Neural Networks Learning the network: Part 2

11-785, Fall 2017 Lecture 4

- A multi-class classifier can use log(C) output neurons, each predicting either 0 or 1 to encode C classes. For which of the following reasons is this setup is not typical:
	- It is possible for the classifier to produce a code that does not correspond to any class in this scheme.
	- It is an inefficient representation of the classes in terms of the number of output neurons.
	- It implicitly assumes that some classes are more similar to each other than other classes.
	- It is more computationally expensive to compute the gradient in this scheme.
- In the empirical risk minimization framework, the function which measures the error (divergence function) should always be nonnegative (T/F)?

- If the perceptron rule is used to train a multilayer perceptron network, the training computation scales _____ with the number of data points.
- The perceptron learning rule will find the separating hyperplane with the largest margin(T/F)?

- Which of the following is true of the MADALINE learning algorithm (select all that apply):
	- It computes the gradient of the network with respect to all of the weights in the network.
	- It greedily assigns the desired output label to a hidden node in the network during training.
	- It updates the weights for every training example.
	- To update the weights for a neuron the weighted sum of the inputs, rather than the output of the activation function, is compared to the desired label.
- For a single perceptron with a threshold activation function, the ADALINE learning rule ______ (select all that apply)
	- moves the weights in the direction of the negative gradient of the mean squared error.
	- is equivalent to the perceptron learning rule.
	- is equivalent to the generalized delta rule.
	- enables learning in a network with multiple layers.

- Which of the following activation functions will have the largest magnitude gradient as the input to the activation function increases from 0 in the positive direction:
	- Threshold / Sigmoid / Softplus
- If the empirical risk of a neural network is 0 then (select all that apply):
	- The weights of the network will not change for any of the learning algorithms we have discussed.
	- The network has learned the target function.
	- The network will predict the correct class for *all* data points that it has not seen during training.
	- The network will predict the correct class for *all* data points that is has seen during training.

- Which of the following are advantages of using a sigmoid activation function for all nodes in a neural network?
	- The output of each node has a probabilistic interpretation.
	- The gradient of the function computed by the network with respect to the weights of a neuron is smaller when the input to the neuron is near the mean input to the neuron.
	- By scaling the weights, a learning algorithm can change the output of a neuron to be more linear/less linear with respect to the input.
	- The error signal from the output layer can be used to greedily adjust weights throughout the network.
- If we use the generalized delta rule to update the weights of an output neuron, then the sigmoid activation function is less sensitive to outliers than the identity activation function (T/F)?

Design exercise

- Input: Binary coded number
- Output: One-hot vector
- Input units?
- Output units?
- Architecture?
- Activations?

- The MLP can be constructed to represent anything
- But how do we construct it?

Recap: How to learn the function

• By minimizing expected error

$$
\widehat{W} = \underset{W}{\operatorname{argmin}} \int_{X} \operatorname{div} (f(X;W), g(X)) P(X) dX
$$

$$
= \underset{W}{\operatorname{argmin}} E[\operatorname{div} (f(X;W), g(X))]
$$

Recap: Sampling the function

- $g(X)$ is unknown, so sample it
	- Basically, get input-output pairs for a number of samples of input X_i

• Many samples (X_i, d_i) , where $d_i = g(X_i) + noise$

- Good sampling: the samples of X will be drawn from $P(X)$
- Estimate function from the samples $\frac{10}{10}$

The Empirical risk

• The expected error is the average error over the entire input space

$$
E\big[div\big(f(X;W),g(X)\big)\big] = \int_X div\big(f(X;W),g(X)\big)P(X)dX
$$

• The *empirical estimate* of the expected error is the *average* error over the samples

$$
E\big[div\big(f(X;W),g(X)\big)\big] \approx \frac{1}{T} \sum_{i=1}^{T} div\big(f(X_i;W),d_i\big)
$$

Empirical Risk Minimization

- Given a training set of input-output pairs (X_1, d_1) , (X_2, d_2) , ..., (X_T, d_T)
	-
	-

$$
Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)
$$

• Estimate the parameters to minimize the empirical estimate of expected error

$$
\widehat{W} = \operatorname*{argmin}_{W} Err(W)
$$

 $-$ I.e. minimize the *empirical error* over the drawn samples

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Minimize the following function $Err(W) = \frac{1}{T} \sum div(f(X_i;W), d_i)$

w.r.t W

• This is problem of function minimization

– An instance of optimization

• A CRASH COURSE ON FUNCTION **OPTIMIZATION**

Caveat about following slides

- The following slides speak of optimizing a function w.r.t a variable "x"
- This is only mathematical notation. In our actual network optimization problem we would be optimizing w.r.t. network weights "w" • The following slides speak of optimizing a
function w.r.t a variable "x"
• This is only mathematical notation. In our actual
network optimization problem we would be
optimizing w.r.t. network weights "w"
• To reiterate –
- variable that we're optimizing a function over and not the input to a neural network
- Do not get confused!

