Neural Networks

Hopfield Nets and Boltzmann Machines Fall 2017

Recap: Hopfield network

- Symmetric loopy network
- Each neuron is a perceptron with +1/-1 output
- Every neuron *receives* input from every other neuron
- Every neuron *outputs* signals to every other neuron

- At each time each neuron receives a "field" $\sum_{i \neq i} w_{ii} y_i + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it "flips" to match the sign of the field

Recap: Energy of a Hopfield Network

$$y_i = \Theta\left(\sum_{j\neq i} w_{ji} y_j\right)$$
$$\Theta(z) = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}$$

Not assuming node bias

$$E = -\sum_{i,j < i} w_{ij} y_i y_j$$

- The system will evolve until the energy hits a local minimum
- In vector form, including a bias term (not used in Hopfield nets)

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

Recap: Evolution

• The network will evolve until it arrives at a local minimum in the energy contour

Recap: Content-addressable memory

- Each of the minima is a "stored" pattern
 - If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- This is a content addressable memory

Recall memory content from partial or corrupt values

• Also called *associative memory*

Recap – Analogy: Spin Glasses

- Magnetic diploes
- Each dipole tries to *align* itself to the local field
 - In doing so it may flip
- This will change fields at other dipoles
 - Which may flip
- Which changes the field at the current dipole...

Recap – Analogy: Spin Glasses

Total field at current dipole:

$$f(p_{i}) = \sum_{j \neq i} \frac{rx_{j}}{\|p_{i} - p_{j}\|^{2}} + b_{i}$$

Response of current diplose

$$x_{i} = \begin{cases} x_{i} \text{ if } sign(x_{i} f(p_{i})) = 1 \\ -x_{i} \text{ otherwise} \end{cases}$$

• The total potential energy of the system

$$E(s) = C - \frac{1}{2} \sum_{i} x_{i} f(p_{i}) = C - \sum_{i} \sum_{j > i} \frac{r x_{i} x_{j}}{\left\| p_{i} - p_{j} \right\|^{2}} - \sum_{i} b_{i} x_{j}$$

- The system *evolves* to minimize the PE
 - Dipoles stop flipping if any flips result in increase of PE

- The system stops at one of its *stable* configurations
 - Where PE is a local minimum
- Any small jitter from this stable configuration *returns it* to the stable configuration
 - I.e. the system *remembers* its stable state and returns to it

Recap: Hopfield net computation

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate until convergence $y_i(t+1) = \Theta\left(\sum_{j \neq i} w_{ji} y_j\right), \qquad 0 \le i \le N-1$

- Very simple
- Updates can be done sequentially, or all at once
- Convergence

$$E = -\sum_{i} \sum_{j>i} w_{ji} y_j y_i$$

does not change significantly any more

Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/11

"Training" the network

- How do we make the network store *a specific* pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

Recap: Hebbian Learning to Store a Specific Pattern

HEBBIAN LEARNING: $w_{ji} = y_j y_i$

$$\mathbf{W} = \mathbf{y}_p \mathbf{y}_p^T - \mathbf{I}$$

 For a single stored pattern, Hebbian learning results in a network for which the target pattern is a global minimum

Hebbian learning: Storing a 4-bit pattern

- Left: Pattern stored. Right: Energy map
- Stored pattern has lowest energy
- Gradation of energy ensures stored pattern (or its ghost) is recalled from everywhere

Recap: Hebbian Learning to Store Multiple Patterns

$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p \qquad \qquad \mathbf{W} = \sum_p (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{I}) = \mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}$$

- {p} is the set of patterns to store

 Superscript p represents the specific pattern
- N_p is the number of patterns to store

How many patterns can we store?

