
Design and Implementation of

Speech Recognition Systems

Spring 2012

Class 9: Templates to HMMs

20 Feb 2012

1

2

Recap

• Thus far, we have looked at dynamic programming for string

matching,

• And derived DTW from DP for isolated word recognition

• We identified the search trellis, time-synchronous search as

efficient mechanisms for decoding

• We looked at ways to improve search efficiency using pruning

– In particular, we identified beam pruning as a nearly universal pruning

mechanism in speech recognition

• We looked at the limitations of DTW and template matching:

– Ok for limited, small vocabulary applications

– Brittle; breaks down if speakers change

3

Today’s Topics

• Generalize DTW based recognition

• Extend to multiple templates

• Move on to Hidden Markov Models

• Look ahead: The fundamental problems of HMMs

– Introduce the three fundamental problems of HMMs

• Two of the problems deal with decoding using HMMs, solved using the

forward and Viterbi algorithms

• The third dealing with estimating HMM parameters (seen later)

– Incorporating prior knowledge into the HMM framework

– Different types of probabilistic models for HMMs

• Discrete probability distributions

• Continuous, mixture Gaussian distributions

4

DTW Using A Single Template

T
E

M
P

L
A

T
E

DATA

We’ve seen the DTW alignment of data to model

5

Limitations of A Single Template

• As noted in the previous topic, a single template

cannot capture all the variations in speech

• One alternative already suggested: use multiple

templates for each word, and match the input

against each one

6

DTW with multiple templates

DATA

TEMPLATES

7

DATA

TEMPLATES

Each template warps differently to best match the input; the best matching
template is selected

DTW with multiple templates

8

Problem With Multiple Templates

• Finding the best match requires the evaluation of many more

templates (depending on the number)

– This can be computationally expensive

• Important for handheld devices, even for small-vocabulary applications

• Think battery life!

– Need a method for reducing multiple templates into a single one

• Even multiple templates do not cover the space of possible

variations

– Need mechanism of generalizing from the templates to include data not

seen before

• We can achieve both objectives by averaging all the templates for

a given word

9

Generalizing from Templates

• Generalization implies going from the given templates to

one that also represents others that we have not seen

• Taking the average of all available templates may

represent the recorded templates less accurately, but will

represent other unseen templates more robustly

• A general template (for a word) should capture all salient

characteristics of the word, and no more

– Goal: Improving accuracy

• We will consider several steps to accomplish this

10

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

11

Template Averaging

• How can we average the templates when they’re of different lengths?

– Somehow need to normalize them to each other

• Solution: Apply DTW (of course!)

– Pick one template as a “master”

– Align all other templates to it

• Note: This requires not just finding the best cost, but the actual alignment between the

template and input frame sequences, using the back-pointers described earlier

– Use the alignments generated to compute their average

• Note: Choosing a different master template will lead to a different

average template

– Which template to choose as the master?

• No definitive answer exists

• Only trial and error solutions exist

12

DTW with multiple templates
TEMPLATES

T1 T2 T3

T4

T4

T3

T4
T3

Align T4 and T3

13

TEMPLATES

T1 T2 T3 T4

T4
T3

T2

T1

Average Template

Align T4/T2 and T4/T1, similarly; then average all of them

Average all feature vectors aligned
against each other

DTW with multiple templates

14

Benefits of Template Averaging

• Obviously, we have eliminated the computational

cost of having multiple templates for each word

• Using the averages of the aligned feature vectors

generalizes from the samples

– The average is representative of the templates, and more

generally, assumed to be representative of future

utterances of the word

• The more the number of templates, the better the

generalization

15

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

16

Template Size Reduction

• Can we do better? Consider the template for “something”:

• Here, the template has been manually segmented into 6

segments, where each segment is a single phoneme

• Hence, the frames of speech that make up any single segment

ought to be fairly alike

• If so, why not replace each segment by a single representative

feature vector?

– How? Again by averaging the frames within the segment

• This gives a reduction in the template size (memory size)

template s o me th i ng

17

DATA

Example: Single Templates With Three Segments

T
E

M
P

L
A

T
E

The feature vectors within each segment are assumed to be similar to
each other

Three segments

18

Averaging Each Template Segment





segmenti

ivector
N

VectorModel)(
1





segmenti

ivector
N

VectorModel)(
1





segmenti

ivector
N

VectorModel)(
1

()

1
()j

i segment jj

m x i
N 

 
mj is the model vector for the jth segment

Nj is the number of vectors in the jth segment

x(i) is the ith feature vector

19

T
E

M
P

L
A

T
E

DATA

Template With One Model Vector Per Segment

Just one template vector per segment

20

M
O

D
E

L

DATA

DTW with one model

The averaged template is matched against the data string to be recognized

Select the word whose averaed template has the lowest cost of match

21

DTW with multiple models

MODELS

DATA

Segment all templates

Average each region into a single point

22

DTW with multiple models

MODELS

DATA

Segment all templates

Average each region into a single point

23

(),

1
()

k

j k

i segment jk jk

m x i
N 

 


mj is the model vector for the jth segment

Nk,j is the number of training vectors in the

jth segment of the kth training sequence

xk(i) is the ith vector of the kth training

sequence

T1 T2 T3 T4

MODELS

A
V

G
.
M

O
D

E
L

segmentk(j) is the jth segment of the

kth training sequence

DTW with multiple models

24

A
V

G
.
M

O
D

E
L

DATA

DTW with multiple models

Segment all templates, average each region into a single point

To get a simple average model, which is used for recognition

25

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

26

• The inherent variation between vectors is
different for the different segments

– E.g. the variation in the colors of the beads
in the top segment is greater than that in the
bottom segment

• Ideally we should account for the
differences in variation in the segments

– E.g, a vector in a test sequence may actually
be more matched to the central segment,
which permits greater variation, although it
is closer, in a Euclidean sense, to the mean
of the lower segment, which permits lesser
variation

DTW with multiple models

T1 T2 T3 T4

MODELS

27

   
(),

1
() ()

k

T

j k j k j

i segment jk jk

C x i m x i m
N 

  


mj is the model vector for the jth segment

Cj is the covariance of the vectors in the jth

segment

T1 T2 T3 T4

MODELS

We can define the covariance for each

segment using the standard formula

for covariance

DTW with multiple models

28

• The distance function must be modified to account for the

covariance

• Mahalanobis distance:

– Normalizes contribution of all dimensions of the data

DTW with multiple models

1(,) () ()T

j j j jd x m x m C x m  

– x is a data vector, mj is the mean of a segment, Cj is the

covariance matrix for the segment

• Negative Gaussian log likelihood:

– Assumes a Gaussian distribution for the segment and computes

the probability of the vector on this distribution

 

10.5() ()1
(; ,)

2

T
j j jx m C x m

j j
D

j

Gaussian x m C e
C

  


 (,) log (; ,j j jd x m Gaussian x m C     10.5log 2 0.5() ()
D T

j j j jC x m C x m    

29

• The variance that we have computed is a full covariance matrix

– And the distance measure requires a matrix inversion

The Covariance

   
()

1
() ()

k

T

j k j k j

k i segment jkk

C x i m x i m
N 

   


• In practice we assume that all off-diagonal terms in the matrix are 0

• This reduces our distance metric to:

1(,) () ()T

j j j jd x m x m C x m  

• Where the individual variance terms s2 are

2

,

2

,

()
(,)

l j l

j

l j l

x m
d x m

s




 2 2

, , ,

()

1
()

k

j l k l j l

k i segment jkk

x i m
N

s


  


• If we use a negative log Gaussian instead, the modified score (with the

diagonal covariance) is

,

,

2

,2

2

()
(,) 0.5 log(2) 0.5j l

j l

l j l

j

l l

x m
d x m s

s


  

30

• Simple uniform segmentation of training instances is not the most

effective method of grouping vectors in the training sequences

• A better segmentation strategy is to segment the training

sequences such that the vectors within any segment are most alike

– The total distance of vectors within each segment from the model vector

for that segment is minimum

– For a global optimum, the total distance of all vectors from the model for

their respective segments must be minimum

• This segmentation must be estimated

• The segmental K-means procedure is an iterative procedure to

estimate the optimal segmentation

Segmental K-means

31

T1 T2 T3 T4

Alignment for training a model from

multiple vector sequences
MODELS

A
V

G
.
M

O
D

E
L

Initialize by uniform segmentation

32

T4T1 T2 T3

Initialize by uniform segmentation

Alignment for training a model from

multiple vector sequences

33

T4T1 T2 T3

Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations

Alignment for training a model from

multiple vector sequences

34

T1 T2 T3

T4OLD

T4NEW

Alignment for training a model from

multiple vector sequences

35

T1 T2
T3NEW

T4NEW

Alignment for training a model from

multiple vector sequences

36

T1

T3NEW

T2NEW

T4NEW

Alignment for training a model from

multiple vector sequences

37

T3NEW

T2NEW

T1NEW

T4NEW

Alignment for training a model from

multiple vector sequences

38

T4NEWT1NEW

T2NEW

T3NEW

Initialize by uniform segmentation

Align each template to the averaged model to get new segmentations

Recompute the average model from new segmentations

Alignment for training a model from

multiple vector sequences

39

T4NEW

T1NEW

T2NEW

T3NEW

Alignment for training a model from

multiple vector sequences

40

T4NEWT1NEW

T2NEW

T3NEW

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for

all training sequences does not change significantly with further

refinement of the model

Alignment for training a model from

multiple vector sequences

41

Shifted terminology

STATE

mj , s
2

j,l

SEGMENT

TRAINING DATA

TRAINING DATA VECTOR

SEGMENT BOUNDARY

MODEL PARAMETERS

or

PARAMETER VECTORS

MODEL

42

Improving the Templates

• Generalization by averaging the templates

• Generalization by reducing template length

• Accounting for variation within templates

represented by the reduced model

• Accounting for varying segment lengths

43

Transition structures in models

DATA

M
O

D
E

L

The converged models can be used to score / align data sequences

Model structure in incomplete.

44

• Some segments are naturally longer than others

– E.g., in the example the initial (yellow) segments are

usually longer than the second (pink) segments

• This difference in segment lengths is different

from the variation within a segment

– Segments with small variance could still persist very

long for a particular sound or word

• The DTW algorithm must account for these

natural differences in typical segment length

• This can be done by having a state specific

insertion penalty

– States that have lower insertion penalties persist

longer and result in longer segments

DTW with multiple models

T4NEWT1NEW

T2NEW

T3NEW

45

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty.

T11

T22

T33

T12

T23

T34

46

Transition structures in models

DATA

State specific insertion penalties are represented as
self transition arcs for model vectors. Horizontal edges within the
trellis will incur a penalty associated with the corresponding arc.
Every transition within the model can have its own penalty or score

T11

T22

T33

T12

T23

T34

T01

T11 T11

T12

T23

T33 T33

47

DATA

This structure also allows the inclusion of arcs that permit the
central state to be skipped (deleted)
Other transitions such as returning to the first state from the
last state can be permitted by inclusion of appropriate arcs

T11

T22

T33

T12

T23

T34

T13

Transition structures in models

48

• Transition behavior can be expressed with probabilities

– For segments that are typically long, if a data vector is within that segment, the

probability that the next vector will also be within it is high

– If the ith segment is typically followed by the jth segment, but also rarely by

the kth segment, then, if a data vector is within the ith segment, the probability

that the next data vector lies in the jth segment is greater than the probability

that it lies in the kth segment

• A good choice for transition scores are the negative logarithm of the

probabilities of the appropriate transitions

– Tii is the negative of the log of the probability that if the current data vector

belongs to the ith state, the next data vector will also belong to the ith state

– Tij is the negative of the log of the probability that if the current data vector

belongs to the ith state, the next data vector belongs to the jth state

– More probable transitions are less penalized. Impossible transitions are

infinitely penalized

What should the transition scores be

49

Modified segmental K-means AKA

Viterbi training

T4NEWT1NEW

T2NEW

T3NEW

• Nk,i is the number of vectors in the ith segment

(state) of the kth training sequence

• Nk,i,j is the number of vectors in the ith segment

(state) of the kth training sequence that were

followed by vectors from the jth segment (state)

