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Recap
• Thus far, we have looked at dynamic programming for string 

matching,
• And derived DTW from DP for isolated word recognition
• We identified the search trellis, time-synchronous search as 

efficient mechanisms for decodingefficient mechanisms for decoding
• We looked at ways to improve search efficiency using pruning

– In particular, we identified beam pruning as a nearly universal pruning 
mechanism in speech recognition

• We looked at the limitations of DTW and template matching:
– Ok for limited small vocabulary applicationsOk for limited, small vocabulary applications
– Brittle; breaks down if speakers change
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Today’s Topics
• Generalize DTW based recognition
• Extend to multiple templatesp p
• Move on to Hidden Markov Models
• Look ahead: The fundamental problems of HMMs

– Introduce the three fundamental problems of HMMs
• Two of the problems deal with decoding using HMMs, solved using the 

forward and Viterbi algorithmsforward and Viterbi algorithms
• The third dealing with estimating HMM parameters (seen later)

– Incorporating prior knowledge into the HMM framework
– Different types of probabilistic models for HMMs

• Discrete probability distributions
• Continuous mixture Gaussian distributions
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DTW Using A Single TemplateDTW Using A Single Template
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We’ve seen the DTW alignment of data to model
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We’ve seen the DTW alignment of data to model
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Limitations of  A Single Template

• As noted in the previous topic, a single template 
cannot capture all the variations in speechcannot capture all the variations in speech

• One alternative already suggested: use multipleOne alternative already suggested: use multiple 
templates for each word, and match the input 
against each oneagainst each one
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DTW with multiple templatesDTW with multiple templates

TEMPLATES

DATA
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DTW with multiple templatesDTW with multiple templates

TEMPLATES

DATA

7

Each template warps differently to best match the input; the best matching 
template is selected
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Problem With Multiple Templates
• Finding the best match requires the evaluation of many more 

templates (depending on the number)
– This can be computationally expensive

• Important for handheld devices, even for small-vocabulary applications
• Think battery life!

– Need a method for reducing multiple templates into a single one

• Even multiple templates do not cover the space of possible p p p p
variations
– Need mechanism of generalizing from the templates to include data not 

seen beforeseen before

• We can achieve both objectives by averaging all the templates for 
i d
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Generalizing from Templates
• Generalization implies going from the given templates to 

one that also represents others that we have not seen

• Taking the average of all available templates may 
represent the recorded templates less accurately but willrepresent the recorded templates less accurately, but will 
represent other unseen templates more robustly

• A general template (for a word) should capture all salient 
characteristics of the word, and no more
– Goal: Improving accuracy

• We will consider several steps to accomplish this
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates g p
represented by the reduced model

• Accounting for varying segment lengths
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Template Averaging
• How can we average the templates when they’re of different lengths?

– Somehow need to normalize them to each other
S l i A l DTW ( f !)• Solution: Apply DTW (of course!)
– Pick one template as a “master”
– Align all other templates to it

• Note: This requires not just finding the best cost, but the actual alignment between the 
template and input frame sequences, using the back-pointers described earlier

– Use the alignments generated to compute their average

• Note: Choosing a different master template will lead to a different 
average template
– Which template to choose as the master?

• No definitive answer exists
• Only trial and error solutions exist
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DTW with multiple templatesDTW with multiple templates
TEMPLATESTEMPLATES

T4
T3

T4

T1 T2 T3 T4

Align T4 and T3
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TEMPLATES

DTW with multiple templatesDTW with multiple templates
TEMPLATES

T4
T3

T2T2

T1T1

Average all feature vectors aligned 
against each other

T1 T2 T3 T4 Average Template

Align T4/T2 and T4/T1, similarly; then average all of them
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Benefits of  Template Averaging

• Obviously, we have eliminated the computational 
cost of having multiple templates for each wordg p p

• Using the averages of the aligned feature vectors 
generalizes from the samples
– The average is representative of the templates, and more 

generally, assumed to be representative of future 
utterances of the word

• The more the number of templates, the better the 
generalization
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates g p
represented by the reduced model

• Accounting for varying segment lengths
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Template Size Reduction
• Can we do better?  Consider the template for “something”:

template s o me th i ng

• Here, the template has been manually segmented into 6 
segments, where each segment is a single phoneme

• Hence, the frames of speech that make up any single segment 
ought to be fairly alike

