
Set Partitioning

Set Partitioning

John McDonough

Language Technologies Institute,
Machine Learning for Signal Processing Group,

Carnegie Mellon University

April 9, 2012

Set Partitioning

Introduction

In this lecture, we consider breadth first search (BFS) and
depth first search (DFS).
We will prove that BFS determines the shortest pass for
unweighted graphs.
We will also prove that DFS is useful for topologically
sorting nodes.
We also consider an algorithm for set partitioning that can
also be used to minimize a weighted-finite state
automaton.
Finally, we will begin to consider an algorithm for weight
pushing.
Coverage: Cormen, Leiserson, Rivest and Stein (2009);
Aho, Hopcroft, Ullman (1974), Section 4.13.

Set Partitioning

Graph Searches

The most basic operation on a graph is to search through it
to discover all vertices.
The vertices are assigned a color during the search:

A node v that has not been previously discovered is white.
A node v that has been discovered, but whose adjacency
list has not been fully explored is gray.
After the adjacency list of v has been fully explored, it is
black.
The distance d[v] of a node v is the number of edges
traversed from the start node s in order to reach v .
The predecessor π[v] of a node v is the node from whose
adjacency list v was discovered.

Set Partitioning

Breadth First Search

Assume we have a directed graph G = (V ,E) where every
v ∈ V is initially white, and a first-in-first-out queue Q.

The breadth first search (BFS) proceeds according to:

00 color[s] ← Gray
01 d[s] ← 0
02 π[s] ← NULL
03 push s on Q
04 while |Q| > 0 :
05 pop u from Q
06 for v ∈ adj[u] :
07 if color[v] == White:
08 color[v] ← Gray
09 d[v] ← d[u] + 1
10 π[v] ← u
11 push v on Q
12 u.color ← Black

Set Partitioning

Shortest Paths

For a given source vertex s ∈ V , define the distance from s
to some v ∈ V as the number of arcs traversed going from
s to v .
Define the shortest-path distance δ(s, v) as the smallest
possible distance of all paths from s to v .
A path from s to v of length δ(s, v) is said to be a shortest
path.
A shortest path from s to v is not necessarily unique.

Set Partitioning

Shortest Path

Lemma 22.1: Let G = (V ,E) be a directed graph, and let
s ∈ V be an arbitrary vertex. Then given any edge
(v ,w) ∈ E , it holds

δ(s,w) ≤ δ(s, v) + 1.

Proof: If v is reachable from s, then w must also be
reachable from s. In this case, the shortest path from s to
w cannot be longer than δ(s, v) plus one for the edge
(v ,w).

Set Partitioning

Distances Computed by BFS

Lemma 22.2: Let G = (V ,E) be a directed graph. Assume that
the BFS is run beginning from the source vertex s ∈ V . Upon
termination, the value d[v] computed by the BFS for every
v ∈ V satisfies d[v] ≥ δ(s, v).

Set Partitioning

Proof of Lemma

Make the inductive hypothesis d[u] ≥ δ(s,u).
Each d[u] is set exactly once and never changed.
Let v ∈ V denote a node discovered while exploring adj[u].

Basis: The hypothesis clearly holds for the source vertex s
given the assignment in Line 01.
Induction: Let v ∈ V denote a vertex that is discovered
while expanding the adjacency list of u ∈ V . The inductive
hypothesis implies d[u] ≥ δ(s,u). Hence,
d[v] = d[v] + 1 ≥ δ(s, v) + 1 ≥ δ(s, v).

Set Partitioning

Distinct Values Maintained in the Queue

Lemma 22.3: Suppose that during the execution of BFS on a
graph G = (V ,E), the queue Q contains the vertices
{v1, v2, . . . , vr}, where v1 is the head of Q and vr is the tail.
Then, d[vr] ≤ d[v1] + 1 and d[vi] ≤ d[vi+1] for i = 1,2, . . . , r − 1.

Set Partitioning

Theorem: Correctness of BFS

Let G = (V ,E) be a directed graph. Assume that the BFS
is performed beginning from the source vertex s ∈ V .
Upon termination, for every v ∈ V , d[v] = δ(s, v).
Moreover, one of the shortest paths from s to v is the path
from s to π[v], followed by the edge π[v]→ v .
Proof: Proceeds by induction on sets of the form
Vk = {v ∈ V : δ(s, v) = k}.

