
Generative Adversarial
Networks

Mostly adapted from Goodfellow’s 2016 NIPS tutorial:

https://arxiv.org/pdf/1701.00160.pdf

Story so far: Why generative models?

• Unsupervised learning means we have more training data

• Some problems have many right answers, and diversity is desirable
• Caption generation, image to image, super-resolution

• Some tasks intrinsically require generation
• Machine translation

• Some generative models allow us to investigate a lower dimensional
manifold of high dimensional data. This manifold can provide insight
into high dimensional observations
• Brain activity, gene expression

Recap: Factor Analysis

• Generative model: Assumes that data are generated from real valued
latent variables

Bishop – Pattern Recognition and Machine Learning

Recap: Factor Analysis

• We can see from the marginal distribution:
𝑝 𝒙𝒊 𝑾,𝝁,𝚿 = 𝒩 𝒙𝒊 𝝁,𝚿 +𝑾𝑾𝑇

that the covariance matrix of the data distribution is broken into 2
terms

• A diagonal part 𝚿: variance not shared between variables

• A low rank matrix 𝑾𝑾𝑇: shared variance due to latent factors

Recap: Evidence Lower Bound (ELBO)

• From basic probability we have:
KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃 + log 𝑝 𝑥 𝜃

• We can rearrange the terms to get the following decomposition:
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 − KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃

• We define the evidence lower bound (ELBO) as:
ℒ 𝑞, 𝜃 ≜ −KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃

Then:
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 ||𝑝 𝑧|𝑥, 𝜃 + ℒ 𝑞, 𝜃

Recap: The EM algorithm E step

• Maximize ℒ 𝑞, 𝜃(𝑡−1) with respect to 𝑞 by setting 𝒒 𝒕 𝒛 ←

𝒑 𝒛 𝒙, 𝜽 𝒕−𝟏

Bishop – Pattern Recognition and Machine Learning

Recap: The M step

• After applying the E step, we increase the likelihood of the data by finding better
parameters according to: 𝜃(𝑡) ← 𝐚𝐫𝐠𝐦𝐚𝐱𝜽 𝔼𝒒 𝒕 (𝒛) 𝐥𝐨𝐠𝒑 𝒙, 𝒛 𝜽

Bishop – Pattern Recognition and Machine Learning

Recap: EM in practice

argmax𝑾,𝚿 𝔼𝑞 𝑡 (𝒛) log 𝑝 𝑿, 𝒁 𝑾,𝚿 =

= argmax𝑾,𝚿−
𝑁

2
log det(𝚿) −

𝑖=1

𝑁

ቆ

ቇ

1

2
𝒙𝑖
𝑇𝚿−1𝒙𝑖 − 𝒙𝒊

𝑇𝚿−1𝑾𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝑖

+
1

2
tr 𝑾𝑇𝚿−1𝑾𝔼𝑞 𝑡 𝒛𝒊

𝒛𝒊𝒛𝒊
𝑇

• By looking at what expectations the M step requires, we find out what
we need to compute in the E step.

• For FA, we only need these 2 sufficient statistics to enable the M step.

• In practice, sufficient statistics are often what we compute in the E step

Recap: From EM to Variational Inference

• In EM we alternately maximize the ELBO with respect to 𝜃 and
probability distribution (functional) 𝑞

• In variational inference, we drop the distinction between hidden
variables and parameters of a distribution

• I.e. we replace 𝑝(𝑥, 𝑧|𝜃) with 𝑝(𝑥, 𝑧). Effectively this puts a
probability distribution on the parameters 𝜽, then absorbs them into
𝑧

• Fully Bayesian treatment instead of a point estimate for the
parameters

Recap: Variational Autoencoder

• For 𝑡 = 1: 𝑏: 𝑇

• Estimate
𝜕ℒ

𝜕𝜙
,
𝜕ℒ

𝜕𝜃
with either − ሚℒ𝐴 or − ሚℒ𝐵 as the

loss

• Update 𝜙, 𝜃

• Training procedure uses standard back
propagation with an MC procedure to
approximately run EM on the ELBO