– E.g., No. of vectors in the 1st (yellow) state = 20

No of vectors from the 1st state that were

followed by vectors from the 1st state = 16

P11 = 16/20 = 0.8; T11 = -log(0.8)

)log(
,

,,

ijij

k ik

k jik

ij PT
N

N
P 




• Transition scores can be easily computed by a

simple extension of the segmental K-means

algorithm

• Probabilities can be counted by simple counting

50

Modified segmental K-means AKA

Viterbi training

T4NEWT1NEW

T2NEW

T3NEW

)log(0

0

jj

j

j PT
N

N
P 

• A special score is the penalty associated with

starting at a particular state

• In our examples we always begin at the first state

• Enforcing this is equivalent to setting T01 = 0,

T0j = infinity for j != 1

• It is sometimes useful to permit entry directly into

later states

– i.e. permit deletion of initial states

• The score for direct entry into any state can be

computed as

• N is the total number of training sequences

• N0j is the number of training sequences for which

the first data vector was in the jth state

N = 4

N01 = 4

N02 = 0

N03 = 0

51

• Initializing state parameters

– Segment all training instances uniformly, learn means and variances

• Initializing T0j scores

– Count the number of permitted initial states

• Let this number be M0

– Set all permitted initial states to be equiprobable: Pj = 1/M0

– T0j = -log(Pj) = log(M0)

• Initializing Tij scores

– For every state i, count the number of states that are permitted to follow

• i.e. the number of arcs out of the state, in the specification

• Let this number be Mi

– Set all permitted transitions to be equiprobable: Pij = 1/Mi

– Initialize Tij = -log(Pij) = log(Mi)

• This is only one technique for initialization

– You may choose to initialize parameters differently, e.g. by random values

Modified segmental K-means AKA

Viterbi training

52

• The entire segmental K-means algorithm:

1. Initialize all parameters

• State means and covariances

• Transition scores

• Entry transition scores

2. Segment all training sequences

3. Reestimate parameters from segmented

training sequences

4. If not converged, return to 2

Modified segmental K-means AKA

Viterbi training

53

Alignment for training a model from

multiple vector sequences

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for
all training sequences does not change significantly with further
refinement of the model

Initialize Iterate

54

The resulting model structure is

also known as an HMM!

55

• This structure is a generic representation of a statistical

model for processes that generate time series

• The “segments” in the time series are referred to as states

– The process passes through these states to generate time series

• The entire structure may be viewed as one generalization

of the DTW models we have discussed thus far

• In this example -- strict left-to-right topology

– Commonly used for speech recognition

DTW and Hidden Markov Models (HMMs)

T11 T22 T33

T12 T23

T13

56

DTW -- Reversing Sense of “Cost”

• Use “Score” instead of “Cost”

– The same cost function but with the sign changed (i.e.

negative Euclidean distance (= –√S(xi – yi)
2; X and Y being

vectors)

– –S(xi – yi)
2; i.e. –ve Euclidean distance squared

– Other terms possible:

• Remember the Gaussian

57

Likelihood Functions for Scores

• HMM – inference equivalent to DTW modified to use a

probabilistic function, for the local node or edge “costs”

in the trellis

– Edges have transition probabilities

– Nodes have output or observation probabilities

• They provide the probability of the observed input

• The output probability may be a Gaussian

– Again, the goal is to find the template with highest probability of

matching the input

• Probability values as “costs” are also called likelihoods

58

Log Likelihoods

• May use probabilities or likelihoods instead of cost

– Scores combines multiplicatively along a path – cost of a path =

Product_over_nodes(cost of node) * Product_over_edges(cost of edge)

• May use log probabilities

– Scores add as in DTW

• Max instead of Min

• May use negative log probabilities

– Cost adds as in DTW

– More on this later

59

• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there are,

and how they can follow one another
– A set of probability distributions, one for each state, which specifies

the distribution of all vectors in that state

Hidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions

– A set of data probability distributions, associated with the states

Markov chain

Data distributions

60

Determining the Number of States

• How do we know the number of states to use for

any word?

– We do not, really

– Ideally there should be at least one state for each “basic

sound” within the word

• Otherwise widely differing sounds may be collapsed into one state

• The average feature vector for that state would be a poor

representation

– For efficiency, the number of states should the minimum

needed to achieve the desired level of recognition accuracy

– These two are conflicting requirements, usually solved by

making some educated guesses

61

Determining the Number of States

• For small vocabularies, it is possible to examine
each word in detail and arrive at reasonable
numbers:

• For larger vocabularies, we may be forced to rely on
some ad hoc principles
– E.g. proportional to the number of letters in the word

• Works better for some languages than others

• Spanish, Japanese (Katakana/Hiragana), Indian languages..

S O ME TH I NG

62

,
,

2

,

22

()1
(|) exp 0.5

2 j l
j l

l j l

l

l

x m
P x j

ss

 
  

 
 




The State Output Distribution

• The state output distribution is a probability distribution associated with each HMM
state

– The negative log of the probability of any vector as given by this distribution would be the node
cost in DTW

• The state output probability distribution could be any distribution at all

• We have considered Gaussian state output distributions

• More generically, we can assume it to be a mixture of Gaussians

• More on this later

,

,

2

,2

2

()
() log((|)) 0.5 log(2) 0.5j l

j l

l j l

j

l l

x m
d v P x j s

s


    

() log((|))jd v P x j 
, ,

, ,

2

, ,

22

()
(|) exp 0.5

2 j k l
j k l

l j k lk

k l

l

x mw
P x j

ss

 
  

 
 

 


Node cost for
DTW (note change
in notation)

63

The Gaussian Distribution

• What does a Gaussian distribution look like?

• For a single (scalar) variable, it is a bell-shaped curve
representing the density of data around the mean

• Example:

Four different scalar Gaussian
distributions, with different means and
variances

The mean is represented by m, and

variance by s2

m and s are the parameters of the
Gaussian distribution
(Taken from Wikipedia)

d
en

si
ty

data

64

The Scalar Gaussian Function

• The Gaussian density function (the bell curve) is represented

by a somewhat complicated looking formula:

• p(x) is the density function of the variable x, with mean m and

variance s2

• The attraction of the Gaussian function (regardless of how

appropriate it is!) comes from how easily the mean and

variance can be estimated from sample data x1, x2, x3 … xN

– m = (Sum xi)/N

– s2 = (Sum (xi
2 – m2))/N

65

The 2-D Gaussian Distribution

• However, our speech data are not scalar values, but vectors!

