
Design and Implementation of

Speech Recognition Systems

Spring 2012

Class 7: Dynamic Time Warping-Recognizing speech

13 Feb 2012

1

The Spellcheck Problem

• Dictionary entries: word spellings

• Compare: Levenshtein distance

Word1

Word2

Word3

Word-N

Dictionary

compare

compare

compare

compare

Input word

Best

2

• Dictionary entries: ?

• Compare: ?

Word1

Word2

Word3

Word-N

Dictionary

compare

compare

compare

compare

Input word

Best

3

Speech Recognition: Recognizing isolated

words

Speech Recognition: Recognizing isolated

words

• Dictionary entries: “Template” recordings of
all words to recognize

– Record an instance of every word

– Compute feature sequences

– Store feature sequence of each word as dictionary
entry for the word

• Like a spelling

• Compare – compare feature sequence from
incoming speech to dictionary entries

– How?

4

5

DTW: DP for Speech Template Matching

• Problem: Words are spoken differently each time

– Cannot directly compare feature sequences

• Solution: dynamic time warping

– Adaptation of Levenshtein distance computation

– Input & templates are sequences of feature vectors instead of letters

• Can work to find a best alignment of a template to the input:

– While computing the distance as well

template

input

s

s

o

o

me

me

th

th

i

i

ng

ng

6

DTW: DP for Speech Template Matching

s o me th i ng

Need to find
something like this
warped path

Consider the 2-D matrix of template-input frames of speech

7

DTW: Adapting Concepts from DP

• Some concepts from string matching need to be

adapted to this problem

– What are the allowed set of transitions in the search

trellis?

– What are the edge and local node costs?

• Nodes can also have costs

• Once these questions are answered, we can apply

essentially the same DP algorithm to find a

minimum cost match (path) through the search

trellis

8

DTW: Adapting Concepts from DP

• What transitions are allowed..

• What is a “score”?

9

DTW: Determining Transitions

• Transitions must account for stretching and shrinking of speech

segments

– To account for varying speech rates

• Unscored “Insertions” disallowed

– Every input frame must be matched to some template frame

– Different from Levenshtein distance computation where symbols were

compared only at diagonal transitions

• For meaningful comparison of two different path costs, their lengths

must be kept the same

– So, every input frame is to be aligned to a template frame exactly once

– Vertical transitions (mostly) disallowed

10

DTW: Transitions

• Typical transitions used in DTW for speech:

• Note that all transitions move one step to the right, ensuring
that each input frame gets used exactly once along any path

The next input frame aligns to the same template frame as the previous
one. (Allows a template segment to be arbitrarily stretched to match
some input segment)

The next input frame aligns to the next template frame. No stretching
or shrinking occurs in this region

The next input frame skips the next template frame and aligns to the one
after that. Allows a template segment to be shrunk (by at most ½) to
match some input segment

Levenshtein vs. DTW: Transitions

• LEVENSHTEIN

– Horizontal transition, no

symbol comparison

– Diagonal transition:

Symbols are compared

– Vertical transition: no

symbol comparison

• DTW

– Horizontal: symbol must

be compared

– Diagonal: Two varieties

• Both require symbol

comparison

– Vertical: Disallowed

11

12

DTW: Trellis structure

• Each time step visited exactly once on any path from start to finish

– No vertical transitions

• Steep diagonal transitions permitted

– Vectors from template may be skipped

t=0 1 2 3 4 5 6 7 8 9 10 11

13

DTW: Use of Transition Types

Approx. equal length template, input Long template, short input

Short template, long input

14

DTW: Other Transition Choices

• Other transition choices are possible:

– Skipping more than one template frame (greater

shrink rate)

– Vertical transitions: the same input frame matches

more than one template frame

• This is less often used, as it can lead to different path

lengths, making their costs not easily comparable

15

DTW: Local Edge and Node Costs

• Typically, there are no edge costs; any edge can be taken with no cost

– Different from Levenshtein

• Local node costs measure the dissimilarity or distance between the respective

input and template frames

• Since the frame content is a multi-dimensional feature-vector, what

dissimilarity measure can we use?