• Hopfield: For a network of *N* neurons can store up to 0.14*N* patterns

Recap: Hebbian Learning to Store a Specific Pattern

$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p$$

- Consider that the network is in any stored state $y^{p'}$
- At any node k the field we obtain is

$$h_k^{p\prime} = \sum_j y_k^{p\prime} y_j^{p\prime} y_j^{p\prime} + \sum_{p \neq p\prime} \sum_j y_k^p y_j^p y_j^{p\prime} = (N-1)y_k^{p\prime} + \sum_{p \neq p\prime} \sum_j y_k^p y_j^p y_j^{p\prime}$$

• If the second "crosstalk" term sums to less than N - 1, the symbol will not flip

Recap: Hebbian Learning to Store a Specific Pattern

• If we choose *P* patterns at random, what is the probability that $y_k^{p'} \sum_{p \neq p'} \sum_j y_k^p y_j^p y_j^{p'}$ will be positive for all symbols for all *P* of them?

How many patterns can we store?

- Hopfield: For a network of *N* neurons can store up to 0.14*N* patterns
- What does this really mean?
 - Lets look at some examples

Hebbian learning: One 4-bit pattern

- Left: Pattern stored. Right: Energy map
- Note: Pattern is an energy well, but there are other local minima
 - Where?
 - Also note "shadow" pattern

Storing multiple patterns: Orthogonality

- The maximum Hamming distance between two N-bit patterns is N/2
 - Because any pattern Y = -Y for our purpose
- Two patterns y_1 and y_2 that differ in N/2 bits are *orthogonal*

- Because $y_1^T y_2 = 0$

- For $N = 2^{M}L$, where L is an odd number, there are at most 2^{M} orthogonal binary patterns
 - Others may be *almost* orthogonal

Two orthogonal 4-bit patterns

- Patterns are local minima (stationary and stable)
 - No other local minima exist
 - But patterns perfectly confusable for recall

Two non-orthogonal 4-bit patterns

- Patterns are local minima (stationary and stable)
 - No other local minima exist
 - Actual wells for patterns
 - Patterns may be perfectly recalled!
 - Note K > 0.14 N

Three orthogonal 4-bit patterns

- All patterns are local minima (stationary and stable)
 - But recall from perturbed patterns is random

Three non-orthogonal 4-bit patterns

- All patterns are local minima and recalled
 - Note K > 0.14 N
 - Note some "ghosts" ended up in the "well" of other patterns
 - So one of the patterns has stronger recall than the other two

Four orthogonal 4-bit patterns

All patterns are stationary, but none are stable

– Total wipe out

Four nonorthogonal 4-bit patterns

- Believe it or not, *all patterns are stored* for K = N!
 - Only "collisions" when the ghost of one pattern occurs next to another
 - [1111] and its ghost are strong attractors (why)

How many patterns can we store?

- Hopfield: For a network of N neurons can store up to 0.14N patterns
- Apparently a fuzzy statement
 - What does it really mean to say "stores" 0.14N patterns?
 - Stationary? Stable? No other local minima?
- N=4 may not be a good case (N too small)

A 6-bit pattern

- Perfectly stationary and stable
- But many spurious local minima..
 - Which are "fake" memories

Two orthogonal 6-bit patterns

- Perfectly stationary and stable
- Several spurious "fake-memory" local minima..
 Figure over-states the problem: actually a 3-D Kmap

Two non-orthogonal 6-bit patterns

- Perfectly stationary and stable
- Some spurious "fake-memory" local minima..
 - But every stored pattern has "bowl"
 - Fewer spurious minima than for the orthogonal case

Three non-orthogonal 6-bit patterns

- Note: Cannot have 3 or more orthogonal 6-bit patterns..
- Patterns are perfectly stationary and stable (K > 0.14N)
- Some spurious "fake-memory" local minima..
 - But every stored pattern has "bowl"
 - *Fewer* spurious minima than for the orthogonal 2-pattern case

Four non-orthogonal 6-bit patterns

- Patterns are perfectly stationary and stable for K > 0.14N
- *Fewer* spurious minima than for the orthogonal 2-pattern case
 - Most fake-looking memories are in fact ghosts..

Six non-orthogonal 6-bit patterns

- Breakdown largely due to interference from "ghosts"
- But patterns are stationary, and often stable
 - For K >> 0.14N

More visualization..

