrow directions have specific meaning:

}

}
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Minimum String Edit Distance

• This is an example of a search problem, since we need to search among 

all possible paths for the best one

• First possibility: Brute force search

– Exhaustive search through all possible paths from bottom-left to top-right,  

and choose path with minimum cost

– But, computationally intractable; exponentially many paths!

• (Exercise: Exactly how many different paths are there?)

– (A path is a connected sequence made up of the three types of arrows: 

diagonal, vertical and horizontal steps)

• Solution: Dynamic Programming (DP)

– Find optimal (minimum cost) path by utilizing (re-using) optimal sub-paths

– Central to virtually all major speech recognition systems
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Minimum String Edit Distance: DP

• Central idea: Compute the edit distance by incrementally 

comparing substrings of increasing length:
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E V R I
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Continues till EVERY is compared to EVRI
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EVERY vs. EVRI

• Incrementally compare substrings

• Each substring-substring comparison depends only on the results of the 

previous substring comparisons

• The total computation is < O(M2N)

– M and N are the lengths of the string along the Y and X axes

– In reality, it is closer to O(N2)

E
V
R
I

E V E R Y
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EVERY vs. EVRI

• Incrementally compare substrings

• Each substring-substring comparison depends only on the results of the 

previous substring comparisons

• The total computation is < O(M2N)

– M and N are the lengths of the string along the Y and X axes

– In reality, it is closer to O(N2)

E
V
R
I

E V E R Y

x
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EVERY vs. EVRI

• Incrementally compare substrings

• Each substring-substring comparison depends only on the results of the 

previous substring comparisons

• The total computation is < O(M2N)

– M and N are the lengths of the string along the Y and X axes
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EVERY vs. EVRI

• Incrementally compare substrings
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EVERY vs. EVRI
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EVERY vs. EVRI

• Incrementally compare substrings

• Each substring-substring comparison depends only on the results of the 

previous substring comparisons

• The total computation is < O(M2N)

– M and N are the lengths of the string along the Y and X axes

– In reality, it is closer to O(MN)
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Minimum String Edit Distance: DP

• In algorithmic terms formulate optimal path to any intermediate point X in the matrix in 

terms of optimal paths of all its immediate predecessors

– Let MX = Min. path cost from origin to any pt. X in matrix

– Say, A, B and C are all the predecessors of X

– Assume MA, MB and MC are known (shown by dotted lines)

– Then, MX = min (MA+AX, MB+BX, MC+CX)

• AX = edit distance for diagonal transition

= 0 if the aligned letters are same, 1 if not)

• BX = edit distance for vertical transition

= 1 (deletion)

• CX = edit distance for horizontal transition

= 1 (insertion)

X

BA

C
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Minimum String Edit Distance: DP

• Hence, start from the origin, and compute min. path cost for every matrix entry, 

proceeding from bottom-left to top-right corner

• Proceed methodically, one column (i.e. one input character) at a time:

– Consider each input character, one at a time

– Fill out min. edit distance for that entire column before moving on to next input character

– Forces us to examine every unit of input (in this case, every character) one at a time

– Allows each input character to be processed as it becomes available (“online” operation 

possible)

• Min. edit distance = value at top right corner
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DP Example

• First, initialize top left corner, aligning the first letters

Z

Y

X

C

B

A

A B C D E F G

0

A B C D E F G
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DP Example (contd.)

• Min. edit distance (ABCXYZ, ABCDEFG) = 4
– One possible min. distance alignment is shown in blue

A B C D E F G
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A Little Diversion: Algorithm Bug

• The above description and example has a small 

bug.  What is it?

• Hint: Consider input and template: urop and 

europe

– What is their correct minimum edit distance?  

(Eyeball and guess!)

– What does the above algorithm produce?

• Exercise: How can the algorithm be modified to 

fix the bug?
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DP: Finding the Best Alignment

• The algorithm so far only finds the cost, not the alignment itself 

• How do we find the actual path that minimizes edit distance?