• A simple measure is Euclidean distance; i.e. geometrically how far one point is

from the other in the multi-dimensional vector space

– For two vectors X = (x1, x2, x3 … xN), and Y = (y1, y2, y3… yN), the Euclidean

distance between them is:

√S(xi-yi)
2, i = 1 .. N

– Thus, if X and Y are the same point, the Euclidean distance = 0

– The farther apart X and Y are, the greater the distance

16

DTW: Local Edge and Node Costs

• Other distance measure could also be used:

– Manhattan metric or the L1 norm: S|Ai – Bi|

– Weighted Minkowski norms: (Swi|Ai – Bi|
n)1/n

17

DTW: Overall algorithm

• The transition structure and local edge and node costs are now defined

• The search trellis can be realized and the DP algorithm applied to

search for the minimum cost path, as before

– Example trellis using the transition types shown earlier:

t=0 1 2 3 4 5 6 7 8 9 10 11

18

DTW: Overall algorithm

• The best path score can be computed using DP as before

– But the best path score must now consider both node and edge scores

– Each node is a comparison of a vector from the data against a vector

from the template

t=0 1 2 3 4 5 6 7 8 9 10 11

19

DTW: Overall Algorithm

• Pi,j = best path cost from origin to node [i,j]

– i-th template frame aligns with j-th input frame

• Ci,j = local node cost of aligning template frame i to input frame j

Pi,j = min (Pi,j-1 + Ci,j, Pi-1,j-1 + Ci,j, Pi-2,j-1 + Ci,j)

= min (Pi,j-1, Pi-1,j-1, Pi-2,j-1) + Ci,j

– Edge costs are 0 in above formulation

COST OF
ALIGNMENT

t=0 1 2 3 4 5 6 7 8 9 10 11

20

DTW: Overall Algorithm

• If the template is m frames long and the input is n frames long,
the best alignment of the two has the cost = Pm,n

• The computational is proportional to:

M x N x 3, where

M = No. of frames in the template

N = No. of frames in the input

3 is the number of incoming edges per node

21

Handling Surrounding Silence

• The DTW algorithm automatically handles any silence region

surrounding the actual speech, within limits:

• But, the transition structure does not allow a region of the template to

be shrunk by more than ½ !

– Need to ensure silences included in recording are of generally consistent

lengths, or allow other transitions to handle a greater “warp”

silence

speech

22

Isolated Word Recognition Using DTW

• We now have all ingredients to perform isolated

word recognition of speech

• “TRAINING”: For each word in the vocabulary,

pre-record a spoken example (its template)

• RECOGNITION of a given recording:

– For each word in the vocabulary

• Measure distance of recording to template using DTW

– Select word whose template has smallest distance

23

Recognition

• For each template:

– Create a trellis against data

• Figure above assumes 7 vectors in the data

– Compute the cost of the best path through the trellis

• Select word corresponding to template with lowest best path cost

Te
m

p
la

te
1

Te
m

p
la

te
2

Te
m

p
la

te
3

Input Data

24

Time Synchronous Search

• Match all templates Synchronously

• STACK trellises for templates above one

another

– Every template match is started simultaneously

and stepped through the input in lock-step fashion

• Hence the term time synchronous

• Advantages

– No need to store the entire input for matching

with successive templates

– Enables realtime: Matching can proceed as the

input arrives

– Enables pruning for computational efficiency

Te
m

p
la

te
1

Te
m

p
la

te
2

Te
m

p
la

te
3

Input

25

Example: Isolated Speech Based Dictation

• We could, in principle, almost build a large vocabulary isolated-word dictation

application using the techniques learned so far

• Training : Record templates (i.e. record one or more instance) of each word in

the vocabulary

• Recognition

– Each word is spoken in isolation, i.e. silence after every word

– Each isolated word compared to all templates

• Accuracy would probably be terrible

• Problem: How to detect when a word is spoken?

– Explicit “click-to-speak”, “click-to-stop” button clicks from user, for every word?

• Obviously extremely tedious

– Need a speech/silence detector!

26

Endpointing: A Revision

• Goal: automatically detect pauses between words
– to segment the speech stream into isolated words?