Set Partitioning

Recursive Function visit(u)

Assume we have a directed graph G = (V ,E) where every
v ∈ V is initially white, and let time denote a global time
stamp.
Define the recursive function visit(u) for some u ∈ V .
00 def visit(u):
01 color[u] ← Gray # u has been discovered
02 discover[u] ← time ← time + 1
03 for v in adj[u]: # explore all edges of u
04 if color[v] == White:
05 π[v] ← u
06 visit(v)
07 color[u] ← Black # u done, paint it black
08 finish[u] ← time ← time + 1

Set Partitioning

Depth First Search

Pseudocode for a complete depth first search (DFS) is given
below.

00 def dfs(V , E):
01 for u in V:
02 color[u] ← White
03 π[u] ← NULL
04 time ← 0
05 for u in V:
06 if color[u] == White:
07 visit(u)

Set Partitioning

Parenthesis Theorem

In any depth-first search of a (directed or undirected) graph
G = (V ,E), for any two vertices u and v , exactly one of the
following conditions holds:

the intervals [discover[u], finish[u]] and
[discover[v], finish[v]] are entirely disjoint, and neither u
nor v is a descendant of the other in any depth first forest;
the interval [discover[u], finish[u]] is contained entirely
within [discover[v], finish[v]], and u is a descendant of v in
a depth-first tree.
the interval [discover[v], finish[v]] is contained entirely
within [discover[u], finish[u]], and v is a descendant of u in
a depth-first tree.

Set Partitioning

Topological Sort

Let us define a directed acyclic graph (dag) G = (V ,E) as
a digraph that contains no cycles.
A topological sort is a linear ordering of all v ∈ V such that
if u → v ∈ E , then u appears before v in the ordering.
A topological sort can be performed with the following
steps:

1 Call dfs(G) to determine the finishing times finish[v] for
each v ∈ V .

2 As each v is finished, insert it into the front of a linked list.

Upon termination, the linked list contains the topologically
sorted vertices.

Set Partitioning

Correctness of Topological Sort

Theorem 22.12: For a graph G = (V ,E), the algorithm
described on the last slide provides a correct topological sort of
the nodes.

Set Partitioning

Sets

A set is a collection of distinguishable objects known as
members or elements.
That x is a member of the set S is denoted as x ∈ S and
read as “x is in S.”
Two sets A and B are equal, which is denoted as A = B, iff
they contain the same elements. For example,
{1,2,3,1} = {1,3,2} = {3,2,1}.
Frequently encountered sets have special notations:

∅ denotes the empty set.
Z denotes the set of integers, {...,2,1,0,1,2, ...}.
R denotes the set of real numbers.
N denotes the set of natural numbers, {0,1,2, ...}.

Set Partitioning

Set Operations

The intersection of sets A and B is the set
A ∩ B = {x : x ∈ A and x ∈ B}.
The union of sets A and B is the set
{A ∪ B = {x : x ∈ A or x ∈ B}.
The difference between two sets A and B is the set
AB = {x : x ∈ A and x 6∈ B}.

Set Partitioning

Subsets

If x ∈ A implies x ∈ B, then we say A is a subset of B and
write A ⊆ B.
A set A is a proper subset of B when A ⊆ B, but A 6= B.
For two sets A and B, A = B if and only if A ⊆ B and
B ⊆ A.
The number of elements in a set A is denoted as |A|.
A set A has 2|A| subsets including ∅.
The power set of A, denoted as 2A, is the set of all subsets
of A.

Set Partitioning

Relations

An ordered pair is denoted as (a,b). The ordered pair
(a,b) is not the same as the ordered pair (b,a).
The Cartesian product A× B of two sets is the set
{(a,b) : a ∈ A and b ∈ B}.
A binary relation R on two sets A and B is a subset of the
Cartesian product A× B.
For (a,b) ∈ R, we typically write aRb.
That R is binary relation on A implies R is a subset of
A× A.

Example: “Less than” is a binary relation on the natural
numbers given by {(a,b) : a,b ∈ N and a < b}.

Set Partitioning

Linear Order

A total or linear order R on a set A is a relation whereby for
all a,b ∈ A either aRb or bRa.
In other words, every pairing of elements from A can be
related by R.
For example, is a linear order on the set of natural
numbers.
The function “is a descendant of” is not a linear order on
the set of human beings, as there are pairs of individuals
neither of whom is descended from the other.