• If so, why not replace each segment by a single representative 
feature vector?
– How? Again by averaging the frames within the segmentHow?  Again by averaging the frames within the segment

• This gives a reduction in the template size (memory size)
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Example: Single Templates With Three SegmentsExample: Single Templates With Three Segments

Three segments
LA

TE
TE
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DATA

The feature vectors within each segment are assumed to be similar to 
each other
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each other
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Averaging Each Template SegmentAveraging Each Template Segment
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Template With One Model Vector Per SegmentTemplate With One Model Vector Per Segment

LA
TE

Just one template vector per segment
TE

M
PL

DATA
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DTW with one modelDTW with one model

M
O
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DATA
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The averaged template is matched against the data string to be recognized
Select the word whose averaed template has the lowest cost of match 
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DTW with multiple modelsDTW with multiple models
MODELS

DATA

21

Segment all templates
Average each region into a single point
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DTW with multiple modelsDTW with multiple models
MODELS

DATA

22

Segment all templates
Average each region into a single point
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DTW with multiple modelsDTW with multiple models
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D segmentk(j) is the jth segment of the

kth training sequence

mj is the model vector for the jth segment

Nk j is the number of training vectors in the

A

Nk,j is the number of training vectors in the
jth segment of the kth training sequence

x (i) is the ith vector of the kth training

T1 T2 T3 T4
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xk(i) is the it vector of the kt training
sequence
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DTW with multiple modelsDTW with multiple models
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Segment all templates, average each region into a single point
To get a simple average model, which is used for recognition9 Feb 2011



Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates g p
represented by the reduced model

• Accounting for varying segment lengths
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DTW with multiple modelsDTW with multiple models
• The inherent variation between vectors is 

different for the different segments
h i i i h l f h b d

MODELS

– E.g. the variation in the colors of the beads 
in the top segment is greater than that in the 
bottom segment

• Ideally we should account for the 
differences in variation in the segmentsdifferences in variation in the segments
– E.g, a vector in a test sequence may actually 

be more matched to the central segment, 
which permits greater variation, although it 
is closer, in a Euclidean sense, to the mean 
of the lower segment, which permits lesser 

T1 T2 T3 T4
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DTW with multiple modelsDTW with multiple models

MODELS
We can define the covariance for each
segment using the standard formula
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i th d l t f th jth tmj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth

tsegment
T1 T2 T3 T4
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DTW with multiple modelsDTW with multiple models
• The distance function must be modified to account for the 

covariance
M h l bi di t• Mahalanobis distance:
– Normalizes contribution of all dimensions of the data

1( ) ( ) ( )Td x m x m C x m  ( , ) ( ) ( )j j j jd x m x m C x m
– x is a data vector, mj is the mean of a segment, Cj is the 

covariance matrix for the segment

i G i l lik lih d• Negative Gaussian log likelihood:
– Assumes a Gaussian distribution for the segment and computes 

the probability of the vector on this distribution
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The CovarianceThe Covariance
• The variance that we have computed is a full covariance matrix

– And the distance measure requires a matrix inversion
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• In practice we assume that all off-diagonal terms in the matrix are 0
• This reduces our distance metric to:
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diagonal covariance) is
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Segmental KSegmental K--meansmeans
• Simple uniform segmentation of training instances is not the most 

effective method of grouping vectors in the training sequences

• A better segmentation strategy is to segment the training 
sequences such that the vectors within any segment are most alike
– The total distance of vectors within each segment from the model vector 

for that segment  is minimum
– For a global optimum the total distance of all vectors from the model forFor a global optimum, the total distance of all vectors from the model for 

their respective segments must be minimum

Thi i b i d• This segmentation must be estimated

• The segmental K-means procedure is an iterative procedure to

30

The segmental K means procedure is an iterative procedure to 
estimate the optimal segmentation
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

MODELS

D
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AV
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D
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T1 T2 T3 T4

31

Initialize by uniform segmentation
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T4T1 T2 T3

32

Initialize by uniform segmentation
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T4T1 T2 T3

33

Initialize by uniform segmentation
Align each template to the averaged model to get new segmentations

