
Neural Networks

Hopfield Nets and Boltzmann Machines

Fall 2017

1



• Symmetric loopy network

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

Recap: Hopfield network

2



Recap: Hopfield network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not 

respond

• If the sign of the field opposes its own sign, it “flips” to 

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

3



Recap: Energy of a Hopfield Network

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

• The system will evolve until the energy hits a local minimum

• In vector form, including a bias term (not used in Hopfield nets)

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

4

Not assuming node bias

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲



Recap: Evolution

• The network will evolve until it arrives at a 

local minimum in the energy contour

state
PE

5

𝐸 = −
1

2
𝐲𝑇𝐖𝐲



Recap: Content-addressable memory

• Each of the minima is a “stored” pattern

– If the network is initialized close to a stored pattern, it 
will inevitably evolve to the pattern

• This is a content addressable memory

– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

6



Examples: Content addressable 
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/ 7



The bottom line

• With an network of 𝑁 units (i.e. 𝑁-bit patterns)

• The maximum number of stable patterns is actually 
exponential in 𝑁

– McElice and Posner, 84’

– E.g. when we had the Hebbian net with N orthogonal base 
patterns, all patterns are stable

• For a specific set of 𝐾 patterns, we can always build a 
network for which all 𝐾 patterns are stable provided 𝐾 ≤ 𝑁

– Mostafa and St. Jacques 85’

• For large 𝑁, the upper bound on K is actually 𝑁/4𝑙𝑜𝑔𝑁

– McElice et. Al. 87’

– But this may come with many “parasitic” memories

8



Training the Net

• How do we make the network store a specific 
pattern or set of patterns?

– Hebbian learning

– Geometric approach

– Optimization

• Secondary question

– How many patterns can we store?

9



Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns

– So that they are unstable and evolve into one of 

the target patterns

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

10



Optimizing W

• Minimize total energy of target patterns

– Which could be repeated to emphasize their importance

• Maximize the total energy of all non-target patterns

– Which too could be repeated to emphasize their 

importance

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

11

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)



Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

12

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

Various versions of choosing 𝐲 ∉ 𝐘𝑃 gave us different learning algorithms

Various versions of choosing 𝐲 ∈ 𝐘𝑃 let us assign importance to 𝐲



Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

13

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝛼𝐲𝐲𝐲
𝑇 − ෍

𝐲∉𝐘𝑃

𝛽𝐲𝐲𝐲
𝑇

Weighted average  (weights sum to 1.0)
Weights capture importance



Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

14

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝛼𝐲𝐲𝐲
𝑇 − ෍

𝐲∉𝐘𝑃

𝛽𝐲𝐲𝐲
𝑇

Weighted average  (weights sum to 1.0)
Weights capture importance

THIS LOOKS LIKE AN EXPECTATION!



Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

15

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝛼𝐲𝐲𝐲
𝑇 − ෍

𝐲∉𝐘𝑃

𝛽 𝐸(𝐲) 𝐲𝐲𝑇

Desideratum: The weights should ideally  reflect confusability
Lower-energy patterns (according to the current weights) should

be more important to pull “up”

If you want the dependence on energy to be exponential..



A probabilistic interpretation

• For continuous 𝐲, the energy of a pattern is a perfect 
analog to the negative log likelihood of a Gaussian density

• For binary 𝐲 it is the analog of the negative log likelihood of 
a Boltzmann distribution

– Minimizing energy maximizes log likelihood

16

𝐸(𝐲) =
1

2
𝐲𝑇𝐖𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝 −

1

2
𝐲𝑇𝐖𝐲

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

1

2
𝐲𝑇𝐖𝐲



The Boltzmann Distribution

• 𝑘 is the Boltzmann constant

• 𝑇 is the temperature of the system

• The energy terms are like the loglikelihood of a Boltzmann 
distribution at 𝑇 = 1

– Derivation of this probability is in fact quite trivial..