• The reparameterization trick enables the
gradient to flow through the network

𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖 = 𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝜖𝑖 ~𝑝(𝜖)

Recap: Requirements of the VAE

• Note that the VAE requires 2 tractable distributions to be used:
• The prior distribution 𝑝(𝑧) must be easy to sample from

• The conditional likelihood 𝑝 𝑥|𝑧, 𝜃 must be computable

• In practice this means that the 2 distributions of interest are often
simple, for example uniform, Gaussian, or even isotropic Gaussian

Recap: The VAE blurry image problem

https://blog.openai.com/generative-models/

• The samples from the VAE
look blurry

• Three plausible
explanations for this
• Maximizing the

likelihood
• Restrictions on the

family of distributions
• The lower bound

approximation

Recap: The maximum likelihood explanation

https://arxiv.org/pdf/1701.00160.pdf

• Recent evidence
suggests that this is
not actually the
problem

• GANs can be trained
with maximum
likelihood and still
generate sharp
examples

A taxonomy of generative models

Fully Visible Belief Net (FVBN), e.g. Wavenet

𝑝 𝒙 = ෑ

𝑡=1

𝑇

𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)

• No latent variable (hence fully visible)
• Tractable log-likelihood
• Train with auto-regressive target

• Easier to optimize well
• Slower to run

GAN Advantages

• Sample in parallel (vs FVBN)

• Few restrictions on generator function

• No Markov Chain

• No variational bound

• Subjectively better samples

GAN Disadvantages

• Very difficult to train properly

• Difficult to evaluate

• Likelihood cannot be computed

• No encoder (in vanilla GAN)

GAN samples look sharp

Real Samples Generated Samples

https://arxiv.org/pdf/1703.10717.pdf

GAN samples look sharp

https://arxiv.org/pdf/1703.10717.pdf

Real Samples Generated Samples

Boundary Equilibrium GAN Energy Based GAN

Interpolation is impressive

https://arxiv.org/pdf/1703.10717.pdf

Generative Adversarial Networks: Basic idea

Generator
(Counterfeiter):
Creates fake data
from random
input

Discriminator
(Detective): Distinguish
real data from fake
data

Looks Fake!

Looks Real!

The Generator

• Faking Data
• To create good fake data, the generator must understand

what real data looks like

• Attempts to generate samples that are likely under the true
data distribution

• Implicitly learns to model the true distribution

• Latent Code
• Since the sample is determined by the random noise input,

the probability distribution is conditioned on this input

• The random noise is interpreted by the model as a latent
code, i.e. a point on the manifold

Problem setup

Generator Trained
to get better and
better at fooling
the discriminator
(making fake data
look real)

Discriminator Trained
to get better and
better at distinguishing
real data from fake
data

Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃(𝐺)

A differentiable function,
𝐺 (here having parameters

𝜃(𝐺)), mapping from the
latent space, ℝ𝐿, to the
data space, ℝ𝑀

Discriminator: 𝐷 𝑥, 𝜃(𝐷)

A differentiable function, 𝐷 (here

having parameters 𝜃(𝐷)),
mapping from the data space,
ℝ𝑀, to a scalar between 0 and 1
representing the probability that
the data is real

Simplifying notation

Generator: 𝐺 𝑧
For simplicity of notation,

we write 𝐺 𝑧 without 𝜃(𝐺)

Typically 𝐺 is a neural
network, but it doesn’t have
to be

Note 𝑧 can go into any layer
of the network, not just the
first

Discriminator: 𝐷 𝑥 , 𝐷 𝐺(𝑧)
Note that the discriminator can
also take the output of the
generator as input.