• The Gaussian distribution for vector data becomes quite a bit more

complex

• Let’s first see what a 2-D Gaussian density function looks like, shown

as a 3-D plot:

– Same bell shape, but now in 2-D

• Distributions for higher dimensions are tough to visualize!

66

The Multidimensional Gaussian Distribution

• Instead of variance, the multidimensional Gaussian has a covariance

matrix

• The multi-dimensional Gaussian distribution of a vector variable x with

mean m and covariance S is given by:

– where N is the vector dimensionality, and det is the determinant function

• The complexity in a full multi-dimensional Gaussian distribution

comes from the covariance matrix, which accounts for dependencies

between the dimensions

67

The Diagonal Covariance Matrix

• In speech recognition, we frequently assume that the feature vector

dimensions are independent of each other

• Result: The covariance matrix is reduced to a diagonal form

• Further, each si (the i-th digonal element in the covariance matrix) is easily

estimated from xi and mi like a scalar

 












 










 


i i

ii

i
i i

ii

i

i

N

xx
2

2

22

2

2 2

)(
exp

2

1

2

)(
exp

2

1

s

m

ss

m

s





















S

2

2

2

2

1

00

00

00

Ns

s

s









68

Recap: What are Markov Models?

• Markov process: Process where the state at any time depends

only on the state at the previous time instant

• Markov model: is a statistical model for describing time series

of events or observations as outcomes of a Markov process

• The model consists of a finite set of states with transitions

between them (including self transitions)

– Thus, we can model state sequences using them

• Transitions can have probabilities associated with them

– The probability of a transition from state i to state j depends only

on state i, and not on the earlier history; i.e.

P(st | st-1, st-2, st-3, …) = P(st | st-1), where st is the state of the model at time t

• This usually called the Markovian property of the model

– The probabilities of all transitions out of any given state must sum

to 1

69

What are Markov Models? (contd.)

• The states collectively model a set of events or

observations

– The observations can be discrete or continuous valued

– Each state has a probability distribution that defines

which observations are produced with what probability

• For continuous valued observations, this is a probability density

function

– Many medium and large vocabulary systems use the Gaussian

probability density function

– This is also often called the emission or observation

probability for the state

70

What are Hidden Markov Models?

• In many real-world processes that generate time series data, it is not

possible to know the state sequence that produced them

– i.e. the actual state sequence is hidden from an observer

• In fact, it may not even be possible to know what the set of states is, or the state

transition structure

– This is the primary difference between regular Markov and hidden

Markov models

• The model has state transitions with the Markovian property

• Each state has a probabilistic model for the generation (or emission)

of events (or observations)

• HMMs are generative models; they model the production or

emission of the observed time series of events

– Note that the actual process that produces the time series may not be a

Markovian process at all

71

Modeling Speech With HMMs
• Example: the structure below, for capturing the production of the word “something”, is

that of an HMM

• We use the six states to model the six distinct segments that are predominantly uniform
within themselves

• There is usually a start state and a final state (S and NG above)

• Each state has a probabilistic function that describes the sound produced when in that
state

– Thus, the state labelled S would have a very high probability associated with feature vectors
for the S sound

• We could use fewer states, but then each would need a more complex probability
model

• We could use more states to obtain a more precise model, e.g. for distinguishing
between the first and second halves of any segment

S O ME TH I NG

72

Modeling Speech With HMMs

(contd.)

• The transition structure permits the sequence of sounds that make up the word, with

varying durations for each segment

– Obviously, the model allows inordinately strange durations as well

– This lack of a good duration model is one of the limitations of HMMs

• Note that this is only a model of the word being spoken

– i.e. It is an approximation of the process within us humans that actually generates the word

– It is clearly preposterous to think that we go through precisely six states in pronouncing the

word, or that we make abrupt transitions from one state to another

• Since we may not know the set of states or the transition structure, the main problem in

using HMMs is to attempt to discover it, based solely on the observed sequences of

events (feature vectors)

S O ME TH I NG

73

Some Reasons for Using HMMs

• One of the main reasons for using HMMs is that

efficient and mathematically well-understood

algorithms exist for solving three fundamental HMM

problems

• Mathematically elegant ways of incorporating other

sources of knowledge about speech (than just

acoustics)

• Highly flexible for use in a wide range of

applications, small to very large vocabulary systems

74

Three Fundamental Problems

• HMMs require solutions to three basic problems:

– Likelihood evaluation: Given an HMM M, and an observation (input)

sequence X = x1, x2, x3, … xN , find P(X|M)

• P(X|M) is variously called the conditional probability of X given M, the likelihood of

X given M, and sometimes the converse

• This is equivalent to the minimum cost problem in DTW

– State sequence decoding: Given an HMM M, and an observation sequence

X, find the most likely HMM state sequence for M and X

i.e. argmax(s1, s2, s3 … sN) P(s1, s2, s3 … sN | X, M)

• This is equivalent to finding the actual minimum cost path in DTW

– HMM estimation: Given an HMM structure (i.e. set of states and transition

structure) , and some labeled training data, estimate the HMM parameters

that maximize the likelihood of the training data

• This is the HMM training problem, the hardest one and the subject of a later talk

75

Problem 1: HMM Likelihood

Evaluation
• Likelihood evaluation is the equivalent of finding least cost distance

between a given template and an input sequence

– In this case, between a given HMM and the observation sequence

• Since HMMs are probabilistic, and generative models, we want to

find the probability or likelihood that a given HMM would

generate the given observation sequence X

– i.e. compute P(X|M)

• Thus, if we have HMMs for each word in a vocabulary, word1,

word2, word3,… and we get some unknown spoken input (the

observation sequence X), we wish to compute P(X|wordi) for

every i, and choose the maximum

76

Forward Algorithm: P(X | word)

• How can we compute P(X | word)?

