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Training HMMs with shared parameters

Class 24, 18 apr 2012
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• In a sub-word unit based ASR system, we may have to 
learn the HMMs for several thousand sub-word units

– Each HMM has multiple states

– Each HMM has a transition matrix

• As a result, we my have have to learn the state output 
distributions for tens or hundreds of thousands of HMM 
states

– And also several thousand transition matrices

• The performance of the speech recognition system depends 
critically on how well state output distributions are 
modeled

– And on how well the model parameters are learned

The problem of estimating state output distributions
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• The state output distributions might be anything in reality. We model these 
using various simple densities

– Gaussian

– Mixture Gaussian

– Other exponential densities

• The models must be chosen such that their parameters can be easily estimated.
– If the density model is inappropriate for the data, the HMM will be a poor statistical 

model

– Gaussians are imperfect models for the distribution of cepstral features
• Gaussians are very poor models for the distribution of power spectra

• Empirically, the most effective model has been found to be the mixture 
Gaussian density

Gaussian Mixture Gaussian Laplacian

Modeling state output distributions

actual distribution of data
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• The parameters required to specify a mixture of K 
Gaussians includes K mean vectors, K covariance 
matrices, and K mixture weights

– All of these must be learned from training data

• A recognizer with tens (or hundreds) of thousands of 
HMM states will require hundreds of thousands (or 
millions) of parameters to specify all state output densities

– If state output densities are modeled by mixture Gaussians

• Most training corpora cannot provide sufficient training 
data to learn all these parameters effectively

– Parameters for the state output densities of sub-word units that are 
never seen in the training data can never be learned at all

The problem of estimating state output distributions
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AO

To train the HMM for a sub-word unit, data from all 
instances of the unit in the training corpus are used to 
estimate the parameters

Transcript = FOX IN SOCKS ON BOX ON KNOX

F AO K S IH N S AO K S AO N B AO K S AO N N AO K S

Training models for a sound unit

IH EH
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Gather data from separate instances, 

assign data to states,  aggregate data 

for each state, and find the statistical 

parameters of each of the aggregates

 Indiscriminate grouping of 

vectors of a unit from 

different  locations in the 

corpus results in Context-

Independent (CI) models

Training CI models for a sound unit

Schematic example of data usage for 

training a 5-state HMM

AO

HMM for the CI unit AO
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 Context based grouping of observations 
results in finer, Context-Dependent (CD) 
models

 CD models can be trained just like CI 
models, if no parameter sharing is 
performed

 The number of subword units in a language 
is usually very large

 Usually insufficient training data to learn all 
subword HMMs properly (Typically 
subword units are triphones)

 Parameter estimation problems

Training sub-word unit models with shared parameters

• Parameter sharing is a technique by which several similar HMM states 

share a common set of HMM parameters

• Since the shared HMM parameters are now trained using the data from 

all the similar states, there are more data available to train any HMM 

parameter

– As are result HMM parameters are well trained

– This tradeoff is that the estimated parameters cannot discriminate between 

the “tied” states
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Sharing parameters

Individual states may share the same mixture distributions 

unit1 unit2

Continuous 

density 

HMMs with 

tied states
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Sharing parameters

Mixture Gaussian state densities: all states may share the same 

Gaussians, but with different mixture weights 

unit1 unit2

Semi-

continuous 

HMMs
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Sharing parameters

unit1 unit2

Semi-

continuous 

HMMs with 

tied states

Mixture Gaussian state densities: all states may share the same 

Gaussians, but with state-specific mixture weights, and then share 

the weights as well
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• Partly a design choice
– Semi-continuous HMMs, vs. phonetically tied-semi-continuous 

HMMs vs. continuous density HMMs

• Automatic techniques
– Data-driven Clustering

• Group HMM states together based on the similarity of their distributions, 
until all groups have sufficient data

– The densities used for grouping are poorly estimated in the first place

– Has no estimates for unseen sub-word units

– Places no restrictions on HMM topologies etc.

