Set Partitioning

Set Partitioning

John McDonough

Language Technologies Institute,
Machine Learning for Signal Processing Group,
Carnegie Mellon University

April 9, 2012

<O MLSP

Set Partitioning

Introduction

@ In this lecture, we consider breadith first search (BFS) and
depth first search (DFS).

@ We will prove that BFS determines the shortest pass for
unweighted graphs.

@ We will also prove that DFS is useful for topologically
sorting nodes.
@ We also consider an algorithm for set partitioning that can
also be used to minimize a weighted-finite state
automaton.
@ Finally, we will begin to consider an algorithm for weight
pushing.
Coverage: Cormen, Leiserson, Rivest and Stein (2009);
Aho, Hopcroft, Ullman (1974), Section 4.13. <Gy VLSP

Set Partitioning

Graph Searches

@ The most basic operation on a graph is to search through it
to discover all vertices.

@ The vertices are assigned a color during the search:

e A node v that has not been previously discovered is white.
e A node v that has been discovered, but whose adjacency
list has not been fully explored is gray.

After the adjacency list of v has been fully explored, it is
black.

The distance d[v] of a node v is the number of edges
traversed from the start node s in order to reach v.

The predecessor 7[v] of a node v is the node from whose
adjacency list v was discovered.

<O MLSP

Set Partitioning

Breadth First Search

@ Assume we have a directed graph G = (V, E) where every
v € Vs initially white, and a first-in-first-out queue Q.

@ The breadth first search (BFS) proceeds according to:

00 color[s] « Gray
01 d[s] « O

02 7[s] ¢« NULL

03 push s on Q

04 while |Q] > O0:

05 pop U from Q

06 for v € adj[u]:

07 if color[v] == White:

08 color[v] « Gray

09 dlv] « dfu] + 1

10 w[v] < u

11 push v on Q (@ MLSP

12 u.color <« Black

Set Partitioning

Shortest Paths

@ For a given source vertex s € V, define the distance from s
to some v € V as the number of arcs traversed going from
stov.

@ Define the shortest-path distance (s, v) as the smallest
possible distance of all paths from s to v.

@ A path from s to v of length §(s, v) is said to be a shortest
path.

@ A shortest path from s to v is not necessarily unique.

< VLSP.

Set Partitioning

Shortest Path

@ Lemma 22.1: Let G = (V, E) be a directed graph, and let
s € V be an arbitrary vertex. Then given any edge
(v,w) € E, it holds

d(s,w) <é(s,v)+1.

@ Proof: If v is reachable from s, then w must also be
reachable from s. In this case, the shortest path from s to
w cannot be longer than §(s, v) plus one for the edge
(v, w).

<O MLSP

Set Partitioning

Distances Computed by BFS

Lemma 22.2: Let G = (V, E) be a directed graph. Assume that
the BFS is run beginning from the source vertex s € V. Upon
termination, the value d[v] computed by the BFS for every

v € V satisfies d[v] > §(s, v).

<O MLSP

Set Partitioning

Proof of Lemma

@ Make the inductive hypothesis d[u] > §(s, u).

@ Each d[u] is set exactly once and never changed.
@ Let v € V denote a node discovered while exploring adj[u].

e Basis: The hypothesis clearly holds for the source vertex s
given the assignment in Line 01.

o Induction: Let v € V denote a vertex that is discovered
while expanding the adjacency list of u € V. The inductive
hypothesis implies d[u] > 4(s, u). Hence,
div]=d[v]+1>d(s,v)+1>d(s,v).

<O MLSP

Set Partitioning

Distinct Values Maintained in the Queue

Lemma 22.3: Suppose that during the execution of BFS on a
graph G = (V, E), the queue Q contains the vertices

{vq, va,..., v/}, where vy is the head of Q and v; is the tail.
Then, d[v,] <d[v4] +1andd[vj] <d[vq]fori=1,2,...,r—1.

<O MLSP

Set Partitioning

Theorem: Correctness of BFS

@ Let G=(V, E) be a directed graph. Assume that the BFS
is performed beginning from the source vertex s € V.
Upon termination, for every v € V, d[v] = i(s, v).
Moreover, one of the shortest paths from s to v is the path
from s to «[v], followed by the edge 7[v] — v.

@ Proof: Proceeds by induction on sets of the form
Vik={veV:is,v)=k}.