17

𝐸 𝐲 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

−𝐸(𝐲)

𝑘𝑇

𝐶 =
1

σ𝐲𝑃(𝐲)



Continuing the Boltzmann analogy

• At each instant the system probabilistically moves to a 
new state, greatly favoring states with lower energy

– The lower the T, the more it favors low-energy states

– With infinitesimally slow cooling, at 𝑇 = 0, it arrives at the 
global minimal state

18

𝐸 𝐲 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

−𝐸(𝐲)

𝑘𝑇

𝐶 =
1

σ𝐲𝑃(𝐲)



Spin glasses and Hopfield nets

• Selecting a next state is akin to drawing a 
sample from the Boltzmann distribution at 
𝑇 = 1, in a universe where 𝑘 = 1

19

state

Energy



Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

20

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

THIS LOOKS LIKE AN EXPECTATION!

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝛼𝐲𝐲𝐲
𝑇 − ෍

𝐲∉𝐘𝑃

𝛽 𝐸(𝐲) 𝐲𝐲𝑇



Optimizing W

• Update rule

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

21

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

Natural distribution for variables:  The Boltzmann Distribution

𝐖 = 𝐖+ 𝜂 𝐸𝐲~𝐘𝑃𝐲𝐲
𝑇 − 𝐸𝐲~𝑌𝐲𝐲

𝑇

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝛼𝐲𝐲𝐲
𝑇 − ෍

𝐲∉𝐘𝑃

𝛽 𝐸(𝐲) 𝐲𝐲𝑇



Continuing on..

• Adding capacity to a Hopfield network

– And the Boltzmann analogy

22



Storing more than N patterns

• The memory capacity of an 𝑁-bit network is at 
most 𝑁

– Stable patterns (not necessarily even stationary)

• Abu Mustafa and St. Jacques, 1985

• Although “information capacity” is 𝒪(𝑁3)

• How do we increase the capacity of the 
network

– Store more patterns

23



Expanding the network

• Add a  large number of neurons whose actual 
values you don’t care about!

N Neurons
K Neurons

24



Expanded Network

• New capacity:   ~(𝑁 + 𝐾) patterns

– Although we only care about the pattern of the first N 
neurons

– We’re interested in N-bit patterns

N Neurons
K Neurons

25



Terminology

• Terminology:
– The neurons that store the actual patterns of interest:  Visible 

neurons

– The neurons that only serve to increase the capacity but whose 
actual values are not important:  Hidden neurons

– These can be set to anything in order to store a visible pattern

Visible 
Neurons

Hidden 
Neurons



Training the network

• For a given pattern of visible neurons, there are any 
number of hidden patterns (2K)

• Which of these do we choose?
– Ideally choose the one that results in the lowest energy

– But that’s an exponential search space!
• Solution:  Combinatorial optimization

– Simulated annealing

Visible 
Neurons

Hidden 
Neurons



The patterns

• In fact we could have multiple hidden patterns 
coupled with any visible pattern

– These would be multiple stored patterns that all give 
the same visible output

– How many do we permit

• Do we need to specify one or more particular 
hidden patterns?

– How about all of them

– What do I mean by this bizarre statement?



Revisiting Thermodynamic Phenomena

• Is the system actually in a specific state at any time?

• No – the state is actually continuously changing
– Based on the temperature of the system

• At higher temperatures, state changes more rapidly

• What is actually being characterized is the probability 
of the state
– And the expected value of the state

state

PE



The Helmholtz Free Energy of a System

• A thermodynamic system at temperature 𝑇 can exist in 
one of many states

– Potentially infinite states

– At any time, the probability of finding the system in state 𝑠
at temperature 𝑇 is 𝑃𝑇(𝑠)

• At each state 𝑠 it has a potential energy 𝐸𝑠
• The internal energy of the system, representing its 

capacity to do work, is the average:

𝑈𝑇 =෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠



The Helmholtz Free Energy of a System

• The capacity to do work is counteracted by the internal 
disorder of the system, i.e. its entropy

𝐻𝑇 = −෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠

• The Helmholtz free energy of the system measures the 
useful work derivable from it and combines the two terms

𝐹𝑇 = 𝑈𝑇 + 𝑘𝑇𝐻𝑇

=෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠 − 𝑘𝑇෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠



The Helmholtz Free Energy of a System

𝐹𝑇 =෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠 − 𝑘𝑇෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠

• A system held at a specific temperature anneals by 

varying the rate at which it visits the various states, to 

reduce the free energy in the system, until a minimum 

free-energy state is achieved

• The probability distribution of the states at steady state 

is known as the Boltzmann distribution



The Helmholtz Free Energy of a System

𝐹𝑇 =෍

𝑠

𝑃𝑇 𝑠 𝐸𝑠 − 𝑘𝑇෍

𝑠

𝑃𝑇 𝑠 log 𝑃𝑇 𝑠

• Minimizing this w.r.t 𝑃𝑇 𝑠 , we get

𝑃𝑇 𝑠 =
1

𝑍
𝑒𝑥𝑝

−𝐸𝑠
𝑘𝑇

– Also known as the Gibbs distribution

– 𝑍 is a normalizing constant

– Note the dependence on 𝑇

– A 𝑇 = 0, the system will always remain at the lowest-
energy configuration with prob = 1.



The Energy of the Network

• We can define the energy of the system as before

• Since each neuron are stochastic, there is disorder or entropy (with T = 1)

• The equilibribum probability distribution over states is the Boltzmann 
distribution at T=1

– This is the probability of different states that the network will wander over at 
equilibrium

Visible 
Neurons

𝐸 𝑆 = −෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − 𝑏𝑖𝑠𝑖

𝑃 𝑆 =
𝑒𝑥𝑝 𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 𝐸(𝑆′)



The field at a single node

• Let 𝑆 and 𝑆 ′ be otherwise identical states that only differ in the i-th bit

– S has i-th bit = +1 and S’ has i-th bit =  −1

𝑃 𝑆 = 𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖 𝑃(𝑠𝑗≠𝑖)

𝑃 𝑆′ = 𝑃 𝑠𝑖 = −1 𝑠𝑗≠𝑖 𝑃(𝑠𝑗≠𝑖)

𝑙𝑜𝑔𝑃 𝑆 − 𝑙𝑜𝑔𝑃 𝑆′ = 𝑙𝑜𝑔𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖 − 𝑙𝑜𝑔𝑃 𝑠𝑖 = 0 𝑠𝑗≠𝑖

𝑙𝑜𝑔𝑃 𝑆 − 𝑙𝑜𝑔𝑃 𝑆′ = 𝑙𝑜𝑔
𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖

1 − 𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖

35



The field at a single node

• Let 𝑆 and 𝑆 ′ be the states with the ith bit in the +1 and −1
states

𝐸 𝑆 = log 𝑃(𝑆) + 𝐶

𝐸 𝑆 =
1

2
𝐸𝑛𝑜𝑡 𝑖 +෍

𝑗≠𝑖

𝑤𝑗𝑠𝑗 + 𝑏𝑖

𝐸 𝑆′ =
1

2
𝐸𝑛𝑜𝑡 𝑖 −෍

𝑗≠𝑖

𝑤𝑗𝑠𝑗 − 𝑏𝑖

• 𝐸 𝑆 − 𝐸 𝑆′ = 𝑙𝑜𝑔𝑃 𝑆 − 𝑙𝑜𝑔𝑃 𝑆′ = σ𝑗≠𝑖𝑤𝑗𝑠𝑗 + 𝑏𝑖

36



The field at a single node

𝑙𝑜𝑔
𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖

1 − 𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖
=෍

𝑗≠𝑖

𝑤𝑗𝑠𝑗 + 𝑏𝑖

• Giving us

𝑃 𝑠𝑖 = 1 𝑠𝑗≠𝑖 =
1

1 + 𝑒
− σ𝑗≠𝑖𝑤𝑗𝑠𝑗+𝑏𝑖

• The probability of any node taking value 1 
given other node values is a logistic

37



Redefining the network

• First try: Redefine a regular Hopfield net as a stochastic system

• Each neuron is now a stochastic unit with a binary state 𝑠𝑖,  which 
can take value 0 or 1 with a probability that depends on the local 
field

– Note the slight change from Hopfield nets

– Not actually necessary; only a matter of convenience

Visible 
Neurons

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑠𝑗 + 𝑏𝑖

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



Running the network

• Initialize the neurons

• Cycle through the neurons and randomly set the neuron to 1 or -1 according to the 
probability given above
– Gibbs sampling:  Fix N-1 variables and sample the remaining variable

– As opposed to energy-based update (mean field approximation): run the test zi > 0 ?