9 Feb 2011



Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T4NEW
T1 T2 T3

T4OLD

NEW
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T3NEW
T1 T2

NEW
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T2NEW
T1

36

T3NEW

T4NEW9 Feb 2011



Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T1NEW

T2NEW
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T3NEW

T4NEW9 Feb 2011



Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T4NEWT1NEW

T2NEW

T3NEW

Initialize by uniform segmentation

38

y g
Align each template to the averaged model to get new segmentations

Recompute the average model from new segmentations
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T4NEW

T1NEW

T2NEW

T3NEW
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Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

T4NEWT1NEW

T2NEW

T3NEW

T1 T2 T3 T4
The procedure can be continued until convergence

C i hi d h th t t l b t li t f

40

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model9 Feb 2011



Shifted terminologyShifted terminology

STATE
TRAINING DATA MODEL

mj , 
j,l

SEGMENT

MODEL PARAMETERS
or
PARAMETER VECTORS

SEGMENT BOUNDARY

TRAINING DATA VECTOR

SEGMENT BOUNDARY
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates g p
represented by the reduced model

• Accounting for varying segment lengths
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Transition structures in modelsTransition structures in models
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O

D
EL

DATA

43

The converged models can be used to score / align data sequences
Model structure in incomplete.
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DTW with multiple modelsDTW with multiple models
• Some segments are naturally longer than others

– E.g., in the example the initial (yellow) segments are 
usually longer than the second (pink) segments

T4NEWT1NEW

T2NEW

T3NEW usually longer than the second (pink) segments

• This difference in segment lengths is different 
from the variation within a segment

NEW

from the variation within a segment
– Segments with small variance could still persist very 

long for a particular sound or word

• The DTW algorithm must account for these 
natural differences in typical segment length

• This can be done by having a state specific 
insertion penalty

States that have lower insertion penalties persist

44

– States that have lower insertion penalties persist 
longer and result in longer segments



Transition structures in modelsTransition structures in models

T33

T34

T

T33

T23

T22

T12

T11

DATA

State specific insertion penalties are represented as 
lf i i f d l H i l d i hi h

45

self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.9 Feb 2011



Transition structures in modelsTransition structures in models

T33

T34

T33 T33

T

T33

T23 T23

T22

T12
T T

T12

T11
T01

T11 T11

DATA

State specific insertion penalties are represented as 
lf i i f d l H i l d i hi h

46

self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score9 Feb 2011



Transition structures in modelsTransition structures in models

T33

T34

T

T33

T23

TT22

T12

T13

T11

DATA

This structure also allows the inclusion of arcs that permit the
l b ki d (d l d)

47

central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs9 Feb 2011



What should the transition scores beWhat should the transition scores be

• Transition behavior can be expressed with probabilities
– For segments that are typically long, if a data vector is within that segment, the 

b bili h h ill l b i hi i i hi hprobability that the next vector will also be within it is high
– If the ith segment is typically followed by the jth segment, but also rarely by 

the kth segment, then, if a data vector is within the ith segment, the probability 
that the next data vector lies in the jth segment is greater than the probabilitythat the next data vector lies in the jth segment is greater than the probability 
that it lies in the kth segment

A d h i f t iti th ti l ith f th• A good choice for transition scores are the negative logarithm of the 
probabilities of the appropriate transitions
– Tii is the negative of the log of the probability that if the current data vector 

b l h ith h d ill l b l h ithbelongs to the ith state, the next data vector will also belong to the ith state
– Tij is the negative of the log of the probability that if the current data vector 

belongs to the ith state, the next data vector belongs to the jth state
M b bl i i l li d I ibl i i

48

– More probable transitions are less penalized. Impossible transitions are 
infinitely penalized
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Modified segmental KModified segmental K--means AKA means AKA 
ViterbiViterbi trainingtraininggg

T4NEWT1NEW

T2NEW

• Transition scores can be easily computed by a 
simple extension of the segmental K-means 
algorithm

T3NEW

N

g

• Probabilities can be counted by simple counting

)log(              
,

,,
ijij

k ik

k jik
ij PT

N
N

P 



• Nk,i is the number of vectors in the ith segment 
(state) of the kth training sequence

• Nk i j is the number of vectors in the ith segmentNk,i,j is the number of vectors in the i segment 
(state) of the kth training sequence that were 
followed by vectors from the jth segment (state)

– E.g., No. of vectors in the 1st (yellow) state = 20

49

g , (y )
No of vectors from the 1st state that were
followed by vectors from the 1st state = 16
P11 = 16/20 = 0.8;   T11 = -log(0.8)



Modified segmental KModified segmental K--means AKA means AKA 
ViterbiViterbi trainingtraininggg

T4NEWT1NEW

T2NEW

• A special score is the penalty associated with 
starting at a particular state

• In our examples we always begin at the first state
T3NEW

p y g
• Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1
• It is sometimes useful to permit entry directly intoIt is sometimes useful to permit entry directly into 

later states
– i.e. permit deletion of initial states

• The score for direct entry into any state can be

)l (0 j PT
N

P

• The score for direct entry into any state can be 
computed as

)log(             0
0

jj
j

j PT
N

P 

• N is the total number of training sequences
N = 4
N01 = 4
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g q
• N0j is the number of training sequences for which 

the first data vector was in the jth state 

01
N02 = 0
N03 = 0



Modified segmental KModified segmental K--means AKA means AKA 
ViterbiViterbi trainingtraining

• Initializing state parameters
– Segment all training instances uniformly, learn means and variances

I iti li i T

gg

• Initializing T0j scores
– Count the number of permitted initial states

• Let this number be M0

Set all permitted initial states to be equiprobable: P 1/M– Set all permitted initial states to be equiprobable:  Pj = 1/M0

– T0j = -log(Pj) = log(M0)

• Initializing Tij scoresj
– For every state i,  count the number of states that are permitted to follow

• i.e. the number of arcs out of the state, in the specification
• Let this number be Mi

S ll i d i i b i b bl 1/– Set all permitted transitions to be equiprobable:  Pij = 1/Mi

– Initialize Tij = -log(Pij) = log(Mi)

• This is only one technique for initialization

51

y q
– You may choose to initialize parameters differently, e.g. by random values
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Modified segmental KModified segmental K--means AKA means AKA 
ViterbiViterbi trainingtraining

• The entire segmental K-means algorithm:
1 Initialize all parameters

gg

1. Initialize all parameters
• State means and covariances
• Transition scores
• Entry transition scores

2. Segment all training sequences
3. Reestimate parameters from segmented 

training sequences
4. If not converged, return to 2

529 Feb 2011



Alignment for training a model from Alignment for training a model from 
multiple vector sequencesmultiple vector sequences

Initialize Iterate

T1 T2 T3 T4
The procedure can be continued until convergence

h d h h l b l f

53

Convergence is achieved when the total best‐alignment error for
all training sequences does not change significantly with further
refinement of the model9 Feb 2011



The resulting model structure is 
also known as an HMM!also known as an HMM!
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DTW and Hidden Markov Models (HMMs)DTW and Hidden Markov Models (HMMs)
T11 T22 T33 

T12 T23 

• This structure is a generic representation of a statistical 
model for processes that generate time series

T13 

model for processes that generate time series
• The “segments” in the time series are referred to as states

– The process passes through these states to generate time seriesp p g g

• The entire structure may be viewed as one generalization 
of the DTW models we have discussed thus far

hi l i l f i h l

55

• In this example -- strict left-to-right topology
– Commonly used for speech recognition



DTW -- Reversing Sense of  “Cost”

• Use “Score” instead of “Cost”
Th t f ti b t ith th i h d (i– The same cost function but with the sign changed (i.e. 
negative Euclidean distance (= –√(xi – yi)2; X and Y being 
vectors)

– –(xi – yi)2; i.e. –ve Euclidean distance squared

– Other terms possible:
• Remember the Gaussian
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Likelihood Functions for Scores
• HMM – inference equivalent to DTW modified to use a 

probabilistic function for the local node or edge “costs”probabilistic function, for the local node or edge costs  
in the trellis
– Edges have transition probabilitiesg p
– Nodes have output or observation probabilities

• They provide the probability of the observed input
• The output probability may be a Gaussian

– Again, the goal is to find the template with highest probability of 
matching the inputmatching the input

• Probability values as “costs” are also called likelihoods
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Log Likelihoods
• May use probabilities or likelihoods instead of cost

– Scores combines multiplicatively along a path – cost of a path = 
P d t d ( t f d ) * P d t d ( t f d )Product_over_nodes(cost of node) * Product_over_edges(cost of edge)

• May use log probabilitiesy g p
– Scores add as in DTW

• Max instead of Min

• May use negative log probabilities
– Cost adds as in DTW

– More on this later
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