– X is an N long feature vector sequence: x1, x2, x3 … xN

– word is an HMM

• Consider an N long state sequence through the HMM, s1, s2, s3 … sN, from its start state to its

final state

• We can compute P(X , s1, s2, s3 … sN | word); i.e. the probability of producing X by following

the given state sequence:

• Thus, P(X , s1, s2, s3 … sN | word) = product of the individual emission and

transition probabilities

s1 s2 s3 s4 sN time axis

x1 x2 x3 x4 xN

p(x1|s1) p(x2|s2) p(x3|s3) p(x4|s4) p(xN|sN)

p(s2|s1) p(s3|s2) p(s4|s3) p(sN|sN-1)…

…

transition probs

emission probs

77

Computing P(X | word) (contd.)

• The “actual” state sequence that generates the observed

sequence is hidden in HMMs

– i.e. we need to consider all possible state sequences:

– P(X | word) = S (P(X , s1, s2, s3 … sN | word)), summed over all possible

state sequences s1, s2, s3 … sN through the HMM

• We now have a definition for P(X | word), but it is

computationally intractable as formulated

– The number of possible state sequences of length N explodes exponentially

with N

• Is there an efficient algorithm for computing P(X | word)?

– Yes! The trellis to our rescue again

78

Example: Markov Model

• Can you tell the state sequence that was taken, by
looking at the data?

0.9

0.9

0.1

0.1

Observed data:

state1 state2

Equal prob. of starting in either state

79

Markov Model

• YES!! You can tell the state sequence

• And so, this Markov model is a plain Markov model

0.9

0.9

0.1

0.1

Observed data:

state1 state2

Equal prob. of starting in either state

1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1

80

Hidden Markov Model

• Can you tell the state sequence that was taken, by
looking at the data?

0.9

0.9

0.1

0.1

Observed data:

state1 state2

81

Hidden Markov Model

• NO!! You can NOT tell the state sequence

• And so, this is a hidden Markov model

0.9

0.9

0.1

0.1

Observed data:

state1 state2

82

Markov Model

• Q: What is prob(ball2 = blue), knowing that ball1 = red?

• If ball1 = red, we know we’re in state 1 at that time

• For ball2 to be blue, we have to STAY in state 1, AND pick blue ball

• So, prob = ???

0.9

0.9

0.1

0.1

state1 state2

83

Markov Model

• What is probability of observing this entire sequence above?

– Remember, equal prob of starting in either state!

0.9

0.9

0.1

0.1

state1 state2

Observed data:

84

Markov Model

(0.5*0.25) (0.9*0.75)4 (0.9*0.25) (0.9*0.75) (0.1*0.75)2 (0.9*0.75)4 (0.9*0.25) (0.9*0.75)
(0.1*0.25) (0.9*0.75)4

0.9

0.9

0.1

0.1

state1 state2

1 1 1 2 2 1 2

Observed data:

1 1 1 1 1 1 1 1 1 1 1 1 1

.9 .9 .9 .9 .9 .9 .1 .1 .9

.25 .75 .75 .75 .75 .25 .75 .75 .75 Observation probabilities

Transition probabilities
.5

85

Hidden Markov Model

• What is probability of observing this entire sequence above?

– Big trouble! Many possible paths exist; not just a single path

• Need to consider ALL POSSIBLE paths and sum their probs!

0.9

0.9

0.1

0.1

state1 state2

Observed data:

86

Hidden Markov Model

• If we assume a particular state sequence, we can find the
probability of the observation using that state sequence

0.9

0.9

0.1

0.1

state1 state2

Observed data:

1 1 1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1

(0.5*0.25) (0.9*0.75) (0.9*0.75) (0.1*0.25) …

87

Hidden Markov Model

• So, we know how to compute probability of
input and taking a particular linear path through
the HMM

• Let us see how we can compute the probability
of the input sequence, without constraining us to
any single path
– i.e. by considering ALL possible paths through the HMM

• Consider the input sequence one symbol at a
time…

88

Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.5*.25 = .125

.5*.75 = .375

89

Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.75
.9

.9
.125*.9*.75 + .375*.9*.75 = .3375

90

Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.125*.9*.75 + .375*.9*.75 = .3375

.125*.1*.25 + .375*.1*.25 = .0125

91

Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.75
.9

.9
.3375*.9*.75 + .0125*.9*.75 = .23625

92

Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.25

0.75
.9

.1

.9

.1

.3375*.9*.75 + .0125*.9*.75 = .23625

.3375*.1*.25 + .0125*.1*.25 = .00875

93

Hidden Markov Model

0.9

0.9

0.1

0.1

state1 state2

Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.25

0.75
.9

.1

.9

.1

.23625

.00875

0.25

0.75
.9

.1

.9

.1

???

???

94

Hidden Markov Model

• What is going on here? TRELLIS!

• Verify by looking at all possible 3-long state

sequences ending in s1, when input is:
– s1 s1 s1: .5 * .25 * .9 * .75 * .9 * .75

– s2 s1 s1: .5 * .75 * .9 * .75 * .9 * .75

– s1 s2 s1: .5 * .25 * .1 * .25 * .9 * .75

– s2 s2 s1: .5 * .75 * .1 * .25 * .9 * .75

– Sum = 0.23625 (same as in trellis computation)

95

HMM: Forward Algorithm

• We now have a way of matching an HMM and an input

– Similar to matching a template and input

• Again, given input of length N observations:

1. Consider all possible paths (state sequences) of length N through HMM, and

ending in its final state

2. Compute probability of each path (multiply together individual edge and local

node probabilities)

3. Sum all path probabilities

• Algorithmically:

– Use a trellis once again, to avoid exponential explosion of considering all

possible paths

– This is called the forward algorithm

96

Forward Algorithm: P(X | HMM)

• Let us use at(j) to mean: the probability of observing the partial

stream of observations x1, x2, x3 … xt, and ending up at state j

– It is the sum of the probabilities for all paths leading up to state j, while

observing the partial sequence

• If we can define at(j) in terms of at-1(all predecessors of j), as in

DP or DTW, we have an efficient solution:

State j at time t
Predecessor states of j (p, q,

and r) at time t-1

at-1(p)

at-1(q)

at-1(r)

at(j) = S (at-1(i) p(j|i) p(xt|j))
i

i ranging over all predecessor states of j

The forward equation:

at(j)

97

Forward Algorithm: P(X | HMM)

• Review previous example:
Observed data

0.75

0.25
.5

.5

s1

s2

.125

.375

0.25

0.75
.9

.1

.9

.1

.3375

.0125

0.25

0.75
.9

.1

.9

.1

.23625

.00875

0.25

0.75
.9

.1

.9

.1

???

