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Recap

• Thus far, we have looked at dynamic programming for string 

matching,

• And derived DTW from DP for isolated word recognition

• We identified the search trellis, time-synchronous search as 

efficient mechanisms for decoding

• We looked at ways to improve search efficiency using pruning

– In particular, we identified beam pruning as a nearly universal pruning 

mechanism in speech recognition

• We looked at the limitations of DTW and template matching:

– Ok for limited, small vocabulary applications

– Brittle; breaks down if speakers change
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Today’s Topics

• Generalize DTW based recognition

• Extend to multiple templates

• Move on to Hidden Markov Models

• Look ahead: The fundamental problems of HMMs

– Introduce the three fundamental problems of HMMs

• Two of the problems deal with decoding using HMMs, solved using the 

forward and Viterbi algorithms

• The third dealing with estimating HMM parameters (seen later)

– Incorporating prior knowledge into the HMM framework

– Different types of probabilistic models for HMMs

• Discrete probability distributions

• Continuous, mixture Gaussian distributions
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DTW Using A Single Template
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We’ve seen the DTW alignment of data to model
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Limitations of  A Single Template

• As noted in the previous topic, a single template 

cannot capture all the variations in speech

• One alternative already suggested: use multiple 

templates for each word, and match the input 

against each one
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DTW with multiple templates

DATA

TEMPLATES
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DATA

TEMPLATES

Each template warps differently to best match the input; the best matching 
template is selected

DTW with multiple templates
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Problem With Multiple Templates

• Finding the best match requires the evaluation of many more 

templates (depending on the number)

– This can be computationally expensive

• Important for handheld devices, even for small-vocabulary applications

• Think battery life!

– Need a method for reducing multiple templates into a single one

• Even multiple templates do not cover the space of possible 

variations

– Need mechanism of generalizing from the templates to include data not 

seen before

• We can achieve both objectives by averaging all the templates for 

a given word
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Generalizing from Templates

• Generalization implies going from the given templates to 

one that also represents others that we have not seen

• Taking the average of all available templates may 

represent the recorded templates less accurately, but will 

represent other unseen templates more robustly

• A general template (for a word) should capture all salient 

characteristics of the word, and no more

– Goal: Improving accuracy

• We will consider several steps to accomplish this
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates 

represented by the reduced model

• Accounting for varying segment lengths
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Template Averaging

• How can we average the templates when they’re of different lengths?

– Somehow need to normalize them to each other

• Solution: Apply DTW (of course!)

– Pick one template as a “master”

– Align all other templates to it

• Note: This requires not just finding the best cost, but the actual alignment between the 

template and input frame sequences, using the back-pointers described earlier

– Use the alignments generated to compute their average

• Note: Choosing a different master template will lead to a different 

average template

– Which template to choose as the master?

• No definitive answer exists

• Only trial and error solutions exist
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DTW with multiple templates
TEMPLATES

T1 T2 T3

T4

T4

T3

T4
T3

Align T4 and T3
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TEMPLATES

T1 T2 T3 T4

T4
T3

T2

T1

Average Template

Align T4/T2 and T4/T1, similarly; then average all of them

Average all feature vectors aligned 
against each other

DTW with multiple templates
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Benefits of  Template Averaging

• Obviously, we have eliminated the computational 

cost of having multiple templates for each word

• Using the averages of the aligned feature vectors 

generalizes from the samples

– The average is representative of the templates, and more 

generally, assumed to be representative of future 

utterances of the word

• The more the number of templates, the better the 

generalization
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates 

represented by the reduced model

• Accounting for varying segment lengths
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Template Size Reduction

• Can we do better?  Consider the template for “something”:

• Here, the template has been manually segmented into 6 

segments, where each segment is a single phoneme

• Hence, the frames of speech that make up any single segment 

ought to be fairly alike

• If so, why not replace each segment by a single representative 

feature vector?

– How?  Again by averaging the frames within the segment

• This gives a reduction in the template size (memory size)

template s o me th i ng
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DATA

Example: Single Templates With Three Segments

T
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T
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The feature vectors within each segment are assumed to be similar to 
each other

Three segments
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Averaging Each Template Segment
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T
E

M
P

L
A

T
E

DATA

Template With One Model Vector Per Segment

Just one template vector per segment
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DATA

DTW with one model

The averaged template is matched against the data string to be recognized

Select the word whose averaed template has the lowest cost of match 
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DTW with multiple models

MODELS

DATA

Segment all templates

Average each region into a single point
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DTW with multiple models

MODELS

DATA

Segment all templates

Average each region into a single point
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mj is the model vector for the jth segment

Nk,j is the number of training vectors in the

jth segment of the kth training sequence

xk(i) is the ith vector of the kth training

sequence

T1 T2 T3 T4
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segmentk(j) is the jth segment of the

kth training sequence

DTW with multiple models
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DTW with multiple models

Segment all templates, average each region into a single point

To get a simple average model, which is used for recognition
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates 

represented by the reduced model

• Accounting for varying segment lengths
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• The inherent variation between vectors is 
different for the different segments

– E.g. the variation in the colors of the beads 
in the top segment is greater than that in the 
bottom segment

• Ideally we should account for the 
differences in variation in the segments

– E.g, a vector in a test sequence may actually 
be more matched to the central segment, 
which permits greater variation, although it 
is closer, in a Euclidean sense, to the mean 
of the lower segment, which permits lesser 
variation

DTW with multiple models

T1 T2 T3 T4

MODELS
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mj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth

segment

T1 T2 T3 T4

MODELS

We can define the covariance for each

segment using the standard formula

for covariance

DTW with multiple models
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• The distance function must be modified to account for the 

covariance

• Mahalanobis distance:

– Normalizes contribution of all dimensions of the data

DTW with multiple models
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– x is a data vector, mj is the mean of a segment, Cj is the 

covariance matrix for the segment

• Negative Gaussian log likelihood:

– Assumes a Gaussian distribution for the segment and computes 

the probability of the vector on this distribution
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• The variance that we have computed is a full covariance matrix

– And the distance measure requires a matrix inversion

The Covariance
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• In practice we assume that all off-diagonal terms in the matrix are 0

• This reduces our distance metric to:
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• Simple uniform segmentation of training instances is not the most 

effective method of grouping vectors in the training sequences

• A better segmentation strategy is to segment the training 

sequences such that the vectors within any segment are most alike

– The total distance of vectors within each segment from the model vector 

for that segment  is minimum

– For a global optimum, the total distance of all vectors from the model for 

their respective segments must be minimum

• This segmentation must be estimated

• The segmental K-means procedure is an iterative procedure to 

estimate the optimal segmentation

Segmental K-means
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T1 T2 T3 T4

Alignment for training a model from 

multiple vector sequences
MODELS
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Initialize by uniform segmentation
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T4T1 T2 T3

Initialize by uniform segmentation

Alignment for training a model from 

multiple vector sequences



33

T4T1 T2 T3

Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations

Alignment for training a model from 

multiple vector sequences
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T1 T2 T3

T4OLD

T4NEW

Alignment for training a model from 

multiple vector sequences
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T1 T2
T3NEW

T4NEW

Alignment for training a model from 

multiple vector sequences
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T1

T3NEW

T2NEW

T4NEW

Alignment for training a model from 

multiple vector sequences
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T3NEW

T2NEW

T1NEW

T4NEW

Alignment for training a model from 

multiple vector sequences
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T4NEWT1NEW

T2NEW

T3NEW

Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations

Recompute the average model from new segmentations

Alignment for training a model from 

multiple vector sequences
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T4NEW

T1NEW

T2NEW

T3NEW

Alignment for training a model from 

multiple vector sequences
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T4NEWT1NEW

T2NEW

T3NEW

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for

all training sequences does not change significantly with further

refinement of the model

Alignment for training a model from 

multiple vector sequences
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Shifted terminology

STATE

mj , s
2

j,l

SEGMENT

TRAINING DATA

TRAINING DATA VECTOR

SEGMENT BOUNDARY

MODEL PARAMETERS

or

PARAMETER VECTORS

MODEL
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Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates 

represented by the reduced model

• Accounting for varying segment lengths
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Transition structures in models

DATA

M
O

D
E

L

The converged models can be used to score / align data sequences

Model structure in incomplete.
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• Some segments are naturally longer than others

– E.g., in the example the initial (yellow) segments are 

usually longer than the second (pink) segments

• This difference in segment lengths is different 

from the variation within a segment

– Segments with small variance could still persist very 

long for a particular sound or word

• The DTW algorithm must account for these 

natural differences in typical segment length

• This can be done by having a state specific 

insertion penalty

– States that have lower insertion penalties persist 

longer and result in longer segments

DTW with multiple models

T4NEWT1NEW

T2NEW

T3NEW
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Transition structures in models

DATA

State specific insertion penalties are represented as 
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.

T11

T22

T33

T12

T23

T34
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Transition structures in models

DATA

State specific insertion penalties are represented as 
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score

T11

T22

T33

T12

T23

T34

T01

T11 T11

T12

T23

T33 T33
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DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs

T11

T22

T33

T12

T23

T34

T13

Transition structures in models
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• Transition behavior can be expressed with probabilities

– For segments that are typically long, if a data vector is within that segment, the 

probability that the next vector will also be within it is high

– If the ith segment is typically followed by the jth segment, but also rarely by 

the kth segment, then, if a data vector is within the ith segment, the probability 

that the next data vector lies in the jth segment is greater than the probability 

that it lies in the kth segment

• A good choice for transition scores are the negative logarithm of the 

probabilities of the appropriate transitions

– Tii is the negative of the log of the probability that if the current data vector 

belongs to the ith state, the next data vector will also belong to the ith state

– Tij is the negative of the log of the probability that if the current data vector 

belongs to the ith state, the next data vector belongs to the jth state

– More probable transitions are less penalized. Impossible transitions are 

infinitely penalized

What should the transition scores be
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Modified segmental K-means AKA 

Viterbi training

T4NEWT1NEW

T2NEW

T3NEW

• Nk,i is the number of vectors in the ith segment 

(state) of the kth training sequence

• Nk,i,j is the number of vectors in the ith segment 

(state) of the kth training sequence that were 

followed by vectors from the jth segment (state)

– E.g., No. of vectors in the 1st (yellow) state = 20

No of vectors from the 1st state that were

followed by vectors from the 1st state = 16

P11 = 16/20 = 0.8;   T11 = -log(0.8)

)log(              
,

,,

ijij

k ik

k jik

ij PT
N

N
P 




• Transition scores can be easily computed by a 

simple extension of the segmental K-means 

algorithm

• Probabilities can be counted by simple counting
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Modified segmental K-means AKA 

Viterbi training

T4NEWT1NEW

T2NEW

T3NEW
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• A special score is the penalty associated with 

starting at a particular state

• In our examples we always begin at the first state

• Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1

• It is sometimes useful to permit entry directly into 

later states

– i.e. permit deletion of initial states

• The score for direct entry into any state can be 

computed as

• N is the total number of training sequences

• N0j is the number of training sequences for which 

the first data vector was in the jth state 

N = 4

N01 = 4

N02 = 0

N03 = 0



51

• Initializing state parameters

– Segment all training instances uniformly, learn means and variances

• Initializing T0j scores

– Count the number of permitted initial states

• Let this number be M0

– Set all permitted initial states to be equiprobable:  Pj = 1/M0

– T0j = -log(Pj) = log(M0)