• Such a speech/silence detector is called an endpointer
– Detects speech/silence boundaries (shown by dotted lines)

• Most speech applications use such an endpointer to relieve
the user of having to indicate start and end of speech

sil this sil is sil isolated sil word sil speech sil

silence segments

27

A Simple Endpointing Scheme

• Based on silence segments having low signal amplitude

– Usually called energy-based endpointing

• Audio is processed as a short sequence of frames

– Exactly as in feature extraction

• The signal energy in each frame is computed

– Typically in decibels (dB): 10 log (S xi
2), where xi are the sample values in the frame

• A threshold is used to classify each frame as speech or silence

• The labels are smoothed to eliminate spurious labels due to noise

– E.g. minimum silence and speech segment length limits may be imposed

– A very short speech segment buried inside silence may be treated as silence

• The above should now make sense to you if you’ve completed the feature computation

code

28

Speech-Silence Detection: Endpointer

• The computed “energy track” shows signal power as a function
of time

• A simple threshold can show audio segments
– Can make many errors though

• What is the optimal threshold?

29

Speech-Silence Detection: Endpointer

• Optimal threshold: Find average value of latest contiguous non-speech

segment of minimum length

• Find average energy value in the segment

– Avgnoiseegy = 1/Ncontiguous frames * SUM(energy of frames)

• Average noise energy plus threshold = speech threshold

– Egy > alpha*Avgnoiseegy

– Alpha typically > 6dB

30

Speech-Silence Detection: Endpointer

• Alternative strategy: TWO thresholds

– Onset of speech shows sudden increase in energy

• Onset threshold: avgnoiseegy*alpha

– Speech detected if frame energy > onset threshold

– Alpha > 12dB

• Offset threshold: avgnoiseegy * beta

– Beta > 6dB

• Speech detected between onset and offset

– Additional smoothing of labels is still required

– Typically, detected speech boundaries are shifted to include 200ms of silence either side

31

Isolated Speech Based Dictation (Again)

• With such an endpointer, we have all the tools to

build a complete, isolated word recognition

based dictation system, or any other application

• However, as mentioned earlier, accuracy is a

primary issue when going beyond simple, small

vocabulary situations

32

Dealing with Recognition Errors

• Applications can use several approaches to deal with speech

recognition errors

• Primary method: improve performance by using better models in

place of simple templates

– We will consider this later

• However, most systems also provide other, orthogonal

mechanisms for applications to deal with errors

– Confidence estimation

– Alternative hypotheses generation (N-best lists)

• We now consider these two mechanisms, briefly

33

Confidence Scoring

• Observation: DP or DTW will always deliver a minimum cost path, even if it

makes no sense

• Consider string matching:

• The template with minimum edit distance will be chosen, even though it is

“obviously” incorrect

– How can the application discover that it is “obviously” wrong?

• Confidence scoring is the problem of determining how confident one can be

that the recognition is “correct”

Yesterday

Today

Tomorrow

templates

January

input 7

5

7

min. edit distance

34

Confidence Scoring for String Match

• A simple confidence scoring scheme: Accept the matched template

string only if the cost <= some threshold

– We encountered its use in the hypothetical google search string example!

• This treats all template strings equally, regardless of length

• Or: Accept if cost <= 1 + some fraction (e.g. 0.1) of template string

length

– Templates of 1-9 characters tolerate 1 error

– Templates of 10-19 characters tolerate 2 errors, etc.

• Easy to think of other possibilities, depending on the application

• Confidence scoring is one of the more application-dependent functions

in speech recognition

35

Confidence Scoring for DTW

• Similar thresholding technique for template matching by DTW?

– Unlike in string matching, the cost measures are not immediately,

meaningfully “accessible” values

– Need to know range of minimum cost when correctly matched and

when incorrectly matched

• If the ranges do not overlap, one could pick a threshold

Distribution of DTW costs
of correctly identified
templates

Distribution for incorrectly
identified templates

threshold

Overlap region susceptible to
classification errors

cost

Confidence: Procedure

• “Recognize” a large number of “development” recordings
– Several will be recognized correctly, while others will be recognized wrongly

• Training confidence classifier
– Distribution of scores of all wrongly recognized utterances

– Distribution of scores of all correctly recognized utterances

• Confidence on test recording:
– Option 1: Find optimal threshold for correct vs. wrong

– Option 2: Compute confidence score = P(test | correct) / P(test | error)

36

Distribution of DTW costs
of correctly identified
templates

Distribution for incorrectly
identified templates

threshold

Overlap region susceptible to
classification errors

cost

37

Confidence Scoring for DTW

• As with string matching, DTW cost must be normalized

– Use DTW cost / frame of input speech, instead of total DTW

cost, before determining threshold

• Cost distributions and threshold have to be determined

empirically, based on a sufficient collection of test data

• Unfortunately, confidence scores based on such distance

measures are not very reliable

– Too great an overlap between distribution of scores for correct

and incorrect templates

– We will see other, more reliable methods later on

38

N-best List Generation

• Example: Powerpoint catches spelling errors and offers several

alternatives as possible corrections

• Example: In the isolated word dictation system, Dragon

Dictate, one can select a recognized word and obtain

alternatives

– Useful if the original recognition was incorrect

• Basic idea: identifying not just the best match, but the top so

many matches; i.e., the N-best list

• Not hard to guess how this might be done, either for string

matching or isolated word DTW!