- Lets inspect a few 8-bit patterns
 - Keeping in mind that the Karnaugh map is now a 4-dimensional tesseract

One 8-bit pattern

Its actually cleanly stored, but there are a few spurious minima

Two orthogonal 8-bit patterns

- Both have regions of attraction
- Some spurious minima

Two non-orthogonal 8-bit patterns

• Actually have fewer spurious minima

Not obvious from visualization..

Four orthogonal 8-bit patterns

0000000010010110110100100100101111110010011001001

Successfully stored

000000010010110110100100100101111110010011001000

Four non-orthogonal 8-bit patterns

• Stored with interference from ghosts..

Eight orthogonal 8-bit patterns

• Wipeout

Eight non-orthogonal 8-bit patterns

- Nothing stored
 - Neither stationary nor stable

Making sense of the behavior

- Seems possible to store K > 0.14N patterns
 - i.e. obtain a weight matrix W such that K > 0.14N patterns are stationary
 - Possible to make more than 0.14N patterns at-least 1-bit stable
 - So what was Hopfield talking about?
- Patterns that are *non-orthogonal* easier to remember
 - I.e. patterns that are *closer* are easier to remember than patterns that are farther!!
- Can we attempt to get greater control on the process than Hebbian learning gives us?

Bold Claim

 I can *always* store (upto) N orthogonal patterns such that they are stationary!

Although not necessarily stable

• Why?

"Training" the network

- How do we make the network store *a specific* pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

A minor adjustment

- Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with $\mathbf{W} = \mathbf{Y} \mathbf{Y}^T - N_n \mathbf{I}$
- Is identical to behavior with $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

Since

$$\mathbf{y}^T (\mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}) \mathbf{y} = \mathbf{y}^T \mathbf{Y}\mathbf{Y}^T \mathbf{y} - NN_p$$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

A minor adjustment

 $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T - N_n\mathbf{I}$

 $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

behavior with

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

• Since

Both have the

same Eigen vectors

$$\mathbf{y}^T (\mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}) \mathbf{y} = \mathbf{y}^T \mathbf{Y}\mathbf{Y}^T \mathbf{y} - NN_p$$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

Both have the same Eigen vectors $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T - N_p\mathbf{I}$ behavior with $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

NOTE: This S is a positive semidefinite matrix

 $\mathbf{v}_p \mathbf{I} \mathbf{y} = \mathbf{y}^T \mathbf{Y} \mathbf{Y}^T \mathbf{y} - N N_p$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Consider the energy function

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

- Reinstating the bias term for completeness sake
 - Remember that we don't actually use it in a Hopfield net

Consider the energy function

- Reinstating the bias term for completeness sake
 - Remember that we don't actually use it in a Hopfield net

The energy function

• *E* is a convex quadratic

- *E* is a convex quadratic
 - Shown from above (assuming 0 bias)

• *E* is a convex quadratic

Shown from above (assuming 0 bias)

But components of y can only take values ±1
 I.e y lies on the corners of the unit hypercube

The energy function

- The stored values of y are the ones where all adjacent corners are higher on the quadratic
 - Hebbian learning attempts to make the quadratic steep in the vicinity of stored patterns

- Ideally must be maximally separated on the hypercube
 - The number of patterns we can store depends on the actual distance between the patterns

Storing patterns

• A pattern **y**_P is stored if:

 $- sign(\mathbf{W}\mathbf{y}_p) = \mathbf{y}_p$ for all target patterns

- Note: for binary vectors $sign(\mathbf{y})$ is a projection
 - Projects **y** onto the nearest corner of the hypercube
 - It "quantizes" the space into orthants

Storing patterns

- A pattern y_P is stored if:
 sign(Wy_p) = y_p for all target patterns
- Training: Design \boldsymbol{W} such that this holds
- Simple solution: \mathbf{y}_p is an Eigenvector of \mathbf{W} - And the corresponding Eigenvalue is positive $\mathbf{W}\mathbf{y}_p = \lambda \mathbf{y}_p$ - More generally, orthapt($\mathbf{W}\mathbf{y}_p$) - orthapt(\mathbf{y}_p)

- More generally orthant(Wy_p) = orthant(y_p)

• How many such **y**_p can we have?