• Initializing Tij scores

– For every state i,  count the number of states that are permitted to follow

• i.e. the number of arcs out of the state, in the specification

• Let this number be Mi

– Set all permitted transitions to be equiprobable:  Pij = 1/Mi

– Initialize Tij = -log(Pij) = log(Mi)

• This is only one technique for initialization

– You may choose to initialize parameters differently, e.g. by random values

Modified segmental K-means AKA 

Viterbi training
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• The entire segmental K-means algorithm:

1. Initialize all parameters

• State means and covariances

• Transition scores

• Entry transition scores

2. Segment all training sequences

3. Reestimate parameters from segmented 

training sequences

4. If not converged, return to 2

Modified segmental K-means AKA 

Viterbi training
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Alignment for training a model from 

multiple vector sequences

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Initialize Iterate
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The resulting model structure is 

also known as an HMM!
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• This structure is a generic representation of a statistical 

model for processes that generate time series

• The “segments” in the time series are referred to as states

– The process passes through these states to generate time series

• The entire structure may be viewed as one generalization 

of the DTW models we have discussed thus far

• In this example -- strict left-to-right topology

– Commonly used for speech recognition

DTW and Hidden Markov Models (HMMs)

T11 T22 T33 

T12 T23 

T13 
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DTW -- Reversing Sense of  “Cost”

• Use “Score” instead of “Cost”

– The same cost function but with the sign changed (i.e. 

negative Euclidean distance (= –√S(xi – yi)
2; X and Y being 

vectors)

– –S(xi – yi)
2; i.e. –ve Euclidean distance squared

– Other terms possible:

• Remember the Gaussian
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Likelihood Functions for Scores

• HMM – inference equivalent to DTW modified to use a 

probabilistic function, for the local node or edge “costs” 

in the trellis

– Edges have transition probabilities

– Nodes have output or observation probabilities

• They provide the probability of the observed input

• The output probability may be a Gaussian

– Again, the goal is to find the template with highest probability of 

matching the input

• Probability values as “costs” are also called likelihoods
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Log Likelihoods

• May use probabilities or likelihoods instead of cost

– Scores combines multiplicatively along a path – cost of a path = 

Product_over_nodes(cost of node) * Product_over_edges(cost of edge)

• May use log probabilities

– Scores add as in DTW

• Max instead of Min

• May use negative log probabilities

– Cost adds as in DTW

– More on this later
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• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there are, 

and how they can follow one another
– A set of probability distributions, one for each state, which specifies 

the distribution of all vectors in that state

Hidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions

– A set of data probability distributions, associated with the states

Markov chain

Data distributions
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Determining the Number of  States

• How do we know the number of states to use for 

any word?

– We do not, really

– Ideally there should be at least one state for each “basic 

sound” within the word

• Otherwise widely differing sounds may be collapsed into one state

• The average feature vector for that state would be a poor 

representation

– For efficiency, the number of states should the minimum 

needed to achieve the desired level of recognition accuracy

– These two are conflicting requirements, usually solved by 

making some educated guesses
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Determining the Number of  States

• For small vocabularies, it is possible to examine 
each word in detail and arrive at reasonable 
numbers:

• For larger vocabularies, we may be forced to rely on 
some ad hoc principles
– E.g. proportional to the number of letters in the word

• Works better for some languages than others

• Spanish,  Japanese (Katakana/Hiragana), Indian languages..

S O ME TH I NG
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• The state output distribution is a probability distribution associated with each HMM 
state

– The negative log of the probability of any vector as given by this distribution would be the node 
cost in DTW

• The state output probability distribution could be any distribution at all

• We have considered Gaussian state output distributions

• More generically, we can assume it to be a mixture of Gaussians

• More on this later 
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The Gaussian Distribution

• What does a Gaussian distribution look like?

• For a single (scalar) variable, it is a bell-shaped curve 
representing the density of data around the mean

• Example:

Four different scalar Gaussian 
distributions, with different means and 
variances

The mean is represented by m, and 

variance by s2

m and s are the parameters of the 
Gaussian distribution
(Taken from Wikipedia)

d
en

si
ty

data
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The Scalar Gaussian Function

• The Gaussian density function (the bell curve) is represented 

by a somewhat complicated looking formula:

• p(x) is the density function of the variable x, with mean m and 

variance s2

• The attraction of the Gaussian function (regardless of how 

appropriate it is!) comes from how easily the mean and 

variance can be estimated from sample data x1, x2, x3 … xN

– m = (Sum xi)/N

– s2 = (Sum (xi
2 – m2))/N
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The 2-D Gaussian Distribution

• However, our speech data are not scalar values, but vectors!

• The Gaussian distribution for vector data becomes quite a bit more 

complex

• Let’s first see what a 2-D Gaussian density function looks like, shown 

as a 3-D plot:

– Same bell shape, but now in 2-D

• Distributions for higher dimensions are tough to visualize!
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The Multidimensional Gaussian Distribution

• Instead of variance, the multidimensional Gaussian has a covariance 

matrix

• The multi-dimensional Gaussian distribution of a vector variable x with 

mean m and covariance S is given by:

– where N is the vector dimensionality, and det is the determinant function

• The complexity in a full multi-dimensional Gaussian distribution 

comes from the covariance matrix, which accounts for dependencies

between the dimensions
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The Diagonal Covariance Matrix

• In speech recognition, we frequently assume that the feature vector 

dimensions are independent of each other

• Result: The covariance matrix is reduced to a diagonal form

• Further, each si (the i-th digonal element in the covariance matrix) is easily 

estimated from xi and mi like a scalar

 












 










 


i i

ii

i
i i

ii

i

i

N

xx
2

2

22

2

2 2

)(
exp

2

1

2

)(
exp

2

1

s

m

ss

m

s





















S

2

2

2

2

1

00

00

00

Ns

s

s











68

Recap: What are Markov Models?