???

at(j) = S (at-1(i) p(j|i) p(xt|j))
i

i ranging over all predecessor states of j

The forward equation:

98

Forward Algorithm: P(X | HMM)

• Hence, P(X | word) can be computed using a

trellis, somewhat similar to DP and DTW

– The first difference: since this is a probabilistic model, the

component edge and node probabilities are multiplied, rather

being summed

– The second difference: Partial path likelihoods arriving at a

node are summed, rather than the max (or min) being chosen

99

Computing P(X | HMM)

• Example: Consider the following 3-state HMM and a 6-long input
observation sequence:

• All the possible paths in the blue network must be considered

Observations (speech frames)

H
M

M
 s

ta
te

s

Dummy start state

Dummy final state

P(X|HMM) = a value at this node

100

Finding Best State Sequence

• Given an observation sequence, finding the most likely

state sequence through an HMM is almost identical to DP

• The algorithm for this is called Viterbi decoding, after

Andrew Viterbi

• In short:

– Again, we have a trellis, with edges determined by the HMM

structure and edge and local node likelihoods determined by the

HMM state parameters and the input observations

– Edge and node likelihoods are multiplied to obtain path likelihoods

– At each node, we take the max of all incoming partial path

likelihoods

101

Viterbi Decoding (contd.)

• Formally, let St(j) mean: the likelihood of the best path that

accounts for observations x1, x2, x3 … xt, and ends up at state j

– Note that St(j) is the likelihood of a single path, a linear state sequence

– at(j) was the likelihood summed over all paths leading up to state j

• Central idea in decoding the state sequence, the Viterbi equation:

State j at time t
All Predecessor states of j (p, q, and r) at

time t-1

St-1(p)

St-1(q)

St-1(r)

St(j) = max (St-1(i) p(j|i) p(xt|j))
i

i ranging over all predecessor states of j

The Viterbi equation:

St(j)

102

Viterbi Decoding (contd.)

• Most speech recognizers actually use log-likelihoods

– Avoids the multiplications and exponentiations of the Gaussian function

• When using log-likelihoods, the Viterbi equation becomes:

State j at time t
All Predecessor states of j (p, q,

and r) at time t-1

St-1(p)

St-1(q)

St-1(r)

log St(j) = max (log St-1(i) + log p(j|i) + log p(xt|j))
i

i ranging over all predecessor states of j

The Viterbi equation:

St(j)

103

Detour: Costs, Probabilities &

LogProbs…
• Trellis computation in

DP/DTW/Viterbi:

• In forward algorithm:

Distance/Cost

-ve Distance/-ve Cost

Probability/Likelihood

Log-Prob/Log-Likelihood

-ve Log-Prob/-ve Log-Likelihood

Min

Max

Max

Max

Min

Min/Max
path cost?

Sum/multiply
edge/node
scores to get
path score?

Sum

Sum

Multiply

Sum

Sum

Probability/Likelihood Sum Multiply

104

Viterbi Decoding (contd.)

• To obtain the actual state sequence, when updating each node in the trellis, we

maintain a back-pointer to its best predecessor

• In the end, we trace back from the final node of the lattice to determine the

optimal HMM state sequence

back pointers

winning transitions in Viterbi equation

105

Time Synchronous Evaluation

• As we can easily imagine, both the forward and

Viterbi algorithms can be executed in a time-

synchronous manner, similar to DP/DTW

– The advantages of such evaluation have already been seen

• Henceforth, we will assume time synchronous

execution of either algorithm, unless otherwise

stated

106

Isolated Word Recognition Using

HMMs
• It should be straightforward to build an HMM-based isolated

word recognizer at this point: e.g. 2 words: Odd and Even

– Given input X, choose whichever has the higher forward likelihood

HMM for Odd HMM for Even

P(X|Odd) P(X|Even)

Input X Input XStart state

107

Isolated Word Recognition Using

HMMs
• Time synchronous version:

P(X|Even)

P(X|Odd)

H
M

M
 f
o
r

O
d

d
H

M
M

 f
o
r

E
v
e

n

Input X

108

Scaling Issues With HMMs

• Both the forward and the Viterbi algorithms compute long sequences of

probabilities

• The accumulated path likelihoods can easily underflow any machine

representation

• Two common ways of dealing with this problem:

– Scaling path scores: At each frame, all the accumulated likelihoods at the trellis

node are scaled (multiplied) by a fixed constant

• Typically, such that the highest likelihood value after scaling is 1

• It can be shown that such scaling does not affect the recognition

– Using log-likelihoods instead of likelihoods

• Multiplications are reduced to additions

• However, adding log-likelihood path scores in the forward algorithm is tricky

– Can use table look-up or other approximations

• Ideal for the Viterbi algorithm that uses max instead of sum

109

Viterbi vs Forward Algorithm

• As just mentioned, it is easier to use log-

likelihood values with Viterbi decoding

• We can obtain a best state-sequence (alignment)

using Viterbi decoding

• In practice, with well trained HMMs, the best

path usually dominates all else (likelihood-wise)

– In such cases, it is acceptable to use the Viterbi

likelihood as an approximation to the forward

likelihood

110

Beam Search

• Not surprisingly, it is possible to use pruning techniques with either

Viterbi or the forward algorithm

– In particular, beam search

• When using likelihoods, the beam threshold is a multiplicative factor

applied to the best score in the current frame

– If the best scoring trellis node at the current time has path likelihood

S, the pruning threshold is ST, where T < 1

– Trellis nodes with path likelihoods < ST are pruned away

• When using log-likelihoods, it is an additive factor

– If the best scoring trellis node at the current time has log-likelihood

S, the pruning threshold is S-T, where T > 0

• (Or, equivalently, S+T, where T < 0)

– Trellis nodes with path log-likelihoods < S-T are pruned away

111

Incorporating Prior Knowledge

• Often we may have prior knowledge of the relative frequencies of the

vocabulary words

– E.g. Names on a cell phone; some names may be called much more

frequently than others

– Such knowledge is usually called prior knowledge

– The known probabilities of names on cell phones are prior probabilities

• Such information is usually available beforehand

• How can such information be used in speech recognition?