Typically 𝐷 is a neural network,
but it doesn’t have to be

An artist’s rendition

𝑧

𝐺 𝑧 or 𝑥

𝐷 𝐺(𝑧) or 𝐷 𝑥

The game (theory)

• The generator and discriminator are adversaries in a game
• The generator controls only its parameters
• The discriminator controls only its parameters
• Each seeks to maximize its own success and minimize the

success of the other: related to minimax theory

Nash equilibrium

• In game theory, a local optimum in this system is called a Nash
equilibrium:

• Generator loss, 𝐽(𝐺), is at a local minimum with respect to 𝜃 𝐺

• Discriminator loss, 𝐽(𝐷), is at a local minimum with respect to 𝜃 𝐷

Basic training procedure

• Initialize 𝜃(𝐺), 𝜃(𝐷)

• For 𝑡 = 1: 𝑏: 𝑇

• Initialize Δ𝜃(𝐷) = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑖 ~ 𝑝(𝑧𝑖)

• Compute 𝐷 𝐺 𝑧𝑖 , 𝐷(𝑥𝑖)

• Δ𝜃𝑖
(𝐷)

← Compute gradient of Discriminator loss, 𝐽 𝐷 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐷) ← Δ𝜃(𝐷) + Δ𝜃𝑖
𝐷

• Update 𝜃(𝐷)

• Initialize Δ𝜃(𝐺) = 0

• For 𝑗 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑗 ~ 𝑝(𝑧𝑗)

• Compute 𝐷 𝐺 𝑧𝑗 , 𝐷(𝑥𝑗)

• Δ𝜃𝑗
(𝐺)

← Compute gradient of Generator loss, 𝐽 𝐺 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐺) ← Δ𝜃(𝐺) + Δ𝜃𝑗
𝐺

• Update 𝜃(𝐺)

Can also run 𝑘 minibatches
of the discriminator update
before updating the
generator, but Goodfellow
finds 𝑘 = 1 tends to work
best

Basic training procedure

• Initialize 𝜃(𝐺), 𝜃(𝐷)

• For 𝑡 = 1: 𝑏: 𝑇

• Initialize Δ𝜃(𝐷) = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑖 ~ 𝑝(𝑧𝑖)

• Compute 𝐷 𝐺 𝑧𝑖 , 𝐷(𝑥𝑖)

• Δ𝜃𝑖
(𝐷)

← Compute gradient of Discriminator loss, 𝐽 𝐷 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐷) ← Δ𝜃(𝐷) + Δ𝜃𝑖
𝐷

• Update 𝜃(𝐷)

• Initialize Δ𝜃(𝐺) = 0

• For 𝑗 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑗 ~ 𝑝(𝑧𝑗)

• Compute 𝐷 𝐺 𝑧𝑗 , 𝐷(𝑥𝑗)

• Δ𝜃𝑗
(𝐺)

← Compute gradient of Generator loss, 𝐽 𝐺 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐺) ← Δ𝜃(𝐺) + Δ𝜃𝑗
𝐺

• Update 𝜃(𝐺)

Notice: the only explicit
probability distribution we
have is the random noise
distribution, the prior

The loss causes the data
distribution to be learned
implicitly

Simplified training procedure

• Initialize 𝜃(𝐺), 𝜃(𝐷)

• For 𝑡 = 1: 𝑏: 𝑇

• Initialize Δ𝜃(𝐺) = Δ𝜃(𝐷) = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑖 ~ 𝑝(𝑧𝑖)

• Compute 𝐷 𝐺 𝑧𝑖 , 𝐷(𝑥𝑖)

• Δ𝜃𝑖
(𝐷)

← Compute 𝜕𝜃(𝐷)𝐽
𝐷 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃𝑗
(𝐺)

← Compute 𝜕𝜃(𝐺)𝐽
𝐺 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐷) ← Δ𝜃(𝐷) + Δ𝜃𝑖
𝐷

• Δ𝜃(𝐺) ← Δ𝜃(𝐺) + Δ𝜃𝑗
𝐺

• Update 𝜃(𝐷), 𝜃(𝐺)

Update the discriminator
and generator from the
same pair of mini-batches

Discriminator (D)’s loss function

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺

= −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 −

1

2
𝔼𝑧∼𝑝𝑧 log 1 − 𝐷 𝐺 𝑧

• Binary cross-entropy (almost)