• Markov process: Process where the state at any time depends 

only on the state at the previous time instant 

• Markov model: is a statistical model for describing time series 

of events or observations as outcomes of a Markov process 

• The model consists of a finite set of states with transitions

between them (including self transitions)

– Thus, we can model state sequences using them

• Transitions can have probabilities associated with them

– The probability of a transition from state i to state j depends only 

on state i, and not on the earlier history; i.e.

P(st | st-1, st-2, st-3, …) = P(st | st-1), where st is the state of the model at time t

• This usually called the Markovian property of the model

– The probabilities of all transitions out of any given state must sum 

to 1
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What are Markov Models? (contd.)

• The states collectively model a set of events or 

observations

– The observations can be discrete or continuous valued

– Each state has a probability distribution that defines 

which observations are produced with what probability

• For continuous valued observations, this is a probability density 

function

– Many medium and large vocabulary systems use the Gaussian 

probability density function

– This is also often called the emission or observation 

probability for the state
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What are Hidden Markov Models?

• In many real-world processes that generate time series data, it is not 

possible to know the state sequence that produced them

– i.e. the actual state sequence is hidden from an observer

• In fact, it may not even be possible to know what the set of states is, or the state 

transition structure

– This is the primary difference between regular Markov and hidden 

Markov models

• The model has state transitions with the Markovian property

• Each state has a probabilistic model for the generation (or emission) 

of events (or observations)

• HMMs are generative models; they model the production or 

emission of the observed time series of events

– Note that the actual process that produces the time series may not be a 

Markovian process at all
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Modeling Speech With HMMs
• Example: the structure below, for capturing the production of the word “something”, is 

that of an HMM

• We use the six states to model the six distinct segments that are predominantly uniform 
within themselves

• There is usually a start state and a final state (S and NG above)

• Each state has a probabilistic function that describes the sound produced when in that 
state

– Thus, the state labelled S would have a very high probability associated with feature vectors 
for the S sound

• We could use fewer states, but then each would need a more complex probability 
model

• We could use more states to obtain a more precise model, e.g. for distinguishing 
between the first and second halves of any segment

S O ME TH I NG
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Modeling Speech With HMMs 

(contd.)

• The transition structure permits the sequence of sounds that make up the word, with 

varying durations for each segment

– Obviously, the model allows inordinately strange durations as well

– This lack of a good duration model is one of the limitations of HMMs

• Note that this is only a model of the word being spoken

– i.e. It is an approximation of the process within us humans that actually generates the word

– It is clearly preposterous to think that we go through precisely six states in pronouncing the 

word, or that we make abrupt transitions from one state to another

• Since we may not know the set of states or the transition structure, the main problem in 

using HMMs is to attempt to discover it, based solely on the observed sequences of 

events (feature vectors)

S O ME TH I NG
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Some Reasons for Using HMMs

• One of the main reasons for using HMMs is that 

efficient and mathematically well-understood 

algorithms exist for solving three fundamental HMM 

problems

• Mathematically elegant ways of incorporating other 

sources of knowledge about speech (than just 

acoustics)

• Highly flexible for use in a wide range of 

applications, small to very large vocabulary systems
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Three Fundamental Problems

• HMMs require solutions to three basic problems:

– Likelihood evaluation: Given an HMM M, and an observation (input) 

sequence X = x1, x2, x3, … xN , find P(X|M)

• P(X|M) is variously called the conditional probability of X given M, the likelihood of 

X given M, and sometimes the converse

• This is equivalent to the minimum cost problem in DTW

– State sequence decoding: Given an HMM M, and an observation sequence 

X, find the most likely HMM state sequence for M and X

i.e. argmax(s1, s2, s3 … sN) P(s1, s2, s3 … sN | X, M)

• This is equivalent to finding the actual minimum cost path in DTW

– HMM estimation: Given an HMM structure (i.e. set of states and transition 

structure) , and some labeled training data, estimate the HMM parameters 

that maximize the likelihood of the training data

• This is the HMM training problem, the hardest one and the subject of a later talk
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Problem 1: HMM Likelihood 

Evaluation
• Likelihood evaluation is the equivalent of finding least cost distance 

between a given template and an input sequence

– In this case, between a given HMM and the observation sequence

• Since HMMs are probabilistic, and generative models, we want to 

find the probability or likelihood that a given HMM would 

generate the given observation sequence X

– i.e. compute P(X|M)

• Thus, if we have HMMs for each word in a vocabulary, word1, 

word2, word3,…  and we get some unknown spoken input (the 

observation sequence X), we wish to compute P(X|wordi) for 

every i, and choose the maximum
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Forward Algorithm: P(X | word)

• How can we compute P(X | word)?

– X is an N long feature vector sequence: x1, x2, x3 … xN

– word is an HMM

• Consider an N long state sequence through the HMM, s1, s2, s3 … sN, from its start state to its 

final state

• We can compute P(X , s1, s2, s3 … sN | word); i.e. the probability of producing X by following 

the given state sequence:

• Thus, P(X , s1, s2, s3 … sN | word) = product of the individual emission and 

transition probabilities

s1 s2 s3 s4 sN time axis

x1 x2 x3 x4 xN

p(x1|s1) p(x2|s2) p(x3|s3) p(x4|s4) p(xN|sN)

p(s2|s1) p(s3|s2) p(s4|s3) p(sN|sN-1)…

…

transition probs

emission probs
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Computing P(X | word) (contd.)

• The “actual” state sequence that generates the observed 

sequence is hidden in HMMs

– i.e. we need to consider all possible state sequences:

– P(X | word) = S (P(X , s1, s2, s3 … sN | word)), summed over all possible 

state sequences s1, s2, s3 … sN through the HMM

• We now have a definition for P(X | word), but it is 

computationally intractable as formulated

– The number of possible state sequences of length N explodes exponentially 

with N

• Is there an efficient algorithm for computing P(X | word)?