Set Partitioning

Equivalence Relations

Recall that we defined an equivalence relation xRLy for a
language L when either xz and yz belong to L or both do
not belong.
The index is the number of equivalence classes in a
language L.
An equivalence relation RL whereby xzRLyz follows from
xRLy is known as right invariant.

Set Partitioning

Myhill-Nerode Theorem

The following statements are equivalent:
1 The set L ⊆ Σ∗ is accepted by a finite-state automaton.
2 L is the union of equivalence classes of a right invariant

equivalence relation with finite index.
3 The equivalence relation can be defined as follows: xRLy

holds if and only if xz is in L when yz is in L. Then L has a
finite index.

Set Partitioning

Coarsest Partition

Consider a set S and an initial partition π of S into disjoint
blocks {B1,B2, . . . ,Bp}.
There is also given a function f on S.
The task is to find the coarsest partition
π′ = {E1,E2, . . . ,Eq} such that

1 π′ is consistent with π (that is, each Ei is a subset of some
Bj , and,

2 a and b in Ei implies f (a) and f (b) are in some Ej .

We then call π′ the coarsest partition of S compatible with
π and f .

Set Partitioning

Naive Solution

Let Bi be a block.
Examine f (a) for each a in Bi .
Bi is partitioned so that a and b are in the same block if
and only if f (a) and f (b) are in the same block.
This process is iterated until no further refinements are
possible.

Set Partitioning

Example

Let S = {1,2, . . . ,n}, and let B1 = {1,2, . . . ,n − 1},
B2 = {n} be the original partition.
Define the function f on S as

f (i) ,

{
i + 1, for 1 ≤ i < n
n, for i = n.

On the first iteration, B1 is partitioned into {1,2, . . . ,n − 2}
and {n − 1}.
This iteration requires n − 1 steps because each element
in B1 must be examined.
On the next iteration, we partition {1,2, . . . ,n − 2} into
{1,2, . . . ,n − 3} and {n − 2}.

Set Partitioning

Running Time of the Naive Solution

A total of n − 2 such iterations are required, whereby the
i th iteration requires n − i steps, for a total of

n−2∑
i=1

1 =
n(n − 1)

2
− 1

steps.
The problem with the naive solution is that refining each
block requires O(n) steps, even if only a single element is
removed.
We would like to develop an algorithm whereby refining a
block into two subblocks requires time proportional to the
smaller subblock.
This will result in a O(n log n) algorithm.

Set Partitioning

Better Solution

For each B ⊆ S, let f−1(B) = {b|f (b) ∈ B}.
The naive algorithm partitions a block Bi by the values of
f (a) for a ∈ Bi .
Instead, let us partition with respect to Bi those blocks Bj
which contain at least one element in f−1(Bi) and one
element not in f−1(Bi).
That is, each Bj is partitioned into the sets
{b|b ∈ Bj and f (b) ∈ Bi}, and {b|b ∈ Bj and f (b) 6∈ Bi}.

Set Partitioning

Result of Partitioning

Once we have partitioned with respect to Bi , we need not
partition again with respect to Bi unless Bi is itself split.
If initially f (b) ∈ Bi for each element b ∈ Bj , and Bi is split
into B′i and B′′i , then we can partition Bj with respect to
either B′i or B′′i .
That is, we partition with respect to Bi those blocks Bj
which contain at least one element in f−1(Bi) and one
element not in f−1(Bi).
This follows because {b|b ∈ Bj and f (b) ∈ B′i} is the same
as Bi − {b|b ∈ Bj and f (b) ∈ B′′i }.

Set Partitioning

Conventional Automaton

Let define a conventional automaton without weights.

Definition (finite-state machine)

A FSM is a 5-tuple A = (Σ,Q,E , i ,F) consisting of
an alphabet Σ,
a finite set of states Q,
a finite set of transitions E ⊆ Q × (Σ ∪ {ε})×Q,
a initial state i ∈ Q,
and a set of end states F ⊆ Q.

Set Partitioning

Conventional Automaton (cont’d.)

Definition
A transition e = (p[e], l[e],n[e]) ∈ E consists of

a previous state p[e] ∈ Q,
a next state n[e] ∈ Q,
a label l[e] ∈ Σ,

A final state q ∈ F may have an associated label a ∈ Σ.

Set Partitioning

Problem Statement

Consider a FSM with the set of states Q.
We wish to partition Q into subsets M = {Qi} such that
∀ a : ∃e1 = (p1,a,n1),e2 = (p2,a,n2) ∈ E , it holds

p1,p2 ∈ Qj ⇒ n1,n2 ∈ Qi (1)

for some i .
We seek the coarsest partition {Qi} of Q, which is by
definition the partion with fewest elements, that
satisfies (1).