• The first term is for real data (positive classification)

• The second term is for fake data (negative classification)

• Differs from cross-entropy only in what we take the expectation over

• Supervised loss on data with no labels

Generator (G)’s loss function

• Take the negative of the discriminator’s loss:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺

• With this loss, we have a value function describing a zero-sum game:
min
𝑮

max
𝑫

−𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺

• Attractive to analyze with game theory

• There is a problem with this loss for gradient descent (we’ll come
back to this)

Rewriting 𝐽 𝐷

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

= −
1

2
න
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log𝐷 𝑥 𝑑𝑥 + න
𝑧

𝑝𝑧 𝑧 log 1 − 𝐷 𝐺 𝑧 𝑑𝑧

= −
1

2
න
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log𝐷 𝑥 + 𝑝𝐺 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

Optimal discriminator

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
න
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log𝐷 𝑥 + 𝑝𝐺 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

Take the functional derivative w.r.t. 𝐷 𝑥 and set to 0, analogous to:
𝜕

𝜕𝑦
𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝑦 + 𝑝𝐺 𝑥 log 1 − 𝑦 = 0

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑦
−
𝑝𝐺 𝑥

1 − 𝑦
= 0

𝑦 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)
→ 𝐷∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)

• We are assuming that 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑝𝐺 𝑥 are non-zero everywhere

Optimal discriminator

• The best strategy for the discriminator is to learn the ratio of the
probabilities of 𝑥 under the data distribution and the generator

distribution: 𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑝𝐺(𝑥)
= 𝑝(𝑑𝑎𝑡𝑎|𝑥)

𝐷 𝑥

𝑝𝐺(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝐷∗ 𝑥

𝐷∗ 𝑥

𝐷 𝑥

Discriminator intuition

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

• With this loss, the discriminator approximates the ratio of
𝒑𝒅𝒂𝒕𝒂(𝒙)

𝒑𝑮(𝒙)
via

supervised learning

Optimal generator

• With a few more steps, we can show that
the global optimum for this game is
achieved if and only if 𝑝𝐺 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥

• We are, in theory, minimizing the Jensen-
Shannon divergence between the generator
distribution and the true data distribution!

Getting to the optimum

• For models that have enough capacity, if we use 𝐽 𝐺 = −𝐽 𝐷 , and if
𝐷 is set to its global optimum given 𝐺 at every iteration and 𝐺
improves the criterion at every iteration, then alternating
optimization will get us to the global optimum

• In practice:
• 𝐷, 𝐺 may not have enough capacity

• We do not get to find the global optimum for 𝐷 at each iteration

• Theory tells us we want the discriminator to always be strong (in
practice, there may be reasons to weaken it)

More gaps between theory and practice

• The theory assumes we can reach a global optimum
• We have functions which are non-convex in the parameters we are

optimizing: 𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 , 𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺

• The theory assumes that 𝑝𝐺 𝑥 , 𝑝𝑑𝑎𝑡𝑎(𝑥) are non-zero everywhere.
This may not hold – especially if we have data lying on a manifold.
Even when it holds the ratio can be numerically unstable

• The theory assumes that the optimal discriminator is unique. In
practice other discriminators can do nearly as good a job: i.e. the
discriminator can overfit the data

Theory summary

• The theory gives us some insight into what GANs are doing

• Many of the assumptions in the theory do not hold

• We cannot get to the global optimum

• It can be difficult to even get to a local optimum

• Optimizing GANs is an active area of research (and the subject of
much of today)

A problem with 𝐽 𝐺 = −𝐽(𝐷)

• Setting 𝐽 𝐺 = −𝐽(𝐷), we have:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 =
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 +

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

• What happens to the second term when the discriminator is much
better than the generator?