– (How?)

39

N-best List

• Match all templates

• RANK the words (templates)

by the minimum-cost-path

score for the template/trellis

• Return top-N words in order of

minimum cost

Te
m

p
la

te
1

Te
m

p
la

te
2

Te
m

p
la

te
3

Input

2

1

3

40

Improving Accuracy: Multiple Templates

• Problems with using a single exemplar as a template

– A single template will not capture all variations in the manner of saying a

word

• Works poorly even for a single speaker

• Works very poorly across different speakers

• Use multiple templates for each word to handle the variations

– Preferably collected from several speakers

• Template matching algorithm is easily modified

– Simply match against all available templates and pick the best

• However, computational cost of matching increases linearly with the

number of available templates

41

Reducing Search Cost: Pruning

• Reducing search cost implies reducing the size of the lattice that

has to be evaluated

• There are several ways to accomplish this

– Reducing the complexity and size of the models (templates)

• E.g. replacing the multiple templates for a word by a single, average one

– Eliminating parts of the lattice from consideration altogether

• This approach is called search pruning, or just pruning

– We consider pruning first

• Basic consideration in pruning: As long as the best cost path is

not eliminated by pruning, we obtain the same result

42

Pruning

• Pruning is a heuristic: typically, there is a threshold on some

measured quantity, and anything above or below it is eliminated

• It is all about choosing the right measure, and the right threshold

• Let us see two different pruning methods:

– Based on deviation from the diagonal path in the trellis

– Based on path costs

43

Pruning by Limiting Search Paths

• Assume that the the input and the best matching template do not differ

significantly from each other

– For speech, equivalent to assuming the speaking rate is similar for the template and

the input

– The best path matching the two will lie close to the “diagonal”

• Thus, we need not search far off the diagonal. If the search-space “width” is

kept constant, cost of search is linear in utterance length instead of quadratic

• However, errors occur if the speaking rate assumption is violated

– i.e. if the template needs to be warped more than allowed by the width

search
region

eliminated

eliminated

Trellis

width

44

Pruning by Limiting Search Paths

• What are problems with this approach?

45

Pruning by Limiting Search Paths

• What are problems with this approach?

– Text: With lexical tree models, the notion of

“diagonal” becomes difficult

– For speech too there is no clear notion of a diagonal

in most cases

• As we shall see later

46

Pruning by Limiting Path Cost

• Observation: Partial paths that have “very high” costs will rarely recover to win

• Hence, poor partial paths can be eliminated from the search:

– For each frame j, after computing all the trellis nodes path costs, determine which nodes have

too high costs

– Eliminate them from further exploration

– (Assumption: In any frame, the best partial path has low cost)

• Q: How do we define “high cost”?

j

origin

partial best
paths

High cost partial paths (red);
Do not explore further

47

Pruning by Limiting Path Cost

• As with confidence scoring, one could define high

path cost as a value worse than some fixed threshold

– But, as already noted, absolute costs are unreliable

indicators of correctness

– Moreover, path costs keep increasing monotonically as

search proceeds

• Recall the path cost equation

• Fixed threshold will not work

Pi,j = min (Pi,j-1, Pi-1,j-1, Pi-2,j-1) + Ci,j

48

Pruning: Relative Fixed Beam

• Solution: In each frame j, retain only the best K

nodes relative to the best cost node in that frame

– Note that time synchronous search is very efficient

for implementing the above

• Advantages:

– Unreliability of absolute path costs is eliminated

– Monotonic growth of path costs with time is also

irrelevant

49

Pruning : Fixed Width Pruning

• Retain only the K best nodes in any column

– K is the “fixed” beam width

j

origin

partial best
paths

With K = 2
The two best scoring nodes are retained

Fixed Width Pruning

• Advantages

– Very predictable computation

• Only K nodes expand out into the future at each time.