• After many many iterations (until “convergence”), sample the individual neurons

Visible 
Neurons

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑠𝑗 + 𝑏𝑖

𝑃(𝑠𝑖 = 1|𝑠𝑗≠𝑖) =
1

1 + 𝑒−𝑧𝑖



Training the network

• As in Hopfield nets, in order to train the network, 

we need to select weights such that those states 

are more probable than other states

– Maximize the likelihood of the “stored” states

Visible 
Neurons

𝐸 𝑆 = −෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 − 𝑏𝑖𝑠𝑖

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑆 =
𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖𝑠𝑗 + 𝑏𝑖𝑠𝑖

σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′



Maximum Likelihood Training

• Maximize the average log likelihood of all “training” 
vectors 𝐒 = {𝑆1, 𝑆2, … , 𝑆𝑁}

– In the first summation, si and sj are bits of S

– In the second, si’ and sj’ are bits of S’

log 𝑃 𝑆 = ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 + 𝑏𝑖𝑠𝑖 − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

< log 𝑃 𝐒 > =
1

𝑁
෍

𝑆∈𝐒

log 𝑃 𝑆

=
1

𝑁
෍

𝑆

෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 + 𝑏𝑖𝑠𝑖(𝑆) − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′



Maximum Likelihood Training

• We will use gradient descent, but we run into a problem..

• The first term is just the average sisj over all training 
patterns

• But the second term is summed over all states

– Of which there can be an exponential number!

log 𝑃 𝐒 =
1

𝑁
෍

𝑆

෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 + 𝑏𝑖𝑠𝑖(𝑆) − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −? ? ?



The second term

• The second term is simply the expected value 

of sisj, over all possible values of the state

• We cannot compute it exhaustively, but we 

can compute it by sampling!

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′
𝑠𝑖
′𝑠𝑗
′

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



The simulation solution

• Initialize the network randomly and let it “evolve”

– By probabilistically selecting state values according to our model

• After many many epochs, take a snapshot of the state

• Repeat this many many times

• Let the collection of states be 

𝐒𝑠𝑖𝑚𝑢𝑙 = {𝑆𝑠𝑖𝑚𝑢𝑙,1, 𝑆𝑠𝑖𝑚𝑢𝑙,1=2, … , 𝑆𝑠𝑖𝑚𝑢𝑙,𝑀}



The simulation solution for the second 
term

• The second term in the derivative is computed 

as the average of sampled states when the 

network is running “freely”

෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′ ≈

1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

𝑑log σ𝑆′ 𝑒𝑥𝑝 σ𝑖<𝑗𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

𝑑𝑤𝑖𝑗
=෍

𝑆′

𝑃(𝑆′)𝑠𝑖
′𝑠𝑗
′



Maximum Likelihood Training

• The overall gradient ascent rule

log 𝑃 𝐒 =
1

𝑁
෍

𝑆

෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖𝑠𝑗 + 𝑏𝑖𝑠𝑖(𝑆) − log ෍

𝑆′

𝑒𝑥𝑝 ෍

𝑖<𝑗

𝑤𝑖𝑗𝑠𝑖
′𝑠𝑗
′ + 𝑏𝑖𝑠𝑖

′

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗



Overall Training

• Initialize weights

• Let the network run to obtain simulated state samples

• Compute gradient and update weights

• Iterate

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



But this is missing hidden nodes

• This framework only works for networks with 

only visible nodes

• We wanted hidden nodes

• How do we extend the paradigm?