𝐷 𝐺 𝑧 → 0
1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧 → 0

• There is no gradient signal to help the generator improve

Generator (G)’s loss function

• Instead of negating 𝐽 𝐷 , swap classes:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 1 − 𝐷 𝑥 −

1

2
𝔼𝑧 log 𝐷 𝐺 𝑧

• The first term can be dropped, since 𝜃 𝐺 does not influence it

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑧 log 𝐷 𝐺 𝑧

• Now when 𝐷 𝐺 𝑧 → 0, −
1

2
𝔼𝑧 log 𝐷 𝐺 𝑧 → ∞

• Gradient gets bigger when the discriminator gets better

Making GANs approximate maximum
likelihood

• Using a different choice of 𝐽 𝐺 , we can make GANs do maximum
likelihood estimation

• Not typically used, but of theoretical interest

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑧 exp 𝜎−1 𝐷 𝐺 𝑧

• Where 𝜎 is the sigmoid function

• Can be shown this is equivalent to minimizing KL divergence between
the data distribution and the model distribution under certain
assumptions

Comparing G’s loss functions

Generator (G)’s loss function

• Because of the gradient, the original paper uses:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑧 log 𝐷 𝐺 𝑧

• This function was later shown to give the same stationary point (under
some assumptions) as 𝐽 𝐺 = −𝐽 𝐷

Other options in the loss

• Energy-based GAN (EBGAN) uses an “energy-based” discriminator function
with a hinge loss (for example L2 loss of an autoencoder on real vs. fake
examples):

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = 𝐷 𝑥 + max(𝑚 − 𝐷 𝐺 𝑧 , 0)
𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = 𝐷(𝐺 𝑧)

• Prove that this and many other choices mean that at a Nash equilibrium,
𝑝𝐺 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥 almost everywhere

• The paper suggests several advantages, including more efficient training

• 𝐽 𝐺 , 𝐽 𝐷 can both be modified (not arbitrarily): the game is what guides
the learning

https://arxiv.org/pdf/1609.03126.pdf

Different losses

• Choices of the loss function are further explored in Nowozin and
colleagues f-GAN paper. They show a family of loss functions and how
each corresponds to an 𝑓-divergence on the probability distributions
we are trying to learn

• Arjovsky and colleages’ Wasserstein GAN (WGAN) discusses the
choice of divergence (and proposes using an approximation to the
Earth Mover’s distance)

https://arxiv.org/pdf/1606.00709.pdf
https://arxiv.org/pdf/1701.07875.pdf

WGAN

• If our data are on a low-dimensional manifold of a high dimensional
space the model’s manifold and the true data manifold can have a
negligible intersection in practice

• KL divergence is undefined or infinite

• The loss function and gradients may not be continuous and well
behaved

• The Earth Mover’s Distance is well defined:
• Minimum transportation cost for making one pile

of dirt (pdf/pmf) look like the other

WGAN

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = − 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎𝐷 𝑥 − 𝔼𝑧𝐷 𝐺 𝑧

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −𝔼𝑧𝐷 𝐺 𝑧

• Importantly, the discriminator is trained for many steps before the
generator is updated

• Gradient-clipping is used in the discriminator to ensure 𝐷 𝑥 has the
Lipschitz continuity required by the theory

• The authors argue that this solves many training issues, including
mode collapse

WGAN behavior

Loss function summary

• There are many choices of loss function

• Some choices have much better behavior during training

• Some choices will modify the latent space

An optimization issue: Mode collapse

• What prevents the generator from just picking the same example all the time?

• The top row finds all the modes, the bottom finds just one mode

https://arxiv.org/pdf/1611.02163.pdf

Mode collapse

• Thought experiment: optimize the generator without changing the
discriminator. What will happen?

https://arxiv.org/pdf/1611.02163.pdf

Mode collapse mitigation 1: minibatch features
(Salimans and colleagues, Improved Techniques for Training GANs)

• Let the discriminator make a decision by comparing an example to a whole
minibatch of fake/real examples

• Discriminator can now consider diversity

https://arxiv.org/pdf/1611.02163.pdf

https://arxiv.org/pdf/1606.03498.pdf

Mode collapse mitigation 2: unrolling (Metz and

colleagues, Unrolled Generative Adversarial Networks)

• Similar to Back-propagation through time, but now we back propagate through
optimization steps

• We let the generator see where the discriminator would be after k steps before
making its update

• The discriminator will react to the generator putting more mass somewhere by
the putting less mass there: discourages the generator from concentrating mass

https://arxiv.org/pdf/1611.02163.pdf

https://arxiv.org/pdf/1611.02163.pdf

Does gradient descent make sense?