<O MLSP

Set Partitioning

Recursive Function visit(u)

@ Assume we have a directed graph G = (V, E) where every
v € Vis initially white, and let time denote a global time
stamp.

@ Define the recursive function visit(u) for some u € V.

00 def visit(u):

01 color[u] ¢ Gray # U has been discovered
02 discover[u] < time ¢« time + 1

03 for v in adj[u]: # explore all edges of U
04 if color[v] == White:

05 wv] <« u

06 visit(v)

07 color[u] + Black # u done, paint it black

08 finish[u] <+ time <+ time + 1

<O MLSP

Set Partitioning

Depth First Search

Pseudocode for a complete depth first search (DFS) is given
below.

00 def dfs(V, E):

01 for u in V:

02 color[u] < White

03 m[u] < NULL

04 time <« 0

05 for u in V:

06 if color[u] == White:
07 visit(u)

< VLSP.

Set Partitioning

Parenthesis Theorem

In any depth-first search of a (directed or undirected) graph
G = (V, E), for any two vertices u and v, exactly one of the
following conditions holds:
@ the intervals [discover|[u], finish[u]] and
[discover|v], finish[v]] are entirely disjoint, and neither u
nor v is a descendant of the other in any depth first forest;
@ the interval [discover[u], finish[u]] is contained entirely
within [discover|[v], finish[v]], and u is a descendant of v in
a depth-first tree.
@ the interval [discover[v], finish[v]] is contained entirely
within [discover|[u], finish[u]], and v is a descendant of u in

a depth-first tree.
<« MLSP

Set Partitioning

Topological Sort

@ Let us define a directed acyclic graph (dag) G = (V, E) as
a digraph that contains no cycles.

@ A topological sortis a linear ordering of all v € V such that
if u— v € E, then u appears before v in the ordering.
@ A topological sort can be performed with the following
steps:
@ Call dfs(G) to determine the finishing times £inish[v] for
eachv e V.
@ As each v is finished, insert it into the front of a linked list.
@ Upon termination, the linked list contains the topologically
sorted vertices.

< VLSP.

Set Partitioning

Correctness of Topological Sort

Theorem 22.12: For a graph G = (V, E), the algorithm
described on the last slide provides a correct topological sort of
the nodes.

< VLSP.

Set Partitioning

Sets

@ A setis a collection of distinguishable objects known as
members or elements.

@ That x is a member of the set S is denoted as x € S and
read as “x isin S.”

@ Two sets A and B are equal, which is denoted as A = B, iff
they contain the same elements. For example,
{1,2,3,1} = {1,3,2} = {3,2,1}.

@ Frequently encountered sets have special notations:

() denotes the empty set.

Z denotes the set of integers, {...,2,1,0,1,2,...}.
R denotes the set of real numbers.

N denotes the set of natural numbers, {0,1,2,...}.

< VLSP.

Set Partitioning

Set Operations

@ The intersection of sets A and B is the set
ANB={x:xecAandx € B}.

@ The union of sets A and B is the set
{AUB={x:xecAorx e Bj}.

@ The difference between two sets A and B is the set
AB={x:x e Aand x ¢ B}.

<O MLSP

Set Partitioning

Subsets

@ If x € Aimplies x € B, then we say A is a subset of B and
write A C B.

@ A set Ais a proper subset of Bwhen A C B, but A # B.

@ Fortwosets Aand B, A= Bifandonlyif AC B and
B C A.

@ The number of elements in a set A is denoted as |A|.
@ A set A has 24 subsets including (.

@ The power set of A, denoted as 24, is the set of all subsets
of A.

< VLSP.

Set Partitioning

Relations

@ An ordered pair is denoted as (&, b). The ordered pair
(a, b) is not the same as the ordered pair (b, a).

@ The Cartesian product A x B of two sets is the set
{(a,b):a€ Aand b € B}.

@ A binary relation R on two sets A and B is a subset of the
Cartesian product A x B.

@ For (a,b) € R, we typically write aRb.
@ That R is binary relation on A implies R is a subset of
A x A
Example: “Less than” is a binary relation on the natural
numbers given by {(a,b) : a,b € N and a < b}.
<« VLSP

Set Partitioning

Linear Order

@ A total or linear order R on a set A is a relation whereby for
all a, b € A either aRb or bRa.