- Patterns that differ in N/2 bits are orthogonal
- You can have no more than N orthogonal vectors in an N-dimensional space

Another random fact that should interest you

The Eigenvectors of any symmetric matrix W are orthogonal

• The Eigen*values* may be positive or negative

Storing more than one pattern

- Requirement: Given $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_P$
 - Design \boldsymbol{W} such that
 - $sign(\mathbf{W}\mathbf{y}_p) = \mathbf{y}_p$ for all target patterns
 - There are no other *binary* vectors for which this holds
- What is the largest number of patterns that can be stored?

Storing K orthogonal patterns

- Simple solution: Design W such that y_1 ,
 - $\mathbf{y}_2, \dots, \mathbf{y}_K$ are the Eigen vectors of \mathbf{W}

 $-\operatorname{Let} Y = [\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K]$

 $W = Y\Lambda Y^T$

 $-\lambda_1, \ldots, \lambda_K$ are positive

– For $\lambda_1 = \lambda_2 = \lambda_K = 1$ this is exactly the Hebbian rule

• The patterns are provably stationary

Hebbian rule

• In reality

 $-\operatorname{Let} Y = [\mathbf{y}_1 \ \mathbf{y}_2 \dots \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \dots \mathbf{r}_N]$

 $W = Y\Lambda Y^T$

 $-\mathbf{r}_{K+1} \mathbf{r}_{K+2} \dots \mathbf{r}_{N} \text{ are orthogonal to } \mathbf{y}_{1} \mathbf{y}_{2} \dots \mathbf{y}_{K}$ $-\lambda_{1} = \lambda_{2} = \lambda_{K} = 1$ $-\lambda_{K+1}, \dots, \lambda_{N} = 0$

- All patterns orthogonal to y₁ y₂ ... y_K are also stationary
 - Although not stable

Storing N orthogonal patterns

When we have N orthogonal (or near orthogonal) patterns y₁, y₂, ..., y_N

 $-Y = [\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_N]$

 $W = Y\Lambda Y^T$

 $-\lambda_1=\lambda_2=\lambda_N=1$

- The Eigen vectors of W span the space
- Also, for any **y**_k

$$\mathbf{W}\mathbf{y}_k = \mathbf{y}_k$$

Storing N orthogonal patterns

- The *N* orthogonal patterns $y_1, y_2, ..., y_N$ span the space
- Any pattern **y** can be written as

 $\mathbf{y} = a_1 \mathbf{y}_1 + a_2 \mathbf{y}_2 + \dots + a_N \mathbf{y}_N$ $\mathbf{W} = a_1 \mathbf{W} \mathbf{y}_1 + a_2 \mathbf{W} \mathbf{y}_2 + \dots + a_N \mathbf{W} \mathbf{y}_N$ $= a_1 \mathbf{y}_1 + a_2 \mathbf{y}_2 + \dots + a_N \mathbf{y}_N = \mathbf{y}$

- All patterns are stable
 - Remembers everything
 - Completely useless network

Storing K orthogonal patterns

- Even if we store fewer than *N* patterns
 - Let $Y = [\mathbf{y}_1 \ \mathbf{y}_2 \dots \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \dots \mathbf{r}_N]$

 $W = Y\Lambda Y^T$

- $\mathbf{r}_{K+1} \mathbf{r}_{K+2} \dots \mathbf{r}_N$ are orthogonal to $\mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_K$

$$- \lambda_1 = \lambda_2 = \lambda_K = 1$$

$$-\lambda_{K+1}$$
 , ... , $\lambda_N=0$

- All patterns orthogonal to $\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K$ are stationary
- Any pattern that is *entirely* in the subspace spanned by $y_1 y_2 \dots y_K$ is also stable (same logic as earlier)
- Only patterns that are *partially* in the subspace spanned by $\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K$ are unstable
 - Get projected onto subspace spanned by $\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K$

Problem with Hebbian Rule

• Even if we store fewer than *N* patterns

 $-\operatorname{Let} Y = [\mathbf{y}_1 \, \mathbf{y}_2 \dots \mathbf{y}_K \, \mathbf{r}_{K+1} \, \mathbf{r}_{K+2} \dots \mathbf{r}_N]$

 $W = Y\Lambda Y^T$

 $-\mathbf{r}_{K+1} \mathbf{r}_{K+2} \dots \mathbf{r}_{N} \text{ are orthogonal to } \mathbf{y}_{1} \mathbf{y}_{2} \dots \mathbf{y}_{K}$ $-\lambda_{1} = \lambda_{2} = \lambda_{K} = 1$

- Problems arise because Eigen values are all 1.0
 - Ensures stationarity of vectors in the subspace
 - What if we get rid of this requirement?

Hebbian rule and general (nonorthogonal) vectors

$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p$$

- What happens when the patterns are *not* orthogonal
- What happens when the patterns are presented *more* than once
 - Different patterns presented different numbers of times
 - Equivalent to having unequal Eigen values..
- Can we predict the evolution of any vector **y**
 - Hint: Lanczos iterations
 - Can write $\mathbf{Y}_P = \mathbf{Y}_{ortho} \mathbf{B}, \rightarrow \mathbf{W} = \mathbf{Y}_{ortho} \mathbf{B} \wedge \mathbf{B}^T \mathbf{Y}_{ortho}^T$

The bottom line

- With an network of *N* units (i.e. *N*-bit patterns)
- The maximum number of stable patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 - E.g. when we had the Hebbian net with N orthogonal base patterns, all patterns are stable
- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided K ≤ N
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

The bottom line

- With an network of *N* units (i.e. *N*-bit patterns)
- The maximum number of stable patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 - E.g. when we had the How do we find this network?
- For a *specific* set of *K* patterns, we can *always* build a network for which all *K* patterns are stable provided $K \leq N$
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

ise

The bottom line

- With an network of *N* units (i.e. *N*-bit patterns)
- The maximum number of stable patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 E.g. when we had the How do we find this network?
 all patterns are stable
- For a specific set of K patterns, we can always build a network for which all K patterns are stable provided K ≤ N
 - Can we do something about this?
 - For large N, the upper bound on K is actuany
 - McElice et. Al. 87'

Mostafa and St. Jacques 85'

- But this may come with many "parasitic" memories

A different tack

- How do we make the network store *a specific* pattern or set of patterns?
 - Hebbian learning
 - Geometric approach

– Optimization

- Secondary question
 - How many patterns can we store?

Consider the energy function

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

- This must be *maximally* low for target patterns
- Must be *maximally* high for *all other patterns*
 - So that they are unstable and evolve into one of the target patterns

Alternate Approach to Estimating the Network

- Estimate W (and b) such that
 - E is minimized for $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_P$
 - -E is maximized for all other **y**
- Caveat: Unrealistic to expect to store more than N patterns, but can we make those N patterns memorable

Optimizing W (and b)

 $\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_{\mathcal{D}}} E(\mathbf{y})$

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}$$

The bias can be captured by another fixed-value component

Minimize total energy of target patterns

- Problem with this?

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}$$
$$\widehat{\mathbf{W}} = \operatorname{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

- Minimize total energy of target patterns
- Maximize the total energy of all *non-target* patterns

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

- Can "emphasize" the importance of a pattern by repeating
 - More repetitions \rightarrow greater emphasis

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

- Can "emphasize" the importance of a pattern by repeating
 - More repetitions \rightarrow greater emphasis
- How many of these?
 - Do we need to include *all* of them?
 - Are all equally important?

The training again..