– E.g. If two templates (HMMs) match the input equally well, the one with the higher

prior probability should win

– Is there a formalism that describes the optimal way of incorporating such

knowledge in a speech recognition system?

112

Bayesian Classification

• Consider the problem of classifying a given input as belonging to one of

several classes

– In our case, the classes are the word HMMs

– The input is the observed speech (utterance)

• In general:

– Let the classes be C1, C2, C3 …, and the input X

– Assume we know P(X|Cj) for all X and all j

• These are the HMM forward probabilities

– Assume also we know P(Cj), the prior probability of each class

• i.e., the relative frequency of each word

• To maximize correctness, we want to maximize P(Cj |X); i.e. identify the class

Cj with highest probability of generating X

= argmaxj (P(Cj|X))

113

Bayesian Classification (contd.)

• By Bayes theorem:

– P(Cj |X) = P(Cj)P(X|Cj) / P(X)

• Since we want to maximize P(Cj |X) over all j, this is equivalent to maximizing

P(Cj)P(X|Cj)

– P(X) is constant for (independent of) all Cj and can be ignored

• Since both P(Cj) and P(X|Cj) are known, we can identify the highest

probability class generating X

• Thus, we get:

argmaxj (P(Cj|X)) = argmaxj (P(Cj)P(X|Cj))

– This is the fundamental equation in speech recognition

• Since P(Cj |X) combines both prior knowledge and the current input, it is called

the posterior probability of Cj given X

114

Bayesian Classification (contd.)

• Thus, we can now incorporate prior knowledge into our

forward and Viterbi algorithms:

– Include P(Odd) and P(Even) as initial transitions to start states

• How do we do the same for the time-synchronous version

H
M

M
 f
o
r

O
d

d

P(Odd)P(X|Odd) P(Even)P(X|Even)

Input XStart state
P(Odd) P(Even)

H
M

M
 f
o
r

E
v
e

n

115

Isolated Words Based Dictation

• Should be a piece of cake..

116

General HMM State Distributions

• In the models considered so far, the state output probability distributions have

been assumed to be Gaussian

• Actually, these distributions can be anything

– The Gaussian is actually a rather coarse (smooth) representation

– The actual distribution can have arbitrarily complex shape

– If we model the output distributions of states better, we can expect the model to be

a better representation of the data

• Mixture Gaussian distributions are good models for the distribution of classes

of speech feature vectors

• Models can also be simpler

– E.g. discrete, rather than continuous valued

– Useful for systems with limited computational resources

117

Discrete HMMs

• Discrete HMM systems are characterized by the following:

– The observations are a finite set V of discrete symbols, V = {v1, v2, v3, … , vN}

– The state output probability functions are probability distributions over this set of

symbols

• i.e. Ps(vi), for state s, such that S Ps(vi) = 1 (summed over s)

• The advantages are

– The inputs can be scalar values (actually, just symbols) rather than real-valued

vectors

– The state output probability computation is dramatically simpler than evaluating a

multi-dimensional Gaussian function

• The disadvantage is that such models may be too inaccurate for medium

or large vocabulary systems

• Problem: speech is an inherently continuous valued stream

– How can we use discrete HMMs to model speech?

118

Vector Quantization (VQ)

• A method of approximating real-valued vectors by a set of discrete symbols

• Consider the following 2-D example:

• Basic idea: group the data into a finite set of clusters, and replace each group

by some single representative, often called its centroid

– The discrete symbols are the cluster identities, A, B, and C

– The set of representatives is called the VQ codebook

A
B

C

119

Vector Quantization (contd.)

• Several algorithms for VQ exist; e.g. k-means

clustering

120

Discrete HMMs Using VQ

Codebooks
• Once we have a VQ codebook, we can build discrete HMMs

– Every input item (feature vectors) is quantized by finding its “closest”

vector in the VQ codebook

– The identity of this VQ codebook entry now becomes the observation

– E.g. if we have a codebook with 256 entries, we can use an 8-bit codebook

index values as the discrete observations

• The rest of the HMM formulation should be straightforward

• Footnote: Discrete HMMs are too inaccurate

– Useful only for small devices with computational and memory limitations

– Easy to estimate the resource requirements by examining the trellis and VQ

codebook sizes

121

Complex HMM State Models

• We now consider the other side: HMM state

output probability models that are more complex

than simple Gaussian functions

122

Gaussian Mixtures

• A Gaussian Mixture is literally a mixture of Gaussians. It is

a weighted combination of several Gaussian distributions

• x is any data vector. P(x) is the probability given to that vector by the

Gaussian mixture

• K is the number of Gaussians being mixed

• wi is the mixture weight of the ith Gaussian. mi is its mean and Ci is

its covariance

• The Gaussian mixture distribution is also a distribution

• It is positive everywhere.

• The total volume under a Gaussian mixture is 1.0.