– Decision trees
• Clustering based on expert-specified rules. The selection of rule is data 

driven
– Based on externally provided rules. Very robust if the rules are good

– Provides a mechanism for estimating unseen sub-word units

– Restricts HMM topologies

Deciding how parameters are shared
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• Related to Classification and Regression Trees (Leo 
Breiman), and ID3 and C4.5 (Ross Quinlan)

– Breiman, L., Friedman, J., Olshen, R. & Stone, C. (1984), 
Classification and Regression Trees, Wadsworth Inc., Belmont, CA.

– Quinlan, J. (1993) C4.5: programs for Machine Learning, Morgan 
Kaufmann

• Basic principle: Recursively partition a data set to maximize 
a prespecified objective function

– The actual objective function used is dependent on the specific 
decision tree algorithm

• The objective is to seprarate the data into increasingly “pure” 
subsets, such that most of the data in any subset belongs to a 
single class

– In our case the “classes” are HMM states

Decision Trees
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• The parent set O1 has a distribution P1(x)
– The total log likelihood of all observations 

in O1 on the distribution of O1 is

»

• The parent set O2 has a distribution P2(x)
– The total log likelihood of all observations 

in O1 on the distribution of O1 is 

• The parent set O3 has a distribution P3(x)
– The total log likelihood of all observations 

in O1 on the distribution of O1 is 

–

• The total increase in set-conditioned log 
likelihood of observations due to 
partitioning O1 is 

• Partition O1 such that the increase in log 
likelihood is maximized

– Recursive perform this partition of each of 
the subsets to form a tree

Decision trees: splitting nodes by increase in log likelihood

O1, P1(x)

O2, P2(x) O3, P3(x)

321 OOO 
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
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• Identify set of states that can potentially be merged

– Based on rules, rather than data, in order to enable prediction of 
distributions of unseen sub-word units

• Partition the union of the data in all the states recursively 
using a decision tree procedure

– Ensuring that entire states go together during the partitioning

– Terminate the recursion at any leaf when partitioning the data at 
the leaf will result in children with insufficient data for parameter 
estimation

– Alternately, grow the tree until each state is at a separate leaf, and 
prune the tree backwards until all leaves have sufficient data for 
parameter estimation

• The leaves of the resulting tree will include many states. 
All states in a leaf will share distribution parameters.

Decision trees for parameter sharing
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 A common heuristic is to permit states with 
identical indices in the HMMs for different N-
phones for the same base phone to share 
parameters.

 E.g., the first state of all triphones of the kind 
AA(*,*) are allowed to share distribution 
parameters

 Within any index, states are be further 
clustered using a decision tree

 All states within each cluster share parameters

 In the worst case, where all N-phone states with 
a common index share a common distribution 
results in simple CI phonemes

 States with different indices are not allowed to 
share parameters

 This heuristic enables the “synthesis” of 
HMMs for N-phones that were never seen in 
the training data

 This only works for N-phones for which base 
phones can be identified

Heuristic for deciding which states can be grouped at 

the root of a tree 

These states may

share parameters

These states may

not share parameters
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 Each HMM state of every unseen N-
phone is assumed to be clustered with 
some subset of states of the same index, 
that belong to other N-phones of the same 
base phone

 The state output distribution for each 
HMM state of the unseen Nphone is set to 
be identical to the distribution for the 
cluster it belongs to

 Estimating HMMs for unseen Nphones
simply involves identifying the state 
clusters that their states belong to

 The clusters are identified based on 
expert-specified rules

 For this technique to work, the HMMs for 
all Nphones of a given basephone must 
have identical numbers of states and 
identical topologies

