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Recap: Hopfield network

yi= 0 (2 wj;yj + bi)
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Symmetric loopy network

* Each neuron is a perceptron with +1/-1 output

* Every neuron receives input from every other neuron
* Every neuron outputs signals to every other neuron
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Recap: Hopfield network
yi= 0 (Z wjiy; + bi)
. j#i

+1ifz>0
G)(Z)z{—lifZSO

. . oe: ”
At each time each neuron receives a “field” 2. ;.; w;;y; + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Recap: Energy of a Hopfield Network

+1ifz>0
6(2) z{—lifzSO

Not assuming node bias

* The system will evolve until the energy hits a local minimum

* In vector form, including a bias term (not used in Hopfield nets)
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Recap: Evolution
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* The network will evolve until it arrives at a
local minimum in the energy contour



Recap: Content-addressable memory
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state
* Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory



Examples: Content addressable
memory

Hoptield network reconstructing degraded images
from nedsy (top) o partial (hottom) cues.

* http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/



The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stable

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is actually N/4logN
— McéElice et. Al. 87’

— But this may come with many “parasitic” memories



Training the Net

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach

— Optimization

e Secondary question

— How many patterns can we store?



Consider the energy function

1
E=—-y'Wy-bly

* This must be maximally low for target patterns

 Must be maximally high for all other patterns

— So that they are unstable and evolve into one of
the target patterns
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Optimizing W

1 T
E(y)=—zy Wy

2
W = argmin Z E(y) — z E(y)
Y ye yEVp

 Minimize total energy of target patterns
— Which could be repeated to emphasize their importance
 Maximize the total energy of all non-target patterns

— Which too could be repeated to emphasize their
iImportance
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Optimizing W

1 B .
E(y) = —EyTWy W = argmin 2 E(y) — z E(y)
W
YEYp YEYp

e Simple gradient descent:

W=W+n<z yy' — Z ny)

yEYp Y€Yp

Various versions of choosing y € Y, let us assign importance to y

Various versions of choosing y ¢ Y, gave us different learning algorithms




Optimizing W

1 A .
E(y) = —EyTWy W = argmin 2 E(y) — z E(y)
W
YEYp YEYp

e Simple gradient descent:

W = W+n(z ayyy' — z ,ByYYT>

YEYp y&Yp

Weighted average (weights sum to 1.0)
Weights capture importance
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Optimizing W

1 A .
E(y) = —EyTWy W = argmin z E(y) — 2 E(y)
W
YEYp YEYp

e Simple gradient descent:

W = W+n(z ayyy' — z ,ByYYT>

yEYp y€Yp

Weighted average (weights sum to 1.0)
Weights capture importance

THIS LOOKS LIKE AN EXPECTATIONI
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Optimizing W

1 A .
E(y) = —gyTWy W = argmin z E(y) — z E(y)
W
YEYp YEYp

e Simple gradient descent:

W=W-+7 (Z ayyy' — Z ﬁ(E(y))ny>

YEYp y€Yp

Desideratum: The weights should ideally reflect confusability
Lower-energy patterns (according to the current weights) should
be more important to pull "up”

If you want the dependence on energy to be exponential..




A probabilistic interpretation

1 T 1 T
E(y) =3y Wy P(y) = Cexp —5Y Wy

For continuous y, the energy of a pattern is a perfect
analog to the negative log likelihood of a Gaussian density

For binary vy it is the analog of the negative log likelihood of
a Boltzmann distribution
— Minimizing energy maximizes log likelihood

1 1
E(y) = —gyTWy P(y) = Cexp <§yTWy>
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The Boltzmann Distribution

1 —E(y)
E(y)=—-y"Wy—-Db'y P(y) = Cexp
2 kT
P ey Yy P(y)

* kisthe Boltzmann constant
T isthe temperature of the system

 The energy terms are like the loglikelihood of a Boltzmann
distributionatT =1

— Derivation of this probability is in fact quite trivial..
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Continuing the Boltzmann analogy

1 _
E(y) = —EyTWy —b'y P(y) = Cexp( ],i;Y)>
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e At each instant the system probabilistically moves to a
new state, greatly favoring states with lower energy

— The lower the T, the more it favors low-energy states

— With infinitesimally slow cooling, at T = 0, it arrives at the
global minimal state
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Spin glasses and Hopfield nets

Energy

state

* Selecting a next state is akin to drawing a
sample from the Boltzmann distribution at
T = 1,in auniverse wherek =1