– Yes!  The trellis to our rescue again
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Example: Markov Model

• Can you tell the state sequence that was taken, by 
looking at the data?

0.9

0.9

0.1

0.1

Observed data:

state1 state2

Equal prob. of starting in either state
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Markov Model

• YES!!  You can tell the state sequence

• And so, this Markov model is a plain Markov model

0.9

0.9

0.1

0.1

Observed data:

state1 state2

Equal prob. of starting in either state

1   1   1   1   1   1   1   2   2   1   1   1   1   1  1   2   1   1   1   1
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Hidden Markov Model

• Can you tell the state sequence that was taken, by 
looking at the data?

0.9

0.9

0.1

0.1

Observed data:

state1 state2
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Hidden Markov Model

• NO!!  You can NOT tell the state sequence

• And so, this is a hidden Markov model

0.9

0.9

0.1

0.1

Observed data:

state1 state2



82

Markov Model

• Q: What is prob(ball2 = blue), knowing that ball1 = red?

• If ball1 = red, we know we’re in state 1 at that time

• For ball2 to be blue, we have to STAY in state 1, AND pick blue ball

• So, prob = ???

0.9

0.9

0.1

0.1

state1 state2



83

Markov Model

• What is probability of observing this entire sequence above?

– Remember, equal prob of starting in either state!

0.9

0.9

0.1

0.1

state1 state2

Observed data:
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Markov Model

(0.5*0.25) (0.9*0.75)4 (0.9*0.25) (0.9*0.75) (0.1*0.75)2 (0.9*0.75)4 (0.9*0.25) (0.9*0.75) 
(0.1*0.25) (0.9*0.75)4

0.9

0.9

0.1

0.1

state1 state2

1 1 1 2 2 1 2

Observed data:

1 1 1 1 1 1 1 1 1 1 1 1 1

.9 .9 .9 .9 .9 .9 .1 .1 .9

.25 .75 .75 .75 .75 .25 .75 .75 .75 Observation probabilities

Transition probabilities
.5
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Hidden Markov Model

• What is probability of observing this entire sequence above?

– Big trouble! Many possible paths exist; not just a single path

• Need to consider ALL POSSIBLE paths and sum their probs!

0.9

0.9

0.1

0.1

state1 state2

Observed data:
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Hidden Markov Model

• If we assume a particular state sequence, we can find the 
probability of the observation using that state sequence

0.9

0.9

0.1

0.1

state1 state2

Observed data:

1   1   1   2   1   1   1   2   2   1   1   1   1  1   1   2   1   1   1   1

(0.5*0.25) (0.9*0.75) (0.9*0.75) (0.1*0.25) …
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Hidden Markov Model

• So, we know how to compute probability of 
input and taking a particular linear path through 
the HMM

• Let us see how we can compute the probability 
of the input sequence, without constraining us to 
any single path
– i.e. by considering ALL possible paths through the HMM

• Consider the input sequence one symbol at a 
time…
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Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.5*.25 = .125

.5*.75 = .375
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Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.75
.9

.9
.125*.9*.75 + .375*.9*.75 = .3375
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Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.125*.9*.75 + .375*.9*.75 = .3375

.125*.1*.25 + .375*.1*.25 = .0125
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Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.75
.9

.9
.3375*.9*.75 + .0125*.9*.75 = .23625
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Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.25

0.75
.9

.1

.9

.1

.3375*.9*.75 + .0125*.9*.75 = .23625

.3375*.1*.25 + .0125*.1*.25 = .00875
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Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.25

0.75
.9

.1

.9

.1

.23625

.00875

0.25

0.75
.9

.1

.9

.1

???

???
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Hidden Markov Model

• What is going on here?  TRELLIS!

• Verify by looking at all possible 3-long state 

sequences ending in s1, when input is: 
– s1  s1 s1:   .5 * .25 * .9 * .75 * .9 * .75

– s2  s1  s1:   .5 * .75 * .9 * .75 * .9 * .75

– s1  s2  s1:   .5 * .25 * .1 * .25 * .9 * .75

– s2  s2 s1:   .5 * .75 * .1 * .25 * .9 * .75

– Sum = 0.23625 (same as in trellis computation)
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HMM: Forward Algorithm

• We now have a way of matching an HMM and an input

– Similar to matching a template and input

• Again, given input of length N observations:

1. Consider all possible paths (state sequences) of length N through HMM, and 

ending in its final state

2. Compute probability of each path (multiply together individual edge and local 

node probabilities)

3. Sum all path probabilities

• Algorithmically:

– Use a trellis once again, to avoid exponential explosion of considering all 

possible paths

– This is called the forward algorithm
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Forward Algorithm: P(X | HMM)

• Let us use at(j) to mean: the probability of observing the partial 

stream of observations x1, x2, x3 … xt, and ending up at state j

– It is the sum of the probabilities for all paths leading up to state j, while 

observing the partial sequence

• If we can define at(j) in terms of at-1(all predecessors of j), as in 

DP or DTW, we have an efficient solution:

State j at time t
Predecessor states of j (p, q, 

and r) at time t-1

at-1(p)

at-1(q)

at-1(r)

at(j) = S (at-1(i) p(j|i) p(xt|j))
i

i ranging over all predecessor states of j

The forward equation:

at(j)
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Forward Algorithm: P(X | HMM)

• Review previous example:
Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.25

0.75
.9

.1

.9

.1

.23625

.00875

0.25

0.75
.9

.1

.9

.1

???