Synthesizing HMMs for unseen subword units

HMMs for seen

subword units

HMM for unseen subword unit. The 

state output distribution for any 

state is identical to the distribution 

of a cluster of observed states

All N-phones with a common 

basephone are assumed to have 

identical transition matrices
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 All states with a common index are 

initially grouped together at the root node

 Each node is then recursively partitioned

 All states in the leaves of the decision tree 

share parameters

 A separate decision tree is built for every 

state index for every base phone

 The decision tree procedure attempts to 

maximize the loglikelihood of the training 

data

The expected log-likelihood of a vector 

drawn from a Gaussian distribution with 

mean m and variance C isThe assignment of vectors to states 

can be done using previously trained

CI models or with CD models that have

been trained without parameter sharing 


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Clustering states with decision trees
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 This is a function only of the variance of the Gaussian

 The expected log-likelihood of a set of N vectors is


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    ||)2(log5.0)()(5.0 1 CxCxE dT mm

      ||)2(log5.0)()(5.0 1 CExCxE dT mm

 ||)2(log5.05.0 Cd d

 ||)2(log5.05.0 CNNd d

Expected log-likelihood of a vector drawn from a Gaussian 

distribution

Expected log-likelihood of a Gaussian random vector 
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     ||)2(log5.0||)2(log5.0||)2(log5.0 2211 CNCNCN ddd  

   ||)2(log5.05.0||)2(log5.05.0 222111 CNdNCNdN dd  

If we partition a set of N vectors with mean m and variance C into two sets of vectors of size N1 and 

N2 , with means m1 and m2 and variances C1 and C2 respectively, the total expected log-likelihood 

of the vectors after splitting becomes

The total log-likelihood has increased by

Observation vectors are partitioned into groups to maximize within class likelihoods

Partitioning each node of the decision tree 
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Ideally, every possible partition of vectors into two clusters must be evaluated

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Ideally, every possible partition of vectors into two clusters must be evaluated

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Ideally, every possible partition of vectors into two clusters must be evaluated

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Ideally, every possible partition of vectors into two clusters must be evaluated

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Partitioning each node of the decision tree 

Ideally, every possible partition of vectors into two clusters must be evaluated

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Ideally, every possible partition of vectors into two clusters must be evaluated, the partition with the 

maximum increase in log likelihood  must be chosen

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Ideally, every possible partition of vectors into two clusters must be evaluated, the partition with the 

maximum increase in log likelihood  must be chosen, and the procedure must be recursively continued 

until a complete tree in built

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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Ideally, every possible partition of vectors into two clusters must be evaluated, the partition with the 

maximum increase in log likelihood  must be chosen, and the procedure must be recursively continued 

until  a complete tree in built

The trees will have a large number of 

leaves

All trees must then be collectively 

pruned to retain only the desired 

number of leaves. Each leaf represents 

a tied state (sometimes called a senone)

All the states within a leaf share 

distribution parameters. The 

shared distribution parameters 

are estimated from all the data in 

all the states at the leaf

Partitioning each node of the decision tree 

Partitioning is performed such that all 

vectors belonging to a single Nphone 

must together
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 2n-1 possible partitions for n vector groups. Exhaustive 
evaluation too expensive

 Linguistic questions are used to reduce the search space

 Linguistic questions are pre-defined phone classes. 
Candidate partitions are based on whether a context belongs 
to the phone class or not
 Example:

Sharing parameters: evaluating the partitions 

Class1   EY EH IY IH AX AA R W N V Z

Class2   F Z SH JH ZH

Class3   T D K P B

Class4   UW UH OW R W AY

Class5   TH S Z V F

Class6    IH IY UH UW

Class7    W V F

Class8    T K

Class9    R W

…
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• Partitions are derived based only on answers to linguistic 
questions such as:

– Does the left context belong to “class1”

– Does the right context belong to “class1”

– Does the left context NOT belong to “class1”

– Does the right context NOT belong to “class1”

• The set of possible partitions based on linguistic questions 
is restricted and can be exhaustively evaluated

• Linguistic classes group phonemes that share certain 
spectral characteristics, and may be expected to have 
similar effect on adjacent phonemes.

– Partitioning based on linguistic questions imparts “expert 
knowledge” to an otherwise data-driven procedure.

Partitioning with linguistic questions 
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Composing HMMs for unseen Nphones

Vowel?