Optimizing W

1 B .
E(y) = —gyTWy W = argmin 2 E(y) — z E(y)
W
YEYp YEYp

e Simple gradient descent:

W=W-+7 (Z ayyy' — Z ﬁ(E(y))ny>

YEYp y€Yp

THIS LOOKS LIKE AN EXPECTATION
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Optimizing W

1 B .
E(y) = —gyTWy W = argmin 2 E(y) — z E(y)
W
YEYp YEYp

* Update rule

W=W-+r7 (2 ayyy' — z ,B(E(Y))YYT>

YEYp YEYp
W=W-+ TI(EY"'YPny — Ey~Yny)

Natural distribution for variables: The Boltzmann Distribution
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Continuing on..

* Adding capacity to a Hopfield network

— And the Boltzmann analogy



Storing more than N patterns

* The memory capacity of an N-bit network is at
most N

— Stable patterns (not necessarily even stationary)
* Abu Mustafa and St. Jacques, 1985
e Although “information capacity” is O(N3)

* How do we increase the capacity of the
network

— Store more patterns



Expanding the network

Neurons
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 Add a large number of neurons whose actual
values you don’t care about!
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Expanded Network
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* New capacity: ~(N + K) patterns

— Although we only care about the pattern of the first N
neurons

— We're interested in N-bit patterns
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Terminology

Hidden

Visible Neurons

Neurons
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 Terminology:

— The neurons that store the actual patterns of interest: Visible
neurons

— The neurons that only serve to increase the capacity but whose
actual values are not important: Hidden neurons

— These can be set to anything in order to store a visible pattern



Training the network
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* For a given pattern of visible neurons, there are any

number of hidden patterns (2X)

* Which of these do we choose?
— ldeally choose the one that results in the lowest energy

— But that’s an exponential search space!
e Solution: Combinatorial optimization

— Simulated annealing



The patterns

* |n fact we could have multiple hidden patterns
coupled with any visible pattern

— These would be multiple stored patterns that all give
the same visible output

— How many do we permit

Do we need to specify one or more particular
hidden patterns?
— How about all of them
— What do | mean by this bizarre statement?



Revisiting Thermodynamic Phenomena
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* |s the system actually in a specific state at any time?

* No —the state is actually continuously changing
— Based on the temperature of the system

e At higher temperatures, state changes more rapidly
 What is actually being characterized is the probability
of the state
— And the expected value of the state



The Helmholtz Free Energy of a System

* Athermodynamic system at temperature T can exist in
one of many states

— Potentially infinite states

— At any time, the probability of finding the system in state s
at temperature T is Py (s)

* At each state s it has a potential energy E

* The internal energy of the system, representing its
capacity to do work, is the average:

Up =) Pr(s)E



The Helmholtz Free Energy of a System

* The capacity to do work is counteracted by the internal
disorder of the system, i.e. its entropy

Hr = — Z Pr(s) log Pr(s)

* The Helmholtz free energy of the system measures the
useful work derivable from it and combines the two terms

FT —_ UT + kTHT

= z Pr(s) E; — kT z Pr(s) log Pr(s)



The Helmholtz Free Energy of a System

Fr=) Pr(s)E;— kT ) Pr(s)logPr(s)

* A system held at a specific temperature anneals by
varying the rate at which it visits the various states, to
reduce the free energy in the system, until a minimum
free-energy state is achieved

* The probability distribution of the states at steady state
is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

Fr=) Pr(s)E;— kT ) Pr(s)logPr(s)

* Minimizing this w.r.t P;(s), we get

1 [—E,
Pr(s) = Z€XP | 70

— Also known as the Gibbs distribution
— Z is a normalizing constant
— Note the dependenceon T

— AT =0, the system will always remain at the lowest-
energy configuration with prob = 1.