???

at(j) = S (at-1(i) p(j|i) p(xt|j))
i

i ranging over all predecessor states of j

The forward equation:
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Forward Algorithm: P(X | HMM)

• Hence, P(X | word) can be computed using a 

trellis, somewhat similar to DP and DTW

– The first difference: since this is a probabilistic model, the 

component edge and node probabilities are multiplied, rather 

being summed

– The second difference: Partial path likelihoods arriving at a 

node are summed, rather than the max (or min) being chosen
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Computing P(X | HMM)

• Example: Consider the following 3-state HMM and a 6-long input 
observation sequence:

• All the possible paths in the blue network must be considered

Observations (speech frames)

H
M

M
 s

ta
te

s

Dummy start state

Dummy final state

P(X|HMM) = a value at this node
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Finding Best State Sequence

• Given an observation sequence, finding the most likely 

state sequence through an HMM is almost identical to DP

• The algorithm for this is called Viterbi decoding, after 

Andrew Viterbi

• In short:

– Again, we have a trellis, with edges determined by the HMM 

structure and edge and local node likelihoods determined by the 

HMM state parameters and the input observations

– Edge and node likelihoods are multiplied to obtain path likelihoods

– At each node, we take the max of all incoming partial path 

likelihoods
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Viterbi Decoding (contd.)

• Formally, let St(j) mean: the likelihood of the best path that 

accounts for observations x1, x2, x3 … xt, and ends up at state j

– Note that St(j) is the likelihood of a single path, a linear state sequence

– at(j) was the likelihood summed over all paths leading up to state j

• Central idea in decoding the state sequence, the Viterbi equation:

State j at time t
All Predecessor states of j (p, q, and r) at 

time t-1

St-1(p)

St-1(q)

St-1(r)

St(j) = max (St-1(i) p(j|i) p(xt|j))
i

i ranging over all predecessor states of j

The Viterbi equation:

St(j)
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Viterbi Decoding (contd.)

• Most speech recognizers actually use log-likelihoods

– Avoids the multiplications and exponentiations of the Gaussian function

• When using log-likelihoods, the Viterbi equation becomes:

State j at time t
All Predecessor states of j (p, q, 

and r) at time t-1

St-1(p)

St-1(q)

St-1(r)

log St(j) = max (log St-1(i) + log p(j|i) + log p(xt|j))
i

i ranging over all predecessor states of j

The Viterbi equation:

St(j)
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Detour: Costs, Probabilities & 

LogProbs…
• Trellis computation in 

DP/DTW/Viterbi:

• In forward algorithm: 

Distance/Cost

-ve Distance/-ve Cost

Probability/Likelihood

Log-Prob/Log-Likelihood

-ve Log-Prob/-ve Log-Likelihood

Min

Max

Max

Max

Min

Min/Max 
path cost?

Sum/multiply 
edge/node 
scores to get 
path score?

Sum

Sum

Multiply

Sum

Sum

Probability/Likelihood Sum Multiply
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Viterbi Decoding (contd.)

• To obtain the actual state sequence, when updating each node in the trellis, we 

maintain a back-pointer to its best predecessor

• In the end, we trace back from the final node of the lattice to determine the 

optimal HMM state sequence

back pointers

winning transitions in Viterbi equation
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Time Synchronous Evaluation

• As we can easily imagine, both the forward and 

Viterbi algorithms can be executed in a time-

synchronous manner, similar to DP/DTW

– The advantages of such evaluation have already been seen

• Henceforth, we will assume time synchronous 

execution of either algorithm, unless otherwise 

stated
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Isolated Word Recognition Using 

HMMs
• It should be straightforward to build an HMM-based isolated 

word recognizer at this point: e.g. 2 words: Odd and Even

– Given input X, choose whichever has the higher forward likelihood

HMM for Odd HMM for Even

P(X|Odd) P(X|Even)

Input X Input XStart state
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Isolated Word Recognition Using 

HMMs
• Time synchronous version:

P(X|Even)

P(X|Odd)

H
M

M
 f
o
r 

O
d

d
H

M
M

 f
o
r 

E
v
e

n

Input X
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Scaling Issues With HMMs

• Both the forward and the Viterbi algorithms compute long sequences of 

probabilities

• The accumulated path likelihoods can easily underflow any machine 

representation

• Two common ways of dealing with this problem:

– Scaling path scores: At each frame, all the accumulated likelihoods at the trellis 

node are scaled (multiplied) by a fixed constant

• Typically, such that the highest likelihood value after scaling is 1

• It can be shown that such scaling does not affect the recognition

– Using log-likelihoods instead of likelihoods

• Multiplications are reduced to additions

• However, adding log-likelihood path scores in the forward algorithm is tricky

– Can use table look-up or other approximations

• Ideal for the Viterbi algorithm that uses max instead of sum
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Viterbi vs Forward Algorithm

• As just mentioned, it is easier to use log-

likelihood values with Viterbi decoding

• We can obtain a best state-sequence (alignment) 

using Viterbi decoding

• In practice, with well trained HMMs, the best 

path usually dominates all else (likelihood-wise)

– In such cases, it is acceptable to use the Viterbi

likelihood as an approximation to the forward 

likelihood
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Beam Search

• Not surprisingly, it is possible to use pruning techniques with either 

Viterbi or the forward algorithm

– In particular, beam search

• When using likelihoods, the beam threshold is a multiplicative factor 

applied to the best score in the current frame

– If the best scoring trellis node at the current time has path likelihood 

S, the pruning threshold is ST, where T < 1

– Trellis nodes with path likelihoods < ST are pruned away

• When using log-likelihoods, it is an additive factor

– If the best scoring trellis node at the current time has log-likelihood 

S, the pruning threshold is S-T, where T > 0

• (Or, equivalently, S+T, where T < 0)

– Trellis nodes with path log-likelihoods < S-T are pruned away
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Incorporating Prior Knowledge

• Often we may have prior knowledge of the relative frequencies of the 

vocabulary words

– E.g. Names on a cell phone; some names may be called much more 

frequently than others

– Such knowledge is usually called prior knowledge

– The known probabilities of names on cell phones are prior probabilities

• Such information is usually available beforehand

• How can such information be used in speech recognition?