Z or S?

• Every non-leaf node in the decision tree has a question associated with it

– The question that was eventually used to partition the node

• The questions are linguistic questions

– Since partitioning is exclusively performed with linguistic questions

• Even unseen Nphones can answer the questions

– They can therefore be propagated to the leaves of the decision trees

• The state output distribution for any state of an unseen Nphone is obtained by 
propagating the Nphone to a leaf of the appropriate decision tree for its base 
phone

– The output distribution for all the states in the leaf is also assigned to the unseen state
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Meaningful Linguistic Questions?

Left context: (A,E,I,Z,SH)

ML Partition: (A,E,I)  (Z,SH)

(A,E,I) vs. Not(A,E,I)

(A,E,I,O,U) vs. Not(A,E,I,O,U)

A

E

I Z

SH

Linguistic questions must be meaningful in order to deal effectively with unseen 

triphones

Linguistic questions 

Linguistic questions effectively substitute expert knowledge for information 

derived from data

For effective prediction of the distributions of unseen subword units, the linguistic 

questions must represent natural groupings of acoustic phenomena

(A,E,I,O,U) vs. Not (A,E,I,O,U) represents a natural grouping of phonemes. The 

other groupings are not natural.
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• Train HMMs for all triphones (Nphones) in the training 
data with no sharing of parameters

• Use these “untied” HMM parameters to build decision 
trees
– For every state of every base phone

• This stage of training is the “context-dependent untied 
training”

Context Dependent Untied (CD untied) training for 

building decision trees

Before decision 

trees are built, 

all these HMMs 

must be trained !
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There are several ways of pruning a tree 

to obtain a given number of leaves

(6 in this example)

Each leaf represents a cluster of triphone 
states that will share parameters. The 
leaves are called tied states or senones

Senones are building blocks for triphone 
HMMs. A 5-state HMM for a triphone will 
have 5 senones

Prining decision trees before state tying
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• Final CD models are trained for the triphones using the 
tied states

• Training finer models: Train mixtures of Gaussians for 
each senone

– All states sharing the senone inherit the entire mixture

– Mixtures of many Gaussians are trained by iterative splitting of 
Gaussians

• Gaussian splitting is performed for continuous models

– Initially train single Gaussian state distributions

– Split Gaussian with largest mixture weight by perturbing mean 
vector and retrain

– Repeat splitting until desired number of Gaussians obtained in the 
Gaussian mixture state distributions

Context Dependent tied state (CD tied) models



R
S

, 
©

 2
0
0
4
 C

a
rn

e
g
ie

 M
e
llo

n
 U

n
iv

e
rs

it
y

• Ad-hoc sharing: sharing based on human decision

– Semi-continuous HMMs – all state densities share the 

same Gaussians

– This sort of parameter sharing can coexist with the 

more refined sharing described earlier.

Other forms of parameter sharing
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– Update formulae are the same as before, except that the 
numerator and denominator for any parameter are also 
aggregated over all the states that share the parameter

  

  



 

s utterance t

tutt

s utterance t

ttutt

k
sxkPts

xsxkPts

),|(),(

),|(),(





m

  

  




 

s utterance t j

tutt

s utterance t

tutt

sxjPts

sxkPts

kP
),|(),(

),|(),(

)(




  

  









s utterance t

tutt

s utterance t

T

ktkttutt

k
sxkPts

xxsxkPts

C
),|(),(

))()(,|(),(



mm

Mean of kth Gaussian
of any state in the set of states 
that share the kth Gaussian

Covariance of kth Gaussian
of any state in the set of 
states  that share the kth

Gaussian

Mixture weight of kth Gaussian
of any state in the set of  states  that
share a Gaussian mixture

Baum-Welch with shared state parameters
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State Mixture Weight distributions
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State Mixture Weight distributions

A  (I,J)

A  (K,L)

A  (M,N)