The Energy of the Network

Visible E(S) = —z W;;S;Sj — b;s;
Neurons i<j
exp(E(S))
P(S) =
)

We can define the energy of the system as before
Since each neuron are stochastic, there is disorder or entropy (with T = 1)

The equilibribum probability distribution over states is the Boltzmann
distribution at T=1

— This is the probability of different states that the network will wander over at
equilibrium



The field at a single node

* LetS andS ' be otherwise identical states that only differ in the i-th bit
— Shasi-th bit=+4+1 and S’ has i-th bit= —1

P(S) = P(s; = 1|sj:)P(Sj1)
P(S") = P(s; = =18/ ) P(Sji)

logP(S) — logP(S") = logP(s; = 1|sj¢i) — logP(Sl- = O|Sj¢i)

P(Si = 1|Sj¢i)
1— P(Si = 1|Sj¢i)

logP(S) — logP(S') = log
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The field at a single node

e LetS and S’ be the states with the ith bit in the +1 and —1
states

E(S) =logP(S)+C

E(S) ——< ot i ZW]S] +b>

_]?/-'l

E(S) —_< not i ZW]S] _b>

]ff-'l

* E(S)—E(S') =1logP(S) —logP(S') = XjxiW;sj + b;
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The field at a single node

P(s; = 1|s;
log( (Sl _‘Sjil ) ZW]S] + b;
1 - P(Sl 1|S]¢l

j#i

* Giving us

1
P(Si = 1‘Sj¢i) —

1+ e‘(Z]:uWJSJ"'b )
* The probability of any node taking value 1
given other node values is a logistic




Redefining the network

Visible Zi = 2 wjiSj + b
Neurons J

P(s; = 1|sjx;) = 1+ o 2

First try: Redefine a regular Hopfield net as a stochastic system
Each neuron is now a stochastic unit with a binary state s;, which
can take value O or 1 with a probability that depends on the local
field

— Note the slight change from Hopfield nets

— Not actually necessary; only a matter of convenience



Running the network

Visible Zi = 2 wjiSj + b
Neurons J

P(s; = 1|sjx;) =

1+ e%

Initialize the neurons
Cycle through the neurons and randomly set the neuron to 1 or -1 according to the

probability given above
— Gibbs sampling: Fix N-1 variables and sample the remaining variable
— As opposed to energy-based update (mean field approximation): run the test z. >0 ?

After many many iterations (until “convergence”), sample the individual neurons



Training the network
E(S) = —2 WijSiSj — biSi

i<j
exp(—E(S))

25 exp(—E(S))

exp(Xijwijsisj + b;s;)

Y. €XD (Zi<j WijSiS; + bl-sl-’)

Visible
Neurons

P(S) =

P(S) =

* Asin Hopfield nets, in order to train the network,
we need to select weights such that those states
are more probable than other states

— Maximize the likelihood of the “stored” states



Maximum Likelihood Training

log(P(S)) = (Z W;;s;Sj + bisi) — log (Z exp (Z w;jSis; + b;s; ))

<j <j

1
<log(P(8)) > =7 » log(P(S))

SES

Nz (Z W;;s;S;j + b; Sl(S)> log (2 exp (Z w;jSis; + b;s; ))

i<j 1<j

 Maximize the average log likelihood of all “training”
vectors S = {5,,5,, ..., SN}
— In the first summation, s; and s; are bits of S
— In the second, s;"and s;” are bits of &’



Maximum Likelihood Training

(1og(P(S))) NE (2 wi;sis; + by sl(S)> log (2 exp (2 wyjsls) + bys| ))

i<j i<j

d(log(P(S)» _ lz S;Sj —77?7?

dWij B N

S

* We will use gradient descent, but we run into a problem..

* The first term is just the average ss; over all training
patterns

e But the second term is summed over all states

— Of which there can be an exponential number!




The second term

I 7/
S;S;

dlog(Zs, exp(ZKj Wl-jS{s]f + biS{)) _ 2 exp(ZKj WijSi,Sj, + biSiI)
dWij Sr ZS/ exp (Zi<j WijSl{S]{ + biSl{)

dlog(ZS/ exp(2i<j WijSL{S]{ + blSl’)) IN T
= E P(S")s;s;
dw;; =

 The second term is simply the expected value

of ss.

S, over all possible values of the state

 We cannot compute it exhaustively, but we
can compute it by sampling!