– E.g. If two templates (HMMs) match the input equally well, the one with the higher 

prior probability should win

– Is there a formalism that describes the optimal way of incorporating such 

knowledge in a speech recognition system?
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Bayesian Classification

• Consider the problem of classifying a given input as belonging to one of 

several classes

– In our case, the classes are the word HMMs

– The input is the observed speech (utterance)

• In general:

– Let the classes be C1, C2, C3 …, and the input X

– Assume we know P(X|Cj) for all X and all j

• These are the HMM forward probabilities

– Assume also we know P(Cj), the prior probability of each class

• i.e., the relative frequency of each word

• To maximize correctness, we want to maximize P(Cj |X); i.e. identify the class 

Cj with highest probability of generating X

= argmaxj (P(Cj|X))
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Bayesian Classification (contd.)

• By Bayes theorem:

– P(Cj |X) = P(Cj)P(X|Cj) / P(X)

• Since we want to maximize P(Cj |X) over all j, this is equivalent to maximizing 

P(Cj)P(X|Cj)

– P(X) is constant for (independent of) all Cj and can be ignored

• Since both P(Cj) and P(X|Cj) are known, we can identify the highest 

probability class generating X

• Thus, we get:

argmaxj (P(Cj|X)) = argmaxj (P(Cj)P(X|Cj))

– This is the fundamental equation in speech recognition

• Since P(Cj |X) combines both prior knowledge and the current input, it is called 

the posterior probability of Cj given X
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Bayesian Classification (contd.)

• Thus, we can now incorporate prior knowledge into our 

forward and Viterbi algorithms:

– Include P(Odd) and P(Even) as initial transitions to start states

• How do we do the same for the time-synchronous version

H
M

M
 f
o
r 

O
d

d

P(Odd)P(X|Odd) P(Even)P(X|Even)

Input XStart state
P(Odd) P(Even)

H
M

M
 f
o
r 

E
v
e

n
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Isolated Words Based Dictation

• Should be a piece of cake..
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General HMM State Distributions

• In the models considered so far, the state output probability distributions have 

been assumed to be Gaussian

• Actually, these distributions can be anything

– The Gaussian is actually a rather coarse (smooth) representation

– The actual distribution can have arbitrarily complex shape

– If we model the output distributions of states better, we can expect the model to be 

a better representation of the data

• Mixture Gaussian distributions are good models for the distribution of classes 

of speech feature vectors

• Models can also be simpler

– E.g. discrete, rather than continuous valued

– Useful for systems with limited computational resources
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Discrete HMMs

• Discrete HMM systems are characterized by the following:

– The observations are a finite set V of discrete symbols, V = {v1, v2, v3, … , vN}

– The state output probability functions are probability distributions over this set of 

symbols

• i.e. Ps(vi), for state s, such that S Ps(vi) = 1 (summed over s)

• The advantages are

– The inputs can be scalar values (actually, just symbols) rather than real-valued 

vectors

– The state output probability computation is dramatically simpler than evaluating a 

multi-dimensional Gaussian function

• The disadvantage is that such models may be too inaccurate for medium 

or large vocabulary systems

• Problem: speech is an inherently continuous valued stream

– How can we use discrete HMMs to model speech?
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Vector Quantization (VQ)

• A method of approximating real-valued vectors by a set of discrete symbols

• Consider the following 2-D example:

• Basic idea: group the data into a finite set of clusters, and replace each group 

by some single representative, often called its centroid

– The discrete symbols are the cluster identities, A, B, and C

– The set of representatives is called the VQ codebook

A
B

C
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Vector Quantization (contd.)

• Several algorithms for VQ exist; e.g. k-means 

clustering 
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Discrete HMMs Using VQ 

Codebooks
• Once we have a VQ codebook, we can build discrete HMMs

– Every input item (feature vectors) is quantized by finding its “closest” 

vector in the VQ codebook

– The identity of this VQ codebook entry now becomes the observation

– E.g. if we have a codebook with 256 entries, we can use an 8-bit codebook 

index values as the discrete observations

• The rest of the HMM formulation should be straightforward

• Footnote: Discrete HMMs are too inaccurate

– Useful only for small devices with computational and memory limitations

– Easy to estimate the resource requirements by examining the trellis and VQ 

codebook sizes
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Complex HMM State Models

• We now consider the other side: HMM state 

output probability models that are more complex 

than simple Gaussian functions
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Gaussian Mixtures

• A Gaussian Mixture is literally a mixture of Gaussians. It is 

a weighted combination of several Gaussian distributions

• x is any data vector. P(x) is the probability given to that vector by the 

Gaussian mixture

• K is the number of Gaussians being mixed

• wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is 

its covariance

• The Gaussian mixture distribution is also a distribution

• It is positive everywhere. 

• The total volume under a Gaussian mixture is 1.0.

• Constraint: the mixture weights wi must all be positive and sum to 1

1

0

( ) ( ; , )
K

i i i

i

P x wGaussian x m C








123

Gaussian Mixtures

• A Gaussian mixture can represent data 

distributions far better than a simple 

Gaussian

• The two panels show the histogram of an 

unknown random variable

• The first panel shows how it is modeled by 

a simple Gaussian

• The second panel models the histogram by 

a mixture of two Gaussians

• Caveat: It is hard to know the optimal 

number of Gaussians in a mixture 

distribution for any random variable
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• The K-means algorithm is an iterative algorithm for 
clustering similar data from a data set
– Where similarity is defined in terms of a user specified distance 

metric between clusters and data vectors
• E.g. distance from the mean of the cluster

• Negative log probability of the vector given by the distribution of the 
cluster

• Distance from a linear regression for the cluster

• The goal of the algorithm is to cluster data such that the 
average distance between data vectors and their respective 
clusters is minimized