• Constraint: the mixture weights wi must all be positive and sum to 1

1

0

() (; ,)
K

i i i

i

P x wGaussian x m C






123

Gaussian Mixtures

• A Gaussian mixture can represent data

distributions far better than a simple

Gaussian

• The two panels show the histogram of an

unknown random variable

• The first panel shows how it is modeled by

a simple Gaussian

• The second panel models the histogram by

a mixture of two Gaussians

• Caveat: It is hard to know the optimal

number of Gaussians in a mixture

distribution for any random variable

124

• The K-means algorithm is an iterative algorithm for
clustering similar data from a data set
– Where similarity is defined in terms of a user specified distance

metric between clusters and data vectors
• E.g. distance from the mean of the cluster

• Negative log probability of the vector given by the distribution of the
cluster

• Distance from a linear regression for the cluster

• The goal of the algorithm is to cluster data such that the
average distance between data vectors and their respective
clusters is minimized

• The basic algorithm follows the following procedure:
– Initialize all clusters somehow (the number of clusters is assumed)

– For each training vector, find the closest cluster

– Reassign training vectors to their closest clusters

– Iterate the above two steps until the total distance of all training
vectors from their clusters converges
• Convergence can be proved for most distance measures

The K-means algorithm

125

• The K-means algorithm can be used to estimate Gaussian

mixture distributions for a data set

• Each of the K Gaussians is assumed to represent a separate

cluster of the data

• The jth cluster is characterized by

– Its covariance Cj

– Its mean vector mj

– A mixture weight wj that specifies what portion of the total data belongs

to that cluster

• Define the distance between a vector and the jth cluster as

K-Means training Gaussian Mixtures

 )log()()(5.02log5.0),(1

ijj

T

jj wmvCmvCjvd  

– If the clusters are viewed as classes, the distance measure above is the

log of the joint probability of the data vector and the class

126

1. Initialize means, covariances and mixture weights of all clusters

2. For each training vector v, find the cluster j for which d(v,j) is

minimum

– Let this cluster be j(v)

– Mark v as belonging to j(v)

– The distance for this vector is d(v,j(v))

3. Once all training vectors are clustered, re-estimate cluster means,

covariances and mixture weights

4. If the sum of d(v,j(v)) for all vectors has converged, stop.

Otherwise return to 2

• This algorithm minimizes the average distance of training vectors

from their clusters. i.e., it maximizes the average of the log

probability value given to data vectors by their cluster distributions

K-Means training Gaussian Mixtures

127

K-Means: Estimating parameters for a cluster

• The parameters for a cluster are its mixture weight, mean
vector and covariance matrix. These are computed as
follows:

• N is the total number of training vectors for all clusters





jvjvj

j v
N

m
)(

1

:

– Nj is the number of vectors that have been tagged as belonging to cluster j

– The summation is over all vectors who have been tagged as belonging to j





jvjv

T

jj

j

j mvmv
N

C
)(

))((
1

:

N

N
w

j

j 

128

• Initialization: There are several ways of initializing the K-
means algorithm. One common method is:

– Set wi = 1/K for all clusters

– Set mi = random({v}) : i.e. a randomly selected vector from the
training data

– Set Cj = the global covariance of the entire training data

• There are other ways of initializing the K-means algorithm

– Some of these may be better than the initialization procedure
described above, but are more complicated

– Revisit later

K-Means for Gaussian Mixtures


j

jjj CmvGaussianwvP),;()(

The set of cluster means, variances and mixture weights constitute

the parameters of the Gaussian mixture distribution for the data

129

• The parameters of an HMM with Gaussian

mixture state distributions are:

–  the set of initial state probabilities for all states

– T the matrix of transition probabilities

– A Gaussian mixture distribution for every state in the

HMM. The Gaussian mixture for the ith state is

characterized by

• Ki, the number of Gaussians in the mixture for the ith state

• The set of mixture weights wi,j 0<j<Ki

• The set of Gaussian means mi,j 0 <j<Ki

• The set of Covariance matrices Ci,j 0 < j <Ki

HMMs with Gaussian mixture state distributions

130

• The procedure is identical to what is used when

state distributions are Gaussians with one minor

modification:

• The distance of any vector from a state is now the

negative log of the probability given to the vector

by the state distribution

• The “penalty” applied to any transition is the

negative log of the corresponding transition

probability

Segmenting and scoring data sequences with HMMs

with Gaussian mixture state distributions

131

• When HMMs model speech sounds, the following structures

have been found useful:

• The HMM must be entered from the first state

– The initial state probability is 0 for all but the first state

• The HMM topology is left to right

– All transition probabilities Tij are 0 if j < 1

• Gaussians in the Gaussian mixtures are assumed to have

diagonal covariance matrices

– All off-diagonal terms are 0

– This simplifies both, computation of probabilities and estimation of

Gaussians

Modeling speech sounds with HMMs with Gaussian

mixture state distributions

132

Summary of HMMs

• HMMs are a class of graphical models, consisting of states and transitions, for modeling

time series data such as speech

• HMM states model the observed input data

– We began by assuming a Gaussian distribution underlying each model

• HMM transitions model the time progression

• Their Markovian property allows elegant solutions to complex problems of model

evaluation and estimation

• We have seen the three fundamental problems of HMMs

– Evaluation of the model given some input data – Forward algorithm

– Finding the best state sequence for some input data – Viterbi algorithm

• Looked at using log-likelihoods to simplify computation

• Adapting time synchronous beam search to HMM based decoding

• We developed the fundamental speech recognition equation to optimally incorporate

prior knowledge into HMM based systems

• Finally, we looked at different types of HMM state output probability distributions:

discrete and mixture Gaussians

133

Summary of HMMs (contd.)

• HMMs are a powerful mechanism for robust acoustic modeling over a wide range of

system sizes

– Small, medium, large vocabulary systems

• The framework is adaptable to using very small amounts of training data (e.g. a few

samples of each word), to extremely large amounts (e.g. hundreds of hours of speech)

• The algorithms for training and decoding are elegant, with provable guarantees of

optimality

– The elegance provides simplicity of implementation and efficiency

– The guarantee of optimality provides robustness; they do not break down in unexpected ways

• HMMs are used in speech recognition virtually universally

134

Summary of HMMs (contd.)

• Still, HMMs leave a lot of choices to the designer

– The HMM structure: states and connectivity

– What linguistic units to use HMMs for

• We have considered word models, but we will see the use of phonetic models for large vocabulary

recognition

– The type of probability functions to be used as state models

• Discrete, mixture Gaussians, others (shared mixture Gaussians)

• For mixture Gaussians, the number of component Gaussians / mixture

• For discrete systems, the size of VQ codebooks

– Whether to use full covariances with Gaussians or simplify to diagonal ones

• The choices depend on the application, computational resources, and on the training

data available

– Experience with trying all varieties is invaluable in building expertise

• The design of HMM-based systems is still a bit of an art-form