The simulation solution

Initialize the network randomly and let it “evolve”

— By probabilistically selecting state values according to our model
After many many epochs, take a snapshot of the state
Repeat this many many times
Let the collection of states be

Ssimul = {Ssimul,lt Ssimul,1=2; T Ssimul,M}



The simulation solution for the second
term

dlog(Zg, exP(ZKj Wl'jSl{S]{ + biSl{)) E Nl o
— P(S )SiSj
dw;; S

1
Yreisen Y s
S

S1E€ESsimul

* The second term in the derivative is computed
as the average of sampled states when the
network is running “freely”



Maximum Likelihood Training

(10g(P(S))) NE (2 wi;sis; + by SL(S)> log (2 o (2 wyjsis) + bys| ))

i<j i<j

loigvi(sn Nz Si%j z

d(log(P (S)))

dWij

Wij = Wij +1)

* The overall gradient ascent rule




Overall Training

Initialize weights

Let the network run to obtain simulated state samples

log(P(S)) .
dw;; Nz SiSj _Sreszg:muz S
d(log( P(S)

Compute gradient and update weights

lterate




But this is missing hidden nodes

locgz(wpu(S)) stlsf M Z

d(log(P (S)))

Wij =Wl'j+T] dWU

* This framework only works for networks with
only visible nodes

* We wanted hidden nodes

* How do we extend the paradigm?



With hidden neurons

Hidden
Neurons

—_—
S~/
ol

Visible
Neurons
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* Now, with hidden neurons the complete state
pattern for even the training patterns is
unknown

— Since they are only defined over visible neurons



With hidden neurons
Hidden

Visible Neurons

Neurons

exp(—E(S))
ZS/ exp(_E(S’))

P(S) =

P(V) = ZP(S)
H

* We will now only maximize marginal probabilities over
visible bits

- S = (V,H)
— V =visible bits
— H = hidden bits



More simulations

Hidden
Neurons

Visible

exp(—=E(S))
s exp(=E(S))

P(S) =

P(V) = ZP(S)
H

 Maximizing the marginal probability of V
requires summing over all values of H

— An exponential state space
— So we will use simulations again



Step 1

Hidden
Neurons

Visible
Neurons

* For each training pattern V;

— Fix the visible units to V;

— Let the hidden neurons evolve from a random initial point to
generate H;

— Generate S; = |V;, H;]
* Repeat K times to generate synthetic training
S — {Sl,l' 51,2, 'SlK’ 52’1, ""SN,K}



Step 2

Hidden
Neurons

Visible
Neurons

* Now unclamp the visible units and let the
entire network evolve several times to
generate

Ssimul — {Ssimul,l» Ssimul,lzz» T Ssimul,M}



Gradients

d(log(P(S)) 1 z 1
S

* Gradients are computed as before, except that
the first term is now computed over the
expanded training data




Overall Training

d{log(P(5))) »
dw; NKZS‘S]__ Z .

S1E€Ssimul

d(log(P (S)))

dWij

Wij = Wij —1

* |nitialize weights

* Run simulations to get clamped and unclamped
training samples

 Compute gradient and update weights

* [terate



Boltzmann machines

* Stochastic extension of Hopfield nets

* Enables storage of many more patterns than
Hopfield nets

e But also enables computation of probabilities
of patterns, and completion of pattern



Boltzmann machines: Overall

= Z WjiSi ~+ bi
J

d(log(P(S))) »
1 dWl] NKZSS] M z SiSj
7.

P(Si=1)=

— S’Essimul
l1+e

d(log(P (S)))

dWij

Wij = Wi; — 1]

* Training: Given a set of training patterns
— Which could be repeated to represent relative probabilities

* Initialize weights

* Run simulations to get clamped and unclamped training samples
 Compute gradient and update weights

* [terate



Boltzmann machines: Overall

* Running: Pattern completion
— “Anchor” the known visible units
— Let the network evolve

— Sample the unknown visible units
* Choose the most probable value



Applications

Degraded Eeconstructio

e PR AR

Hoptield netwotk reconstructing degraded images
from notsy (top) of partial (bottom) cues.

Filling out patterns

Denoising patterns

Computing conditional probabilities of patterns
Classification!!

— How?



Boltzmann machines for classification
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* Training patterns:
— [f1, f2, 3, .... , class]
— Features can have binarized or continuous valued representations
— Classes have “one hot” representation
[ J

Classification:

— Given features, anchor features, estimate a posteriori probability
distribution over classes

e Or choose most likely class



Boltzmann machines: Issues

* Training takes for ever
* Doesn’t really work for large problems

— A small number of training instances over a small
number of bits



Solution: Restricted Boltzmann
Machines

® 00 VISIBLE

e Partition visible and hidden units
— Visible units ONLY talk to hidden units
— Hidden units ONLY talk to visible units

e Restricted Boltzmann machine..



Topics missed..

The Boltzmann machine as a probability
distribution

RBMs
Running RBMs
nference over RBMs

RBMs as feature extractors
— Pre training
RBMs as generative models

DBMs