• The basic algorithm follows the following procedure:
– Initialize all clusters somehow (the number of clusters is assumed)

– For each training vector, find the closest cluster

– Reassign training vectors to their closest clusters

– Iterate the above two steps until the total distance of all training 
vectors from their clusters converges
• Convergence can be proved for most distance measures

The K-means algorithm
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• The K-means algorithm can be used to estimate Gaussian 

mixture distributions for a data set

• Each of the K Gaussians is assumed to represent a separate 

cluster of the data

• The jth cluster is characterized by

– Its covariance Cj

– Its mean vector mj

– A mixture weight wj that specifies what portion of the total data belongs 

to that cluster

• Define the distance between a vector and the jth cluster as

K-Means training Gaussian Mixtures

  )log()()(5.02log5.0),( 1
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– If the clusters are viewed as classes, the distance measure above is the 

log of the joint probability of the data vector and the class
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1. Initialize means, covariances and mixture weights of all clusters

2. For each training vector v, find the cluster j for which d(v,j) is 

minimum

– Let this cluster be j(v)

– Mark v as belonging to j(v)

– The distance for this vector is d(v,j(v))

3. Once all training vectors are clustered, re-estimate cluster means, 

covariances and mixture weights

4. If the sum of d(v,j(v)) for all vectors has converged, stop. 

Otherwise return to 2

• This algorithm minimizes the average distance of training vectors 

from their clusters. i.e., it maximizes the average of the log 

probability value given to data vectors by their cluster distributions

K-Means training Gaussian Mixtures
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K-Means: Estimating parameters for a cluster

• The parameters for a cluster are its mixture weight, mean 
vector and covariance matrix. These are computed as 
follows:

• N is the total number of training vectors for all clusters
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– Nj is the number of vectors that have been tagged as belonging to cluster j

– The summation is over all vectors who have been tagged as belonging to j
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• Initialization: There are several ways of initializing the K-
means algorithm. One common method is:

– Set wi = 1/K for all clusters

– Set mi = random({v}) :  i.e. a randomly selected vector from the 
training data

– Set Cj =  the global covariance of the entire training data

• There are other ways of initializing the K-means algorithm

– Some of these may be better than the initialization procedure 
described above, but are more complicated

– Revisit later

K-Means for Gaussian Mixtures
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The set of cluster means, variances and mixture weights constitute

the parameters of the Gaussian mixture distribution for the data
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• The parameters of an HMM with Gaussian 

mixture state distributions are:

–  the set of initial state probabilities for all states

– T the matrix of transition probabilities

– A Gaussian mixture distribution for every state in the 

HMM. The Gaussian mixture for the ith state is 

characterized by

• Ki, the number of Gaussians in the mixture for the ith state

• The set of mixture weights  wi,j 0<j<Ki

• The set of Gaussian means mi,j 0 <j<Ki

• The set of Covariance matrices Ci,j 0 < j <Ki

HMMs with Gaussian mixture state distributions
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• The procedure is identical to what is used when 

state distributions are Gaussians with one minor 

modification:

• The distance of any vector from a state is now the 

negative log of the probability given to the vector 

by the state distribution

• The “penalty” applied to any transition is the 

negative log of the corresponding transition 

probability 

Segmenting and scoring data sequences with HMMs 

with Gaussian mixture state distributions
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• When HMMs model speech sounds, the following structures 

have been found useful:

• The HMM must be entered from the first state

– The initial state probability is 0 for all but the first state

• The HMM topology is left to right

– All transition probabilities Tij are 0 if j < 1

• Gaussians in the Gaussian mixtures are assumed to have 

diagonal covariance matrices

– All off-diagonal terms are 0

– This simplifies both, computation of probabilities and estimation of 

Gaussians

Modeling speech sounds with HMMs with Gaussian 

mixture state distributions
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Summary of  HMMs

• HMMs are a class of graphical models, consisting of states and transitions, for modeling 

time series data such as speech

• HMM states model the observed input data

– We began by assuming a Gaussian distribution underlying each model

• HMM transitions model the time progression

• Their Markovian property allows elegant solutions to complex problems of model 

evaluation and estimation

• We have seen the three fundamental problems of HMMs

– Evaluation of the model given some input data – Forward algorithm

– Finding the best state sequence for some input data – Viterbi algorithm

• Looked at using log-likelihoods to simplify computation

• Adapting time synchronous beam search to HMM based decoding

• We developed the fundamental speech recognition equation to optimally incorporate 

prior knowledge into HMM based systems

• Finally, we looked at different types of HMM state output probability distributions: 

discrete and mixture Gaussians
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Summary of  HMMs (contd.)

• HMMs are a powerful mechanism for robust acoustic modeling over a wide range of 

system sizes

– Small, medium, large vocabulary systems

• The framework is adaptable to using very small amounts of training data (e.g. a few 

samples of each word), to extremely large amounts (e.g. hundreds of hours of speech)

• The algorithms for training and decoding are elegant, with provable guarantees of 

optimality

– The elegance provides simplicity of implementation and efficiency

– The guarantee of optimality provides robustness; they do not break down in unexpected ways

• HMMs are used in speech recognition virtually universally
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Summary of  HMMs (contd.)

• Still, HMMs leave a lot of choices to the designer

– The HMM structure: states and connectivity

– What linguistic units to use HMMs for

• We have considered word models, but we will see the use of phonetic models for large vocabulary 

recognition

– The type of probability functions to be used as state models

• Discrete, mixture Gaussians, others (shared mixture Gaussians)

• For mixture Gaussians, the number of component Gaussians / mixture

• For discrete systems, the size of VQ codebooks

– Whether to use full covariances with Gaussians or simplify to diagonal ones

• The choices depend on the application, computational resources, and on the training 

data available

– Experience with trying all varieties is invaluable in building expertise

• The design of HMM-based systems is still a bit of an art-form