@ In other words, every pairing of elements from A can be
related by R.

@ For example, is a linear order on the set of natural
numbers.

@ The function “is a descendant of” is not a linear order on
the set of human beings, as there are pairs of individuals
neither of whom is descended from the other.

< VLSP.

Set Partitioning

Equivalence Relations

@ Recall that we defined an equivalence relation xR,y for a
language L when either xz and yz belong to L or both do
not belong.

@ The index is the number of equivalence classes in a
language L.

@ An equivalence relation R; whereby xzR, yz follows from
xR,y is known as right invariant.

<O MLSP

Set Partitioning

Myhill-Nerode Theorem

The following statements are equivalent:
@ The set L C ¥+ is accepted by a finite-state automaton.

@ L is the union of equivalence classes of a right invariant
equivalence relation with finite index.

© The equivalence relation can be defined as follows: xR, y
holds if and only if xz is in L when yz isin L. Then L has a
finite index.

<O MLSP

Set Partitioning

Coarsest Partition

@ Consider a set S and an initial partition 7 of S into disjoint
blocks {B1 ,Bo, ..., Bp}
@ There is also given a function f on S.

@ The task is to find the coarsest partition
n' ={Ey, Ep, ..., Eq} such that
@ ' is consistent with 7 (that is, each E; is a subset of some
Bj, and,
@ aand bin E; implies f(a) and f(b) are in some E;.
@ We then call ' the coarsest partition of S compatible with
m and f.

< VLSP.

Set Partitioning

Naive Solution

@ Let B; be a block.
@ Examine f(a) for each ain B;.

@ B;is partitioned so that a and b are in the same block if
and only if f(a) and f(b) are in the same block.

@ This process is iterated until no further refinements are
possible.

<O MLSP

Set Partitioning

Example

@ LletS={1,2,...,n},andlet By = {1,2,...,n—1},
B> = {n} be the original partition.
@ Define the function f on S as

(i) 2 i+1, for1 <i<n
|\ n for i = n.

@ On the first iteration, By is partitioned into {1,2,...,n—2}
and {n—1}.

@ This iteration requires n — 1 steps because each element
in By must be examined.

@ On the next iteration, we partition {1,2,...,n— 2} into

{1,2,...,n—38} and {n— 2}. < VLSP

Set Partitioning

Running Time of the Naive Solution

@ A total of n — 2 such iterations are required, whereby the
ith iteration requires n — i steps, for a total of

2:1:n(n2—1)_1

i=1

steps.

@ The problem with the naive solution is that refining each
block requires O(n) steps, even if only a single element is
removed.

@ We would like to develop an algorithm whereby refining a
block into two subblocks requires time proportional to the
smaller subblock.

@ This will result in a O(nlog n) algorithm. @ MLSP

Set Partitioning

Better Solution

@ Foreach BC S, let f~'(B) = {b|f(b) € B}.

@ The naive algorithm partitions a block B; by the values of
f(a)forac B,.

@ Instead, let us partition with respect to B; those blocks B;
which contain at least one element in ~'(B;) and one
element not in F~1(B,).

@ Thatis, each B; is partitioned into the sets
{b|b € Bjand f(b) € B;}, and {b|b € B; and f(b) ¢ B;}.

< VLSP.

Set Partitioning

Result of Partitioning

@ Once we have partitioned with respect to B;, we need not
partition again with respect to B; unless B; is itself split.

e Ifinitially f(b) € B for each element b € B;, and B; is split
into B} and B}/, then we can partition B; with respect to
either B; or B;.

@ That is, we partition with respect to B; those blocks B;
which contain at least one element in ~'(B;) and one
element not in f~1(B)).

@ This follows because {b|b € B; and f(b) € B;j} is the same
as B; — {b|b € B;and f(b) € B}'}.

< VLSP.

Set Partitioning

Conventional Automaton

Let define a conventional automaton without weights.

Definition (finite-state machine)
A FSMis a 5-tuple A= (X, Q, E, i, F) consisting of
@ an alphabet ¥,

@ a finite set of states Q,

@ afinite set of transitions E C Q x (X U {e}) x Q,
@ a initial state i € Q,

@ and a set of end states F C Q.

<@ MLSP

Set Partitioning

Conventional Automaton (contd.)

A transition e = (p[e], I[e], n[e]) € E consists of
@ a previous state p[e] € Q,
@ anext state n[e] € Q,
@ alabel /[e] € £,

A final state g € F may have an associated label a € Y.

<@ MLSP

Set Partitioning

Problem Statement

@ Consider a FSM with the set of states Q.

@ We wish to partition Q into subsets M = {Q;} such that
Va:3e = (p1,a,n),e = (p2a n) € E, it holds

p1,p2 € Q= ny,np € Q (1)

for some J.

@ We seek the coarsest partition { Q;} of Q, which is by
definition the partion with fewest elements, that
satisfies (1).

<O MLSP

Set Partitioning

Problem Statement (cont'd.)

@ Let v be a partition of Q and let f be a function mapping
Q x X to Q. In the present case, f is defined implicitly
through the transitions E C Q x (X U {e}) x Q.

@ For each Q; € v define the sets
symbol(Q)) ={aceX:3e=(p,an € E,npecQ}, (2
f(Q,a)={pcQ:3e=(pancEncQ}t ()

@ So defined symbol(Qy) is subset of symbols used as input
labels on at least one edge into a node in Q;.

@ Similarly, 7~1(Q;, a) is the set of nodes having at least one

transition labeled with a into a node in Q;.
<« VLSP

Set Partitioning

Pseudocode

Pseudocode for the partitioning algorithm is shown below:

00 def partition():
01 Q «~ Q — F
02 Q <« F

03 push Qy on S
04 push @ on 8§

05 n o« 1

06 while |S§] > O0:

07 pop P from S

08 for a in symbol(P):

09 for @ such that Q N f~1(P,a) # 0 and Q< ~1(P, a):
10 n +=1

11 @« @ n (P, a)
12 Oj “— Oj - n

13 if @ € S:

14 push Qp on S

15 else:

16 if [Qn] < |Q:

17 push Qp on S

18 else:

19 push Cy on S

<O MLSP

Set Partitioning

Discussion

@ We will say the set T C Q is safe for v if for every B € v, either
BCfY(T,ayorBNnf'(T,a)=0vVacx.

@ The key of the algorithm is the partitioning of Q; in Lines 11-12,
which ensures that there are no transitions of the form
ey = (py,a,ny) and e; = (p2, @, n2), where either py, po € Q; or
p1, P2 € Qp, for which (1) does not hold.

@ Hence, Lines 12—13 ensure that P is safe for the resulting
partition, inasmuch as if Q; N f~'(P, a) # 0 for some @, then
either Q; C f~'(P, a), or else Q; is split into two blocks, the first
of which is a subset of /~'(P, a), and the second of which is
disjoint from that subset.

@ For reasons of efficiency, the smaller of Q; and @, is placed on S
in Lines 16-19, unless Q; is already on S, in which case Q) is
placed on S in Lines 13—14 regardless of whether or not

|Qnl < 1QYl- < MLSP

Set Partitioning

Set Partitioning Lemma

Aho et. al (1974) proved the following lemma.

Lemma (set partitioning): After the algorithm in the Listing
terminates, every block Q; in the resulting partition »/ is safe for
the partition /.

< VLSP.

Set Partitioning

Definition: Closed Semi-Ring

A closed semiring is a system S 2 (¥, ®,®,0,1) where X is a
set of elements, ® and ® are binary operations on elements of
¥, satisfying the following properties:
Q (x,3,0) is a monoid, which implies it is closed under ¢,
and @ is associative, and 0 is the identity. Likewise,
(X, ®,1) is a monoid. Moreover, we will assume 0 is an
annihilatoron ®;i.e.,a®0=0® a=0.
@ @ is commutative; it may also be idempotent such that
ada=a.
© « distributes over @, suchthata® (b®dc)=awbdaxc,
and (b c)ra=bradc®a

< VLSP.

Set Partitioning

Examples of Semirings: Tropical Semiring

@ In ASR we typically use one of two semirings, depending
on the operation.

@ The tropical semiring (R™, min, +, o0, 0), where R™
denotes the set of non-negative real numbers, is useful for
finding the shortest path through a search graph.

@ The set RT is used in the tropical semiring because the
hypothesis scores represent negative log-likelihoods.

@ The two operations on weights correspond to the
multiplication of two probabilities, which is equivalent to
addition in the negative log-likelihood domain, and
discarding all but the lowest weight, such as is done by the

Viterbi algorithm.
<« VLSP

Set Partitioning

Examples: Log-Probability Semiring

@ The log-probability semiring (R, @®jog, +, 00, 0) differs from
the tropical semiring only inasmuch as the min operation
has been replaced with the log-add operation @g, which
is defined as

a®ig b2 —log(e @+ e7®).

@ The log-probability semiring is typically used for the weight
pushing equivalence transformation discussed later.

< VLSP.

Set Partitioning

Diagram of Weight Pushing

Before Weight Pushing After Weight Pushing

a/0

Figure: Weight pushing over the tropical semiring for a simple
transducer.

<O MLSP

Set Partitioning

Potential Function

@ The weight pushing algorithm proposed begins with the
definition of a potential function V : Q — K — {0}.

@ The weights of the transducer are then reassigned
according to
A= A® V(i),
Ve e E,we] « [V(ple])] " @ (wle] ® V(nle])),
Ve F p(f) « V(] @ plf]-

@ This reassignment has no effect on the weight assigned to
any accepted string, as each weight from V is added and

subtracted once.
<« VLSP

Set Partitioning

Potential Function (cont'd.)

@ For optimal weight pushing, we assign a potential to a
state g to be equal to the weight of the shortest path from
g to the set of final states F, such that

V(g) = €D winl,
TeP(q)
where P(q) denotes the set of all paths from q to F.

@ The general all pairs shortest path algorithm is too
inefficient for weight pushing on very large transducers.

@ Instead an approximate shortest path algorithm is used.

<O MLSP

Set Partitioning

Psuedocode for Calculating the Potential Function

00 def shortestDistance():

01 for j in 1 to [Q|:

02 djl «< rj] < O

03 Q « {i}

04 while |Q] > O:

05 pop g from Q

06 R <« r[q]

07 rlql < O

08 for e € E|[q]:

09 if dinle]] # d[nle]] ® (R @ wle]):
10 dinle]] « dne]] ® (R ® wle])
1 fnlell « rnell & (R @ wie])
12 if nle] € Q:

13 _push nle] on Q

14 dli] « 1 ‘(E)’ﬁﬂk&ﬂ&

Set Partitioning

Psuedocode (contd.)

@ The algorithm functions by first assigning all states g a
potential of 0 in Lines 01-02, and placing the initial state i
on a queue Q of states that are to be relaxed in Line 03.

@ For each node q, the current potential d[q] as well as the

amount of weight r[qg] that has been added since the last
relaxation step are maintained.

@ When q is popped from Q, all nodes n[e] that can be
reached from the adjacency list E[q] are tested in Line 09
to determine whether they should be relaxed.

< VLSP.

Set Partitioning

Psuedocode (contd.)

@ The relaxation itself occurs in Lines 10 and 11. Thereafter
the relaxed node nle] is placed on Q if not already there in
Lines 12 and 13.

@ The algorithm terminates when Q is depleted.

@ The approximation in this algorithm involves the test in
Line 09, which, strictly speaking, must always be true
implying, that the algorithm will never terminate.

@ In practice, however, a small threshold on the deviation
from equality can be set so that the algorithm terminates
after a finite number of relaxations.

<O MLSP

Set Partitioning

Psuedocode (contd.)

@ Before calculating the potential of each node, it is necessary to
first reverse the graph.

@ This implies that for every edge e = (p, f, I, w, n) in the original
graph R there will be an edge €reverse = (N, k, Iy, W, p) in Rreverse-

@ More formally, given a graph G = (V, E) with weight function
w: E — R, and a set of final states F C V, consider a directed,
weigted graph G’ = (V’, E’) with initial state /, and

(1>

VA VUi,
F' £ {s},
"2{v—su:uveVandu—sveE}u{i—f:feF}.

<O MLSP

Set Partitioning

Summary

@ In this lecture, we considered breadth first search (BFS)
and depth first search (DFS).

@ We proved that BFS determines the shortest pass from the
source node to every other node for unweighted graphs.

@ We also proved that DFS is useful for topologically sorting
nodes.

@ We considered an algorithm for set partitioning that can
also be used to minimize a weighted-finite state
automaton.

@ Finally, we began to consider an algorithm for weight
pushing.

@ Next lecture, we will see how these algorithms can be used

to construct a search graph from several knowledg@ LSP
sources. MLSE.