• Does using gradient descent to find a
Nash equilibrium make sense?

• This is not what gradient descent was
designed for

• Each player moving down means the
other moves up: can get stuck

• Classic example V(x, y) = -xy

• Mescheder and colleages, The
numerics of GANs: Consensus
optimization

http://www.inference.vc/my-notes-on-the-numerics-of-gans/

https://arxiv.org/pdf/1705.10461.pdf

Story so far

• GANs provide a flexible framework for implicitly minimizing the divergence
between the model and true probability distributions

• There are many choices of divergence
• Some of these divergences are ill-defined for realistic settings
• They can be poorly behaved

• Even when the divergence is well behaved, algorithms for finding a Nash
equilibrium are not that good
• Gradient descent is used, but the dynamics can prevent convergence
• One interesting study: Li and colleagues, Towards Understanding the Dynamics of

Generative Adversarial Networks

• Active research in training GANs: Lots of papers with “Towards” in the title

https://arxiv.org/pdf/1706.09884.pdf

Evaluation

• Another issue with GANs is quantitative comparison

• There is no explicit likelihood to calculate

• Post hoc density estimation can be used, but is inaccurate

• Subjective evaluation by humans is currently the best method

Practical advice: DCGAN

• All-convolutional network: no pooling layers, strided transpose
convolution

• ADAM optimization
• Batch normalization

• Not in last layer of 𝐺, not in first layer of 𝐷: learn mean/scale of data
• The two minibatches for the discriminator are normalized separately

https://arxiv.org/abs/1511.06434

Practical advice: DCGAN

• Why does this work? Purely empirical. They tried a bunch of
architectures

• This architecture seems to somehow constrain the model
distribution so that many of the training problems are
mitigated

https://arxiv.org/abs/1511.06434

Practical advice: One-sided label smoothing

• If using the original

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

• It can be helpful to decrease the confidence of the discriminator by
setting the target of the real examples to 0.9 e.g. instead of 1 (but
keep the target of the model at exactly 0)

• Keeps the logits at smaller values and mitigates “extrapolation” to
new data (overfitting)

Practical advice: add noise

• For a similar reason, it can be useful to add noise to the data

• This helps prevent discriminator overfitting, and also helps with the
problem of non-overlapping support between the model and data
distributions

Practical advice: virtual batch normalization

https://arxiv.org/pdf/1701.00160.pdf

• Batch normalization causes generated samples to become correlated
• Use a reference batch to do batch normalization (use the statistics from the reference)
• Or use a reference batch combined with the current batch (compute statistics from the combined

batch)
• Batch renormalization is another option

Practical advice: use labels if available

• GANs can be used in a supervised or semi-supervised setting

• One way to do this is to give both the discriminator and the generator
the label, making them class conditional

• Another way to do this is to change the discriminator to predict n + 1
classes, where a class is added for fake data

• Using labels dramatically improves the sample quality

Relationship to Reinforcement Learning

• We’ll see reinforcement learning later in the course

• Similar to GANs in the sense that the actions taken by a player are
rewarded, and the reward function governs learning

• Squinting our eyes, there are similarities

• But in GANs:
• The reward function changes in response to changes in the generator (there

are two players responding to each other)

• The generator gets to observe gradients of the reward, not just the reward

• GANs can be formally related to inverse reinforcement learning

Summary

• The GAN framework is a powerful way to do unsupervised learning

• The samples from the GAN model are state of the art (FVBN models
are competitive though)

• Training GANs is very difficult for fundamental reasons, and this is an
area of active research

• Very popular with many variants. Some add encoders (BiGAN), make
the latent code more interpretable (InfoGAN), and there are many
others
• https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo