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

 Note the energy contour of a Hopfield network for any weight W

- The first term tries to *minimize* the energy at target patterns
 - Make them local minima
 - Emphasize more "important" memories by repeating them more frequently

- The second term tries to "raise" all non-target patterns
 - Do we need to raise everything?

Option 1: Focus on the valleys
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Focus on raising the valleys
 - If you raise *every* valley, eventually they'll all move up above the target patterns, and many will even vanish

Identifying the valleys.

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P} \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^{T} \right)$$

 Problem: How do you identify the valleys for the current W?

Identifying the valleys..

- Initialize the network randomly and let it evolve
 - It will settle in a valley

Training the Hopfield network
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Randomly initialize the network several times and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights

Training the Hopfield network: SGD version $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Randomly initialize the network and let it evolve
 - And settle at a valley $y_{
 u}$
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_v \mathbf{y}_v^T)$

Training the Hopfield network

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P} \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^{T} \right)$$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Randomly initialize the network and let it evolve
 - And settle at a valley \mathbf{y}_{v}
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_v \mathbf{y}_v^T)$

Which valleys?

- Should we *randomly* sample valleys?
 - Are all valleys equally important?

Which valleys?

- Should we *randomly* sample valleys?
 - Are all valleys equally important?
- Major requirement: memories must be stable
 They *must* be broad valleys
- Spurious valleys in the neighborhood of memories are more important to eliminate

Identifying the valleys..

- Initialize the network at valid memories and let it evolve
 - It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Initialize the network with each target pattern and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights

Training the Hopfield network: SGD version $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \mathbf{y}_p and let it evolve
 - And settle at a valley $y_{
 u}$
 - Update weights

•
$$\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{y}_v \mathbf{y}_v^T)$$

A possible problem

- What if there's another target pattern downvalley
 - Raising it will destroy a better-represented or stored pattern!

A related issue

 Really no need to raise the entire surface, or even every valley

A related issue

- Really no need to raise the entire surface, or even every valley
- Raise the *neighborhood* of each target memory
 - Sufficient to make the memory a valley
 - The broader the neighborhood considered, the broader the valley

Raising the neighborhood

- Starting from a target pattern, let the network evolve only a few steps
 - Try to raise the resultant location
- Will raise the neighborhood of targets
- Will avoid problem of down-valley targets

Training the Hopfield network: SGD version $\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \mathbf{y}_p and let it evolve **a few steps (2-4)**
 - And arrive at a down-valley position \mathbf{y}_d
 - Update weights
 - $\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T \mathbf{y}_d \mathbf{y}_d^T)$

A probabilistic interpretation $E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}\right)$

- For continuous y, the energy of a pattern is a perfect analog to the negative log likelihood of a Gaussian density
- For *binary* y it is the analog of the negative log likelihood of a *Boltzmann distribution*
 - Minimizing energy maximizes log likelihood

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}\right)$$

The Boltzmann Distribution

- k is the Boltzmann constant
- *T* is the temperature of the system
- The energy terms are like the loglikelihood of a Boltzmann distribution at T = 1
 - Derivation of this probability is in fact quite trivial..

Continuing the Boltzmann analogy

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{T}\mathbf{W}\mathbf{y} - \mathbf{b}^{T}\mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{-E(\mathbf{y})}{kT}\right)$$
$$C = \frac{1}{\sum_{\mathbf{y}} P(\mathbf{y})}$$

- The system *probabilistically* selects states with lower energy
 - With infinitesimally slow cooling, at T = 0, it arrives at the global minimal state

• Selecting a next state is akin to drawing a sample from the Boltzmann distribution at T = 1, in a universe where k = 1

Lookahead..

- The Boltzmann analogy
- Adding capacity to a Hopfield network

Storing more than N patterns

- How do we increase the capacity of the network
 - Store more patterns

Expanding the network

 Add a large number of neurons whose actual values you don't care about!

Expanded Network

- New capacity: ~(N+K) patterns
 - Although we only care about the pattern of the first N neurons
 - We're interested in *N-bit* patterns

Introducing...

- The Boltzmann machine...
- Friday please...