Gaussian index
1 2 …………………256

C
o
u
n
ts

Gaussian index
1 2 …………………256

C
o
u
n
ts

Gaussian index
1 2 …………………256

C
o
u
n
ts

K1 K2 …………………K256Total Count for each index =

Gaussian index
1 2 …………………256

C
o
u
n

ts

Gaussian index
1 2 …………………256

P
ro

b
a
b
ili

ti
e
s

P1 P2 …………………P256

+

+

+

Pi= Ki/Ktotal
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State Mixture Weight distributions

K1 K2 …………………K256

Gaussian index (Ci)
1 2 …………………256

C
o
u
n
ts

Gaussian index
1 2 …………………256

P
ro

b
a
b
ili

ti
e
s

P1 P2 …………………P256Pi= Ki/Ktotal

Likelihood of getting the particular set of observations =

probability of getting C1, K1 times and 

Probability of getting C2, K2 times and

….

Probability of getting C256, K256 times

256321 )()()()( 1111

KKKK
CPCPCPCP  


i

K

i
iCP )(Taking logarithm of we get
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State Mixture Weight distributions

K1 K2 …………………K256

Gaussian index (Ci)
1 2 …………………256

C
o
u
n
ts

Gaussian index
1 2 …………………256

P
ro

b
a
b
ili

ti
e
s

P1 P2 …………………P256Pi= Ki/Ktotal

Likelihood of getting the particular set of observations =


i

K

i
iCP )(Taking logarithm of we get

)(log i

i

i CPK

Normalizing over all data points Ktotal :  
i

iii

i total

i CPCPCP
K

K
)(log)()(log

This is the entropy of the joint distribution of all states
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State Mixture Weight distributions

Increase in likelihood obtained by splitting D0

into D1 and D2 

= Entropy(D1) + Entropy(D2) - Entropy(D0)

Cluster D1

Cluster D2

Cluster D0
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Building a tree for a base subword unit

Decision tree for for state tying = tree of lingistic questions

Q1

Q2 Q3

Q4 Q5 Q6 Q7

Q8 Q9



R
S

, 
©

 2
0
0
4
 C

a
rn

e
g
ie

 M
e
llo

n
 U

n
iv

e
rs

it
y











s

s

s

ss

g
N

NM

NNN

NMNMNM
M

1173

11117733

Building decision trees for continuous density HMMs

A  (I,J)

A  (K,L)

A  (M,N)

For each state, all data are comined to 
computed the state’s:

1) Total observation count (Ns)

2) Mean vector (Ms)

3) Covariance matrix (Cs)

1

5

9

2

8

10

3

9

11

4

9

14

ss
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s

s CMx
N

x
s

 

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1

2
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2 1
 
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ss

s

N

i

is

N

i

ig xN
N

x
N

xx
ss

2

1

2

)(

1

22 11

22

ggg MxC 

The global mean of the union of the states

The global second moment

The global covariance
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• The log likelihood of set of N vectors {O1, O2, …,ON }, as 

given by a Gaussian with mean M and covariance C is

Building decision trees for continuous density HMMs

   



N

i

iN CMOGaussianOOOP
1

21 ),|( log),...,,(log

• The actual vectors are usually not recorded in an acoustic 

model. However, the number of vectors N in any state is 

usually known

• Approximate the total log likelihood for the set of 

observation with its expectation.

    ),|( log.),...,,(log 21 CMOGaussianENOOOP N 

• This is N times the entropy of a variable O with a Gaussian 

distribution with mean M and covariance C
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• Of all possible splits of the set of Ng vectors into a two sets of size N1

and N2, one maximizes the increase in log likelihood

• Select the split that maximizes the increase in log likelihood

Building decision trees for continuous density HMMs

D0

D1 D2

N2 Entropy(Gaussian(O | M2,C2))

• Increase in log likelihood:

     ),|( ..),|( ..),|( .. 222111 CMOGaussianEntNCMOGaussianEntNCMOGaussianEntN ggg 

N1 Entropy(Gaussian(O | M1,C1))

Ng Entropy(Gaussian(O | Mg,Cg))