– There may be multiple such paths, any one path will suffice

• To determine the alignment, we modify the algorithm as follows

• Whenever a cell X is filled in, we maintain a back-pointer from X to its predecessor cell 

that led to the best score for X

– Recall MX = min (MA+AX, MB+BX, MC+CX)

– So, if MB+BX happens to be the minimum

we create a back-pointer X->B

– If there are ties, break them arbitrarily

• Thus, every cell has a single back-pointer

• At the end, we trace back from the final cell to the origin, using the back-pointers, to 

obtain the best alignment

Back-pointer

X

BA

C
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Finding the Best Alignment: Example



DP Trellis

• The 2-D matrix, with all possible transitions filled in, is called the search trellis

– Horizontal axis: time.  Each step deals with the next input unit (in this case, a text character)

– Vertical axis: Template (or model)

• Search trellis for the previous example:

A B C D E F G
Z

Y

X

C

B

A

Change of notation: 
nodes = matrix cells
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DP Trellis

• DP does not require that transitions be limited to the 

three types used in the example

• The primary requirement is that the optimal path be 

computable recursively, based on a node’s predecessors’ 

optimal sub-paths
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DP Trellis (contd.)

• The search trellis is arguably one of the most 

crucial concepts in modern day speech 

recognizers!

– We will encounter this again and again

• Just about any decoding problem is usually cast 

in terms of such a trellis

• It is then a matter of searching through the trellis 

for the best path
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Computational Complexity of  DP

• Computational cost ~

No. of  nodes  x  No. of edges entering each node

• For string matching, this is:

String-length(template)  x  String-length(input)  x  3

– (Compare to exponential cost of brute force search!)

• Memory cost for string matching?

– No of nodes (String-length(template)  x  String-length(input))?

– Actually, we don’t need to store the entire trellis if all we want is the min. edit 

distance (i.e. not the alignment; no back pointers)

– Since each column depends only on the previous, we only need storage for 2 

columns of the matrix

• The current column being computed and the previous column

– Actually, in most cases a column can be updated in-place

• Memory requirement is reduced to just one column



Back to German -> English

• Compare box = DP computation of minimum edit distance

• Select the word with the minimum edit distance
– The “closest” word

Word1

Word2

Word3

Word-N

Dictionary

DP    

DP    

DP    

DP    

Input word

Best

Edit distances
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Rejection

• Spell checker:  How to determine if the word is not in the dictionary at all?

– What we have is a “distance” from an input word to each word in a dictionary

– We choose the word with the minimum distance

– How can we be sure that this word is really a match for the misspelled word?

• Rejection! 

– If the distance from the closest word is too large,  the word is probably not in 

the dictionary

• Mindictionary words(DPScore(input string, Dictionary word)) > Threshold == reject

• A “rejection threhsold”

– How do we define “too large”?

• The maximum acceptable number of errors in a misspelling of 

“Floccinaucinihilipilification” cannot be compared to the number of errors in “and”

– The rejection threshold must depend on the length of the word

• Dictionary word or misspelled input word?

• We return to this in the next class
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Back to German -> English

• Compare box = DP computation of minimum edit distance

• A separate DP trellis for each dictionary word (?)

Word1

Word2

Word3

Word-N

Dictionary

DP    

DP    

DP    

DP    

Input word

Best

Edit distances
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Computing in Parallel

• Spell checker:  Each input word is compared to 

every word in the dictionary

• Create and evaluate V trellises

– V = size of dictionary

• Select the word with the lowest cost
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Serial Computation

• Example: Comparing “UROP” to “EUROPE”, “ROPE” and “DROP”

– To determine the closest fit
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• Three separate trellises computed serially

• Not amenable to online computation

U         R        O        P U         R        O        P U         R        O        P

E

P

O

R

U

E

E

P

O

R

P

O

R

D



Parallel Computation
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U         R        O        P

E

P

O

R

U

E

E

P

O

R

P

O

R

D

• Compute all Trellises concurrently

– Each input character is compared to the 

corresponding column for all templates

• Enables online processing

– The time taken to type in a character is 

often sufficient to fill in the column for a 

large dictionary of template words

• Also enables additional processing 

tricks..



R

O

H
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Optimization: Trellis Sharing

• Consider templates horrible, horrid, horde being matched with input 
word horibl

• Trellises shown above
– Colors indicate identical contents of trellis

• How can we avoid this duplication of computation?

H O R I B L

R

O

H

H O R I B L H O R I B L

I

R

E

L

B

D E

D

R

O

H

I

R
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Optimization: Trellis Sharing

• Compute only the unique subsets (sub-trellises)

• Allow multiple successors from a given sub-trellis
H O R I B LH O R I B L H O R I B L

R

O

H

I

R

E

L

B

D

R

O

H

I

R

R

O

H

H O R I B L

E

D
R

O

H

I

R

E

L

B
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E

D
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D   E

H   O   R

Trellis Sharing => Template Sharing

• Notice that templates have become fragmented!

• Derive new template network to facilitate trellis sharing:

R   I

B   L   E

D

horrible

horrid

horde

H O R I B L

R

O

H

I

R

E

L

B

D

E

D
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D   E

H   O   R

Template Sharing -> Lexical Trees

• Take it one step further
– Break down individual blocks:

• We get: Lexical tree model:

R   I

B   L   E

D

horrible

horrid

horde

OH R

ED

IR

LB E

D

horrible

horrid

horde
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Building Lexical Trees

• Original templates were linear or flat models:

• Exercise: How can we convert this collection to a 

lexical tree?

OH R IR B L E

OH R IR D

OH R ED
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Trellises for Lexical Trees

• We saw that it is desirable to share sub-trellises, to reduce computation

• We saw the connection between trellis sharing and structuring the 

templates as lexical trees

• You now (hopefully!) know how to construct lexical trees

• Q: Given a lexical tree representing a group of words, what does its 

search trellis look like?

• A: 

– Horizontal axis: time (input characters), as before

– Vertical axis: nodes in the model (lexical tree nodes)

– Trellis transitions: nothing but the transitions in the lexical tree, unrolled 

over time

• We are stepping the model one input unit at a time, and looking at its state at each 

step
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Trellises for Lexical Trees: Example

• Simple example of templates: at, ash, ask
– Lextree:

– Trellis:

A

S

T

H

K

T

K

H

S

A

i i+1 input

substitution/match

insertion

deletion
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Trellises for Lexical Trees: Example

• Simple example of templates: at, ash, ask
– Lextree:

– Trellis:

A

S

T

H

K

T

K

H

S

A

i i+1 input

substitution/match

insertion

deletion

i+2
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Trellises for Lexical Trees: Example

• Simple example of templates: at, ash, ask
– Lextree:

– Trellis:

A

S

T

H

K

T

K

H

S

A

i i+1

substitution/match

insertion

deletion

inputi+3

ask

at
Leaf nodes

i+2

ash
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Search Trellis for Graphical Models

• The scheme for constructing trellises from lextree models applies to any graphical 

model

• Note that the simple trellis shown at the beginning follows directly from this scheme, 

where the model is a degenerate, linear structure:

A B C D E F G
Z

Y

X

C

B

A
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Summary: Elements of  the Search Trellis

• Nodes represent the cells of the DP matrix

• Edges are the allowed transitions according to some model of the problem

– In string matching we allow substitutions, insertions, and deletions

• Every edge optionally has an edge cost for taking that edge

• Every node optionally has a local node cost for aligning the particular input entry to the 

particular template entry

– The node and edge costs depend on the application and model

• The DP algorithm, at every node, maintains a path cost for the best path from the origin 

to that node

– In string matching, this cost is the substring minimum edit distance

– Path costs are computed by accumulating local node and edge costs according to the recursive 

formulation already seen (minimizing cost)

• One may also use a similarity measure, instead of dissimilarity

– In this case DP algorithm should try to maximize the total path score
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Edge and Node Costs for String Match

• Edge costs:

• Local node costs: None

1
1 1

0

x

x

x

y

insertion deletion correct substitution
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Reducing Search Cost: Pruning

• Reducing search cost implies reducing the size of the trellis/lattice that has to be 

evaluated

• There are several ways to accomplish this

– Reducing the complexity and size of the models (templates)

• E.g. using lextrees (and thereby sharing trellis computation)

• We have already seen this above

– Eliminating parts of the lattice from consideration altogether

• This approach is called search pruning, or just pruning

• Basic consideration in pruning: As long as the best cost path is not eliminated by 

pruning, we obtain the same result
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Pruning

• Pruning is a heuristic: typically, there is a threshold on some measured quantity, and 

anything above or below the threshold is eliminated

• It is all about choosing the right measure, and the right threshold

• Let us see two different pruning methods:

– Based on deviation from the diagonal path in the trellis

– Based on path costs
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Pruning by Limiting Search Paths

• Assume that the the input and the best matching template do not differ significantly 

from each other

– The best path matching the two will lie close to the “diagonal”

• Thus, we need not search far off the diagonal.  If the search-space “width” is kept 

constant, cost of search is linear in utterance length instead of quadratic

search 
region

eliminated

eliminated

Trellis

width
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Pruning by Limiting Search Paths

• What are problems with this approach?
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Pruning by Limiting Search Paths

• What are problems with this approach?

– With lexical tree models, the notion of “diagonal” 

becomes difficult
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Option 2: Pruning by Limiting Path Cost

• Observation: Partial paths that have “very high” costs will rarely recover to win

• Hence, poor partial paths can be eliminated from the search:

– For each column j, after computing all the trellis nodes path costs, determine which nodes 

have too high costs

– Eliminate them from further exploration

• Q: How do we define “high cost”?

j

origin

partial best 
paths

High cost partial paths (red);
Do not explore further
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Pruning by Limiting Path Cost

• One could define high path cost as a value worse 

than some fixed threshold

• Will this work?



31 Jan 2011 66

Pruning by Limiting Path Cost

• One could define high path cost as a value worse than 

some fixed threshold

• Problem: Absolute path cost increases monotonically with 

input length!

• Thresholds have to be loose enough to allow for the longest inputs

• But such thresholds will be too permissive at shorter lengths, and not 

constrain computation effectively

• Solution: Look at relative path cost instead of absolute

path cost
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Pruning: Beam Search

• Solution: At each time step j, set the pruning threshold by a fixed 

amount T relative to the best cost at that column (input symbol)

– I.e. if the best partial path cost achieved at column t is X, prune away all 

nodes with partial path cost > X+T before moving to time t+1

• Advantages:

– Unreliability of absolute path costs is eliminated

– Monotonic growth of path costs with time is also irrelevant

• Search that uses such pruning is called beam search

– This is the most widely used search optimization strategy

• The relative threshold T is usually called beam width or just beam
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Determining the Optimal Beam Width

• Determining the optimal beam width to use is crucial

– Too narrow or tight a beam (too low T) can prune the best path 

• And result in too high a match cost, and errors

– Too large (wide) a beam results in unnecessary computation 

• From searching unlikely paths

• Unfortunately, there is no mathematical solution to 

determining an optimal beam width

• Common method: Try a wide range of beams on some test data 

until the desired operating point is found

– The operating point may be determined by some combination of 

matching /recognition accuracy and computational efficiency
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Conclusion

• Minimum string edit distance

• Dynamic programming search to compute minimum 
edit distance

• Lextree construction for compact templates

• Graphical representations of models

• Search trellis construction for given graphical 
models

• Search pruning

• Next up: Application to speech:
– All concepts learned with strings apply to speech 

recognition!



Assignment 2

• On website..
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