Set Partitioning

Problem Statement (cont’d.)

Let ν be a partition of Q and let f be a function mapping
Q × Σ to Q. In the present case, f is defined implicitly
through the transitions E ⊆ Q × (Σ ∪ {ε})×Q.
For each Qi ∈ ν define the sets

symbol(Qi) = {a ∈ Σ : ∃e = (p,a,n) ∈ E ,n,p ∈ Q}, (2)

f−1(Qi ,a) = {p ∈ Q : ∃e = (p,a,n) ∈ E ,n ∈ Qi}. (3)

So defined symbol(Qi) is subset of symbols used as input
labels on at least one edge into a node in Qi .
Similarly, f−1(Qi ,a) is the set of nodes having at least one
transition labeled with a into a node in Qi .

Set Partitioning

Pseudocode

Pseudocode for the partitioning algorithm is shown below:

00 def partition():
01 Q0 ← Q − F
02 Q1 ← F
03 push Q0 on S
04 push Q1 on S
05 n ← 1
06 while |S| > 0:
07 pop P from S
08 for a in symbol(P):

09 for Qj such that Qj ∩ f−1(P, a) 6= ∅ and Qj 6⊆ f−1(P, a):
10 n += 1
11 Qn ← Qj ∩ f−1(P, a)
12 Qj ← Qj − Qn
13 if Qj ∈ S:
14 push Qn on S
15 else:
16 if |Qn| < |Qj |:
17 push Qn on S
18 else:
19 push Qj on S

Set Partitioning

Discussion

We will say the set T ⊆ Q is safe for ν if for every B ∈ ν, either
B ⊆ f−1(T ,a) or B ∩ f−1(T ,a) = ∅ ∀ a ∈ Σ.

The key of the algorithm is the partitioning of Qj in Lines 11–12,
which ensures that there are no transitions of the form
e1 = (p1,a,n1) and e2 = (p2,a,n2), where either p1,p2 ∈ Qj or
p1,p2 ∈ Qn, for which (1) does not hold.

Hence, Lines 12–13 ensure that P is safe for the resulting
partition, inasmuch as if Qj ∩ f−1(P,a) 6= ∅ for some Qj , then
either Qj ⊆ f−1(P,a), or else Qj is split into two blocks, the first
of which is a subset of f−1(P,a), and the second of which is
disjoint from that subset.

For reasons of efficiency, the smaller of Qj and Qn is placed on S
in Lines 16–19, unless Qj is already on S, in which case Qn is
placed on S in Lines 13–14 regardless of whether or not
|Qn| < |Qj |.

Set Partitioning

Set Partitioning Lemma

Aho et. al (1974) proved the following lemma.
Lemma (set partitioning): After the algorithm in the Listing
terminates, every block Qi in the resulting partition ν ′ is safe for
the partition ν ′.

Set Partitioning

Definition: Closed Semi-Ring

A closed semiring is a system S , (Σ,⊕,⊗, 0̄, 1̄) where Σ is a
set of elements, ⊕ and ⊗ are binary operations on elements of
Σ, satisfying the following properties:

1 (Σ,⊕, 0̄) is a monoid, which implies it is closed under ⊕,
and ⊕ is associative, and 0̄ is the identity. Likewise,
(Σ,⊗, 1̄) is a monoid. Moreover, we will assume 0̄ is an
annihilator on ⊗; i.e., a⊗ 0̄ = 0̄⊗ a = 0̄.

2 ⊕ is commutative; it may also be idempotent such that
a⊕ a = a.

3 ⊗ distributes over ⊕, such that a⊗ (b ⊕ c) = a⊗ b ⊕ a⊗ c,
and (b ⊕ c)⊗ a = b ⊗ a⊕ c ⊗ a

Set Partitioning

Examples of Semirings: Tropical Semiring

In ASR we typically use one of two semirings, depending
on the operation.
The tropical semiring (R+,min,+,∞,0), where R+

denotes the set of non-negative real numbers, is useful for
finding the shortest path through a search graph.
The set R+ is used in the tropical semiring because the
hypothesis scores represent negative log-likelihoods.
The two operations on weights correspond to the
multiplication of two probabilities, which is equivalent to
addition in the negative log-likelihood domain, and
discarding all but the lowest weight, such as is done by the
Viterbi algorithm.

Set Partitioning

Examples: Log-Probability Semiring

The log-probability semiring (R+,⊕log,+,∞,0) differs from
the tropical semiring only inasmuch as the min operation
has been replaced with the log-add operation ⊕log, which
is defined as

a⊕log b , − log(e−a + e−b).

The log-probability semiring is typically used for the weight
pushing equivalence transformation discussed later.

Set Partitioning

Diagram of Weight Pushing

Before Weight Pushing After Weight Pushing

Figure: Weight pushing over the tropical semiring for a simple
transducer.

Set Partitioning

Potential Function

The weight pushing algorithm proposed begins with the
definition of a potential function V : Q → K− {0̄}.
The weights of the transducer are then reassigned
according to

λ← λ⊗ V (i),

∀ e ∈ E ,w [e]← [V (p[e])]−1 ⊗ (w [e]⊗ V (n[e])),

∀ f ∈ F , ρ(f)← [V (f)]−1 ⊗ ρ[f].

This reassignment has no effect on the weight assigned to
any accepted string, as each weight from V is added and
subtracted once.

Set Partitioning

Potential Function (cont’d.)

For optimal weight pushing, we assign a potential to a
state q to be equal to the weight of the shortest path from
q to the set of final states F , such that

V (q) =
⊕

π∈P(q)

w [π],

where P(q) denotes the set of all paths from q to F .
The general all pairs shortest path algorithm is too
inefficient for weight pushing on very large transducers.
Instead an approximate shortest path algorithm is used.

Set Partitioning

Psuedocode for Calculating the Potential Function

00 def shortestDistance():
01 for j in 1 to |Q|:
02 d [j] ← r [j] ← 0̄
03 Q ← { i }
04 while |Q| > 0:
05 pop q from Q
06 R ← r [q]
07 r [q] ← 0̄
08 for e ∈ E [q]:
09 if d [n[e]] 6= d [n[e]] ⊕ (R ⊗ w [e]):
10 d [n[e]] ← d [n[e]] ⊕ (R ⊗ w [e])
11 r [n[e]] ← r [n[e]] ⊕ (R ⊗ w [e])
12 if n[e] 6∈ Q:
13 push n[e] on Q
14 d [i] ← 1̄

Set Partitioning

Psuedocode (cont’d.)

The algorithm functions by first assigning all states q a
potential of 0̄ in Lines 01–02, and placing the initial state i
on a queue Q of states that are to be relaxed in Line 03.
For each node q, the current potential d [q] as well as the
amount of weight r [q] that has been added since the last
relaxation step are maintained.
When q is popped from Q, all nodes n[e] that can be
reached from the adjacency list E [q] are tested in Line 09
to determine whether they should be relaxed.

Set Partitioning

Psuedocode (cont’d.)

The relaxation itself occurs in Lines 10 and 11. Thereafter
the relaxed node n[e] is placed on Q if not already there in
Lines 12 and 13.
The algorithm terminates when Q is depleted.
The approximation in this algorithm involves the test in
Line 09, which, strictly speaking, must always be true
implying, that the algorithm will never terminate.
In practice, however, a small threshold on the deviation
from equality can be set so that the algorithm terminates
after a finite number of relaxations.

Set Partitioning

Psuedocode (cont’d.)

Before calculating the potential of each node, it is necessary to
first reverse the graph.

This implies that for every edge e = (p, li, lo,w ,n) in the original
graph R there will be an edge ereverse = (n, li, lo,w ,p) in Rreverse.

More formally, given a graph G = (V ,E) with weight function
w : E → R, and a set of final states F ⊂ V , consider a directed,
weigted graph G′ = (V ′,E ′) with initial state i , and

V ′ , V ∪ {i},
F ′ , {s},
E ′ , {v → u : u, v ∈ V and u → v ∈ E} ∪ {i → f : f ∈ F}.

Set Partitioning

Summary

In this lecture, we considered breadth first search (BFS)
and depth first search (DFS).
We proved that BFS determines the shortest pass from the
source node to every other node for unweighted graphs.
We also proved that DFS is useful for topologically sorting
nodes.
We considered an algorithm for set partitioning that can
also be used to minimize a weighted-finite state
automaton.
Finally, we began to consider an algorithm for weight
pushing.
Next lecture, we will see how these algorithms can be used
to construct a search graph from several knowledge
sources.