• Disadvantage

– Will often prune out correct path when there are

many similar scoring paths

– In time-synchronous search, will often prune out

correct template

50

51

Pruning: Beam Search

• In each frame j, set the pruning threshold by a fixed amount T relative

to the best cost in that frame

– I.e. if the best partial path cost achieved in the frame is X, prune away all

nodes with partial path cost > X+T

– Note that time synchronous search is very efficient for implementing the

above

• Advantages:

– Unreliability of absolute path costs is eliminated

– Monotonic growth of path costs with time is also irrelevant

• Search that uses such pruning is called beam search

– This is the most widely used search optimization strategy

• The relative threshold T is usually called “relative beam width” or just

beam width or beam

52

Beam Search Visualization

• The set of lattice nodes actually evaluated is the active set

• Here is a typical “map” of the active region, aka beam
(confusingly)

• Presumably, the best path lies somewhere in the active region

active
region
(beam)

• Unlike the fixed width approach, the computation reduction with

beam search is unpredictable

– The set of active nodes at frames j and k is shown by the black lines

• However, since the active region can follow any warping, it is

likely to be relatively more efficient than the fixed width

approach

active
region

53

Beam Search Efficiency

j k

54

Determining the Optimal Beam Width

• Determining the optimal beam width to use is crucial

– Using too narrow or tight a beam (too low T) can prune the best path and

result in too high a match cost, and errors

– Using too large a beam results in unnecessary computation in searching

unlikely paths

– One may also wish to set the beam to limit the computation (e.g. for real-

time operation), regardless of recognition errors

• Unfortunately, there is no mathematical solution to determining an

optimal beam width

• Common method: Try a wide range of beams on some test data until the

desired operating point is found

– Need to ensure that the test data are somehow representative of actual

speech that will be encountered by the application

– The operating point may be determined by some combination of

recognition accuracy and computational efficiency

55

Determining the Optimal Beam Width

• Any value around the point marked T is a reasonable beam

for minimizing word error rate (WER)

• A similar analysis may be performed based on average

CPU usage (instead of WER)

Beam width

W
o

rd
 e

rr
o

r
ra

te

T

56

Beam Search Applied to Recognition

• We have considered beam search to prune search paths

within a single template

• However, its strength really becomes clear in actual

recognition (i.e. time synchronous search through all

templates simultaneously)

– In each frame, the beam pruning threshold is determined from

the globally best node in that frame (from all templates)

– Pruning is performed globally, based on this threshold

57

Beam Search Applied to Recognition

• Advantage of simultaneous time-

synchronous matching of multiple

templates:

– Beams can be globally applied to all templates

– We use the best score of all template frames

(trellis nodes at that instant) to determine the

beam at any instant

– Several templates may in fact exit early from

contention

• In the ideal case, the computational cost

will be independent of the number of

templates

– All competing templates will exit early

– Ideal cases don’t often occur
Te

m
p

la
te

2
Te

m
p

la
te

1

Input
Te

m
p

la
te

3

58

Pruning and Dynamic Trellis Allocation

• Since any form of pruning eliminates many trellis nodes from

being expanded, there is no need to keep them in memory

– Trellis nodes and associated data structures can be allocated on

demand (i.e. whenever they become active)

– This of course requires some book-keeping overhead

• May not make a big difference in small vocabulary systems

• But pruning is an essential part of all medium and large

vocabulary systems

– The search trellis structures in 20k word applications take up about

10MB with pruning

– Without pruning, it could require more than 10 times as much!

59

Recognition Errors Due to Pruning

• Speech recognition invariably contains errors

• Major causes of errors:

– Inadequate or inaccurate models

• Templates may not be representative of all the variabilities in speech

– Search errors

• Even if the models are accurate, search may have failed because it found a sub-

optimal path

• How can our DP/DTW algorithm find a sub-optimal path?

– Because of pruning: it eliminates paths from consideration based on local

information (the pruning threshold)

• Let W be the best cost word for some utterance, and W’ the recognized

word (with pruning)

– In a full search, the path cost for W is better than for W’

– But if W is not recognized when pruning is enabled, then we have a

pruning error or search error

60

Measuring Search Errors

• How much of recognition errors is caused by search errors?

• We can estimate this from a sample test data, for which the correct

answer is known, as follows:

– For each utterance j in the test set, run recognition using pruning and note

the best cost Cj’ obtained for the result

– For each utterance j, also match the correct word to the input without

pruning, and note its cost Cj

– If Cj is better than Cj’ we have a pruning error or search error for utterance j

• Pruning errors can be reduced by lowering the pruning threshold (i.e.

making it less aggressive)

• Note, however, this does not guarantee that the correct word is

recognized!

– The new pruning threshold may uncover other incorrect paths that perform

better than the correct one

Alternate pruning strategies?

• Strategies that may enable retaining of overall
optimal path even if it scores poorly locally

– Without increasing net paths searched

– This means some paths that locally score higher than
the optimal path get pruned out

• Lookahead!!

– Use simplified templates

• E.g. downsampled templates

– Requiring much smaller trellises on which full search may be
done

• Predict paths to retain on full trellis from simplified template
trellis

61

62

Summary So Far

• Dynamic programming for finding minimum cost paths

• Trellis as realization of DP, capturing the search dynamics

– Essential components of trellis

• DP applied to string matching

• Adaptation of DP to template matching of speech

– Dynamic Time Warping, to deal with varying rates of speech

• Isolated word speech recognition based on template matching

• Time synchronous search

• Isolated word recognition using automatic endpointing

• Dealing with errors using confidence estimation and N-best lists

• Improving recognition accuracy through multiple templates

• Beam search and beam pruning

63

A Footnote: Reversing Sense of “Cost”

• So far, we have a cost measure in DP and DTW, where

higher values imply worse match

• We will also frequently use the opposite kind, where higher

values imply a better match; e.g.:

– The same cost function but with the sign changed (i.e. negative

Euclidean distance (= –√S(xi – yi)
2; X and Y being vectors)

– –S(xi – yi)
2; i.e. –ve Euclidean distance squared

• We may often use the generic term score to refer to such

values

– Higher scores imply better match, not surprisingly

64

DTW Using Scores

• How should DTW be changed when using scores vs costs?

• At least three points to consider:

– Obviously, we need to maximize the total path score, rather than

minimize it

– Beam search must be adjusted as follows: if the best partial path

score achieved in a frame is X, prune away all nodes with partial

path score < X–T

• instead of > X+T

• where T is the beam pruning threshold)

– Likewise, in confidence estimation, we accept paths with scores

above the confidence threshol

• in contrast to cost values below the threshold

65

Likelihood Functions for Scores

• Another common method is to use a probabilistic
function, for the local node or edge “costs” in the
trellis

– Edges have transition probabilities

– Nodes have output or observation probabilities

• They provide the probability of the observed input

– Again, the goal is to find the template with highest
probability of matching the input

• Probability values as “costs” are also called
likelihoods

66

Gaussian Distribution as Likelihood Function

• If x is an input feature vector and m is a template vector of

dimensionality N, the function:

is the famous multivariate Gaussian distribution, where S is

the co-variance matrix of the distribution

• It is one of the most commonly used probability distribution

functions for acoustic models in speech recognition

• We will look at this in more detail later

67

DTW Using Probabilistic Values

• As with scores (negative-cost) we must maximize the total

path likelihood, since higher likelihoods => better match

• However, the total likelihood for a path is the product of the

local node and edge likelihoods, rather than the sum

– One multiplies the individual probabilities to obtain a joint

probability value

• As a result, beam pruning has to be modified as follows:

– if the best partial path likelihood in a frame is X, prune all nodes

with partial path likelihood < XT

• T is the beam pruning threshold

– Obviously, T < 1

68

Log Likelihoods

• Sometimes, it is easier to use the logarithm of the
likelihood function for scores, rather than
likelihood function itself

• Such scores are usually called log-likelihood
values

– Using log-likelihoods, multiplication of likelihoods
turns into addition of log-likelihoods, and
exponentiation is eliminated

• Many speech recognizers operate in log-
likelihood mode

69

Some Fun Exercises with Likelihoods

• How should the DTW algorithm be modified if we use log-likelihood

values instead of likelihoods?

• Application of technique known as scaling:

– When using cost or score (-ve cost) functions, show that adding some arbitrary

constant value to all the partial path scores in any given frame does not change

the outcome

• The constant can be different for different input frames

– When using likelihoods, show that multiplying partial path values by some

positive constant does not change the outcome

• If the likelihood function is the multivariate Gaussian with identity

covariance matrix (i.e. the S term disappears), show that using the log-

likelihood function is equivalent to using the Euclidean distance squared

cost function