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=
1

𝑁
෍

𝑆

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



With hidden neurons

• Now, with hidden neurons the complete state 

pattern for even the training patterns is 

unknown

– Since they are only defined over visible neurons

Visible 
Neurons

Hidden 
Neurons



With hidden neurons

• We will now only maximize marginal probabilities over 
visible bits

• 𝑆 = (𝑉, 𝐻)

– 𝑉 = visible bits

– 𝐻 = hidden bits

Visible 
Neurons

Hidden 
Neurons

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑉 =෍

𝐻

𝑃(𝑆)



More simulations

• Maximizing the marginal probability of V 
requires summing over all values of H
– An exponential state space

– So we will use simulations again

Visible 
Neurons

Hidden 
Neurons

𝑃 𝑆 =
𝑒𝑥𝑝 −𝐸(𝑆)

σ𝑆′ 𝑒𝑥𝑝 −𝐸(𝑆′)

𝑃 𝑉 =෍

𝐻

𝑃(𝑆)



Step 1

• For each training pattern 𝑉𝑖
– Fix the visible units to 𝑉𝑖
– Let the hidden neurons evolve from a random initial point to 

generate 𝐻𝑖
– Generate 𝑆𝑖 = [𝑉𝑖, 𝐻𝑖]

• Repeat K times to generate synthetic training
𝐒 = {𝑆1,1, 𝑆1,2, … , 𝑆1𝐾 , 𝑆2,1, … , 𝑆𝑁,𝐾}

Visible 
Neurons

Hidden 
Neurons



Step 2

• Now unclamp the visible units and let the 
entire network evolve several times to 
generate
𝐒𝑠𝑖𝑚𝑢𝑙 = {𝑆𝑠𝑖𝑚𝑢𝑙,1, 𝑆𝑠𝑖𝑚𝑢𝑙,1=2, … , 𝑆𝑠𝑖𝑚𝑢𝑙,𝑀}

Visible 
Neurons

Hidden 
Neurons



Gradients

• Gradients are computed as before, except that 

the first term is now computed over the 

expanded training data

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=

1

𝑁𝐾
෍

𝑺

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



Overall Training

• Initialize weights

• Run simulations to get clamped and unclamped 
training samples

• Compute gradient and update weights

• Iterate

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=

1

𝑁𝐾
෍

𝑺

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′



Boltzmann machines

• Stochastic extension of Hopfield nets

• Enables storage of many more patterns than 
Hopfield nets

• But also enables computation of probabilities 
of patterns, and completion of pattern



Boltzmann machines: Overall

• Training: Given a set of training patterns
– Which could be repeated to represent relative probabilities

• Initialize weights

• Run simulations to get clamped and unclamped training samples

• Compute gradient and update weights

• Iterate

𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂
𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗

𝑑 log 𝑃 𝐒

𝑑𝑤𝑖𝑗
=

1

𝑁𝐾
෍

𝑺

𝑠𝑖𝑠𝑗 −
1

𝑀
෍

𝑆′∈𝐒𝑠𝑖𝑚𝑢𝑙

𝑠𝑖
′𝑠𝑗
′

𝑧𝑖 =෍

𝑗

𝑤𝑗𝑖𝑠𝑖 + 𝑏𝑖

𝑃(𝑠𝑖 = 1) =
1

1 + 𝑒−𝑧𝑖



Boltzmann machines: Overall

• Running: Pattern completion
– “Anchor” the known visible units

– Let the network evolve

– Sample the unknown visible units
• Choose the most probable value



Applications

• Filling out patterns
• Denoising patterns
• Computing conditional probabilities of patterns
• Classification!!

– How?



Boltzmann machines for classification

• Training patterns:

– [f1, f2, f3, ….  , class]

– Features can have binarized or continuous valued representations

– Classes have “one hot” representation

• Classification:

– Given features,  anchor features,  estimate a posteriori probability 
distribution over classes

• Or choose most likely class



Boltzmann machines: Issues

• Training takes for ever

• Doesn’t really work for large problems

– A small number of training instances over a small 
number of bits



Solution: Restricted Boltzmann 
Machines

• Partition visible and hidden units

– Visible units ONLY talk to hidden units

– Hidden units ONLY talk to visible units

• Restricted Boltzmann machine..

VISIBLE

HIDDEN



Topics missed..

• The Boltzmann machine as a probability 
distribution

• RBMs

• Running RBMs

• Inference over RBMs

• RBMs as feature extractors
– Pre training

• RBMs as generative models

• DBMs

63