The problem of optimization

Finding the minimum of a function

• Find the value x at which $f'(x) = 0$

– Solve

$$
\frac{df(x)}{dx} = 0
$$

- The solution is a "turning point"
	- Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?

- Both *maxima* and *minima* have zero derivative
- Both are turning points

Derivatives of a curve

- Both *maxima* and *minima* are turning points
- Both maxima and minima have zero derivative

Derivative of the derivative of the curve • Both *maxima* and *minima* are turning points
• Both *maxima* and *minima* have zero derivative
• The second derivative $f''(x)$ is –ve at maxima and
• tve at minima! $f(x)$ \bigvee \bigvee x F the derivative of the curve $f(x)$ of the derivative of the derivative of the derivative of the curve $f''(x)$

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative
- Both *maxima* and *minima* are t
Both *maxima* and *minima* have
The *second derivative* $f''(x)$ is
+ve at minima!

• Find the value x at which
$$
f'(x) = 0
$$
: Solve

$$
\frac{df(x)}{dx} = 0
$$

- The solution x_{sol} is a turning point
- Check the double derivative at x_{soln} : compute

$$
f''(x_{soln}) = \frac{df'(x_{soln})}{dx}
$$

• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

What about functions of multiple variables?

- The optimum point is still "turning" point
	- Shifting in any direction will increase the value
	- For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

A brief note on derivatives of multivariate functions

The Gradient of a scalar function

• The Gradient $\nabla f(X)$ of a scalar function $f(X)$ of a multi-variate input X is a multiplicative factor that gives us the change in $f(X)$ for tiny variations in X

 $df(X) = \nabla f(X) dX$

Gradients of scalar functions with multi-variate inputs **Gradients of scalar

multi-variate

•** Consider $f(X) = f(x_1, x_2, ..., x_n)$

$$
df(X) = \nabla f(X) \, dX
$$
\n
$$
= \frac{\partial f(X)}{\partial x_1} \, dx_1 + \frac{\partial f(X)}{\partial x_2} \, dx_2 + \dots + \frac{\partial f(X)}{\partial x_n} \, dx_n
$$

25

A well-known vector property

 $\mathbf{u}^T \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$

• The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

 $-$ i.e. when $\theta = 0$

Properties of Gradient

- $df(X) = \nabla f(X) dX$
	- The inner product between $\nabla f(X)$ and dX
- Fixing the length of dX
	- $-$ E.g. $|dX| = 1$
- $df(X)$ is max if dX is aligned with $\mathcal{V}f(X)$
	- $-\angle \nabla f(X), dX = 0$

– The function $f(X)$ increases most rapidly if the input increment dX is perfectly aligned to $\nabla f(X)$ • $df(X)$ is max if dX is aligned with $\nabla f(X)$

– $\angle \nabla f(X)$, $dX = 0$

– The function $f(X)$ increases most rapidly if the input

increment dX is perfectly aligned to $\nabla f(X)$

• The gradient is the direction of fastes

• The gradient is the direction of fastest increase in $f(X)$

Properties of Gradient: 2

• The gradient vector $\mathbb{V}f(X)$ is perpendicular to the level curve

The Hessian

given by the second derivative **n**
 $(z_1, x_2, ..., x_n)$ is

e
 $\cdot \left[\begin{array}{c} \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} \end{array}\right]$

The Hessian
\n• The Hessian of a function
$$
f(x_1, x_2, ..., x_n)
$$
 is
\ngiven by the second derivative
\n
$$
\begin{bmatrix}\n\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2}\n\end{bmatrix}
$$

Returning to direct optimization…

Finding the minimum of a scalar function of a multi-variate input

gradient will be 0

Unconstrained Minimization of function (Multivariate) **Unconstrained Minimization of
function (Multivariate)**
1. Solve for the *X* where the gradient equation equals to
 $\nabla f(Y) = 0$

zero

$\nabla f(X) = 0$

- **1.** Solve for the *X* where the gradient equation equals to
zero
 $\nabla f(X) = 0$
2. Compute the Hessian Matrix $\nabla^2 f(X)$ at the candidate
solution and verify that
- Hessian is positive definite (eigenvalues positive) -> to solution and verify that – $\nabla f(X) = 0$

Compute the Hessian Matrix $\nabla^2 f(X)$ at the candidate

solution and verify that

– Hessian is positive definite (eigenvalues positive) -> to

identify local minima

– Hessian is negative definite (eigenval
	- Hessian is positive definite (eigenvalues positive) -> to identify local minima
	- identify local maxima
Unconstrained Minimization of function (Example)

• Minimize

$$
f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3
$$

• Gradient

$$
\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}^T
$$

Unconstrained Minimization of function (Example)

• Set the gradient to null

$$
\nabla f = 0 \Longrightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
$$

• Solving the 3 equations system with 3 unknowns

$$
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}
$$

Unconstrained Minimization of function (Example) $\begin{array}{ccc} \vert & \gamma & \vert & \vert \end{array}$

- Compute the Hessian matrix $\|\nabla^2 f = \begin{vmatrix} 1 & 2 & -1 \end{vmatrix}$ $\begin{bmatrix}\n 2 & -1 & 0 \\
 -1 & 2 & -1 \\
 0 & -1 & 2\n \end{bmatrix}$ of

2 -1 0
 -1 2 -1

0 -1 2

an matrix $\begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

$$
\lambda_1 = 3.414, \lambda_2 = 0.586, \lambda_3 = 2
$$

• All the eigenvalues are positives => the Hessian matrix is positive definite

• The point
$$
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}
$$
 is a minimum

ù

t e s

û

- Often it is not possible to simply solve $\nabla f(X) = 0$
	- The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
	- Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

- Iterative solutions
	- Start from an initial guess X_0 for the optimal X
	- Update the guess towards a (hopefully) "better" value of $f(X)$
	- Stop when $f(X)$ no longer decreases
- Problems:
	- Which direction to step in
	- How big must the steps be

- Iterative solution:
	- Start at some point
	- Find direction in which to shift this point to decrease error
		- This can be found from the derivative of the function
			- $-$ A positive derivative \rightarrow moving left decreases error
			- $-$ A negative derivative \rightarrow moving right decreases error
	- Shift point in this direction

- Iterative solution: Trivial algorithm
	- Initialize x^0
	- While $f'(x^k) \neq 0$
		- If $sign\big(f'(x^k)\big)$ is positive: $- x^{k+1} = x^k - step$
		- Else

$$
-x^{k+1} = x^k + step
$$

– What must step be to ensure we actually get to the optimum?

- Iterative solution: Trivial algorithm
	- Initialize x^0

$$
-\text{While }f'(x^k)\neq 0
$$

•
$$
x^{k+1} = x^k - sign(f'(x^k))
$$
. *step*

– Identical to previous algorithm

- Iterative solution: Trivial algorithm
	- Initialize x_0

$$
- \text{While } f'(x^k) \neq 0
$$

$$
\cdot x^{k+1} = x^k - \eta^k f'(x^k)
$$

$$
- \eta^k \text{ is the "step size"}
$$

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function f iteratively
	- To find a maximum move in the direction of the gradient T
	- To find a minimum move exactly opposite the direction of the gradient ve exactly opposite the direction of $-\eta^k\nabla f(x^k)^T$
sing step size η^k

$$
x^{k+1} = x^k - \eta^k \nabla f(x^k)^T
$$

- Many solutions to choosing step size η^k
	- Later lecture

1. Fixed step size

- Fixed step size
	- Use fixed value for η^k

What is the optimal step size?

- Step size is critical for fast optimization
- Will revisit this topic later
- For now, simply assume a potentiallyiteration-dependent step size

Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied

Overall Gradient Descent Algorithm

• Initialize:

$$
-x^0
$$

$$
-k=0
$$

• While
$$
|f(x^{k+1}) - f(x^k)| > \varepsilon
$$

-x^{k+1} = x^k - $\eta^k \nabla f(x^k)$ ^T
-k = k + 1

• Returning to our problem..

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Minimize the following function $Err(W) = \frac{1}{T} \sum div(f(X_i;W), d_i)$

w.r.t W

• This is problem of function minimization

– An instance of optimization

Preliminaries

• Before we proceed: the problem setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- What are these input-output pairs?

$$
Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)
$$

w.r.t W

• This is problem of function minimization

– An instance of optimization

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- What are these input-output pairs?

$$
Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)
$$

w.r.t W

- i IS 1 what are its
- This is problem of functio <mark>parameters?</mark>

– An instance of optimization

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- What are these input-output pairs?

$$
Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)
$$

What is the
divergence div()? What are its
average value, 14/2

- This is problem of functio parameters W?
	- An instance of optimization

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Minimize the following function

$$
Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)
$$

w.r.t W
What is f() and what are its

• This is problem of functio <mark>parameters W?</mark>

– An instance of optimization

What is f()? Typical network

- Multi-layer perceptron
- A directed network with a set of inputs and outputs
	- No loops
- Generic terminology
	- We will refer to the inputs as the input units
		-
	-
	-

The individual neurons

- Individual neurons operate on a set of inputs and produce a single output
	- Standard setup: A differentiable activation function applied the sum of weighted inputs and a bias

$$
y = f\left(\sum_i w_i x_i + b\right)
$$

More generally: any differentiable function

$$
y = f(x_1, x_2, ..., x_N; W)
$$

The individual neurons

- Individual neurons operate on a set of inputs and produce a single output
	- Standard setup: A differentiable activation function applied the sum of weighted inputs and a bias We will assume this

$$
y = f\left(\sum_i w_i x_i + b\right)
$$

More generally: any differentiable function $y = f(x_1, x_2, ..., x_N; W)$ wi and blue b

 $\mathbf{x}_i + b$ \leftarrow specified unless otherwise

> Parameters are weights w_i and bias b

Activations and their derivatives

• Some popular activation functions and their $derivatives$

Vector Activations

• We can also have neurons that have multiple coupled outputs

$$
[y_1, y_2, ..., y_l] = f(x_1, x_2, ..., x_k; W)
$$

- Function $f()$ operates on set of inputs to produce set of outputs
- Modifying the parameters W will affect all outputs

Vector activation example: Softmax

• Example: Softmax vector activation

$$
z_i = \sum_j w_{ji} x_j + b_i
$$

$$
y = \frac{exp(z_i)}{\sum_j exp(z_j)}
$$

Parameters are weights w_{ii} and bias b_i

Multiplicative combination: Can be viewed as a case of vector activations ultiplicative combination: Ca
wed as a case of vector activa

• A layer of multiplicative combination is a special case of vector activation

Typical network

- We assume a "layered" network for simplicity
	- We will refer to the inputs as the *input layer*
		-
	-
	-

Typical network

• In a layered network, each layer of perceptrons can be viewed as a single vector
activation activation

- The input layer is the 0th layer
- We will represent the output of the i-th perceptron of the k^{th} layer as $y_i^{(k)}$
	- $\,$ Input to network: $y^{(0)}_i = x_i$ \mathbf{i}
	- $-$ Output of network: $y_i = y_i^{(N)}$
- The input layer is the 0th layer
We will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$
- **Input to network:** $y_i^{(0)} = x_i$
We will represent the weight of the connection between the i-th unit the k-1th layer and the jth unit of the k-th layer as $w_{ij}^{(k)}$ For the input layer is the 0th layer

Ve will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$

— **Input to network:** $y_i^{(0)} = x_i$
 Coutput of network: $y_i = y_i^{(N)}$

Ve will represent the weigh
	- The bias to the jth unit of the k-th layer is $b_j^{(k)}$

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- What are these input-output pairs?

$$
Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)
$$

w.r.t W

• This is problem of function minimization

– An instance of optimization

Vector notation

- Given a training set of input-output pairs (X_1, d_1) , (X_2, d_2) , ..., (X_T, d_T)
- $X_n = [x_{n1}, x_{n2}, ..., x_{nD}]$ is the nth input vector
- $d_n = [d_{n1}, d_{n2}, ..., d_{nL}]$ is the nth desired output
- $Y_n = [y_{n1}, y_{n2}, ..., y_{nL}]$ is the nth vector of *actual* outputs of the network
- We will sometimes drop the first subscript when referring to a specific instance

Representing the input

- Vectors of numbers
	- (or may even be just a scalar, if input layer is of size 1)
	- E.g. vector of pixel values
	- E.g. vector of speech features
	- E.g. real-valued vector representing text
		- We will see how this happens later in the course
	- Other real valued vectors

Representing the output

- If the desired *output* is real-valued, no special tricks are necessary
	- Scalar Output : single output neuron
		- \bullet d = scalar (real value)
	- Vector Output : as many output neurons as the dimension of the desired output
		- $d = [d_1 d_2 ... d_l]$ (vector of real values)
Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
	- -1 = Yes it's a cat
	- -0 = No it's not a cat.

Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
	- Viewed as the *probability* $P(Y = 1 | X)$ of class value 1
		- Indicating the fact that for actual data, in general an feature value X may occur for both classes, but with different probabilities
		- Is differentiable $\frac{74}{74}$

Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
	- $1 = Yes$ it's a cat
	- $-$ 0 = No it's not a cat.
- Sometimes represented by two independent outputs, one representing the desired output, the other representing the negation of the desired output
	- Yes: \rightarrow [1 0]
	- No: \rightarrow [0 1]

Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector:

[cat dog camel hat flower]^T

- For inputs of each of the five classes the desired output is:
	- cat: $[1 0 0 0 0]$ ^T
	- dog: [0 1 0 0 0] ^T
	- camel: [0 0 1 0 0] ^T
		- hat: $[0 0 0 1 0]$ ^T
	- flower: $[0 0 0 0 1]$ ^T
- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks

- For a multi-class classifier with N classes, the one-hot representation will have N binary outputs
	- An N-dimensional binary vector
- The neural network's output too must ideally be binary (N-1 zeros and a single 1 in the right place)
- More realistically, it will be a probability vector
	- N probability values that sum to 1.

Multi-class classification: Output

• Softmax *vector* activation is often used at the output of multi-class classifier nets

$$
z_i = \sum_j w_{ji}^{(n)} y_j^{(n-1)}
$$

$$
y_i = \frac{exp(z_i)}{\sum_j exp(z_j)}
$$

• This can be viewed as the probability $y_i = P(class = i | X)$

Typical Problem Statement

- We are given a number of "training" data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
	- Binary recognition: Is this a "2" or not
	- Multi-class recognition: Which digit is this? Is this a digit in the first place?

- Given, many positive and negative examples (training data),
	- learn all weights such that the network does the desired job

Typical Problem statement: multiclass classification

- Given, many positive and negative examples (training data),
	- learn all weights such that the network does the desired job

Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Minimize the following function

– An instance of optimization

Examples of divergence functions

• For real-valued output vectors, the (scaled) L_2 divergence is popular

$$
Div(Y, d) = \frac{1}{2} ||Y - d||^2 = \frac{1}{2} \sum_{i} (y_i - d_i)^2
$$

- Squared Euclidean distance between true and desired output
- Note: this is differentiable

$$
\frac{dDiv(Y, d)}{dy_i} = (y_i - d_i)
$$

$$
\nabla_Y Div(Y, d) = [y_1 - d_1, y_2 - d_2, \dots]
$$

For binary classifier

• For binary classifier with scalar output, $Y \in (0,1)$, d is $0/1$, the cross entropy between the probability distribution $[Y, 1 - Y]$ and the ideal output probability $[d, 1-d]$ is popular $\in (0,1)$, *d* is 0/1, the cross entropy
 $[-Y]$ and the ideal output probability
 $\cdot (1-d)\log(1-Y)$

if $d = 1$
 $\frac{1}{2}$ if $d = 0$ t, Y ∈ (0,1), d is 0/1, the cross entropy

[Y, 1 − Y] and the ideal output probability
 $gY - (1 - d)\log(1 - Y)$
 $-\frac{1}{Y}$ if d = 1
 $\frac{1}{1 - Y}$ if d = 0

84 = (0,1), *d* is 0/1, the cross entropy
 $-Y$] and the ideal output probability

(1 – *d*)log(1 – *Y*)

if $d = 1$

if $d = 0$

$$
Div(Y, d) = -dlogY - (1 - d)log(1 - Y)
$$

-
- Derivative

$$
\frac{dDiv(Y, d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1 - Y} & \text{if } d = 0 \end{cases}
$$

For multi-class classification

-
-
-

$$
Div(Y, d) = -\sum_{i} d_i \log y_i
$$

• Derivative

$$
\frac{dDiv(Y, d)}{dY_i} = \begin{cases}\n-\frac{1}{y_c} & \text{for the } c - \text{th component} \\
0 & \text{for remaining component}\n\end{cases}
$$
\n
$$
\nabla_Y Div(Y, d) = \begin{bmatrix}\n0 & 0 & \dots & -1 \\
0 & 0 & \dots & y_c\n\end{bmatrix}
$$

85

Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \ldots, (X_T, d_T)$
- The error on the ith instance is $div(Y_i, d_i)$
- The total error

$$
Err = \frac{1}{T} \sum_{i} div(Y_i, d_i)
$$

• Minimize Err w.r.t $\{w_{ij}^{(k)}, b_j^{(k)}\}$

Recap: Gradient Descent Algorithm

- In order to minimize any function $f(x)$ w.r.t. x
- Initialize:

$$
-x^0
$$

$$
-k=0
$$

$$
-k = 0
$$

\n• While $|f(x^{k+1}) - f(x^k)| > \varepsilon$
\n
$$
-x^{k+1} = x^k - \eta^k \nabla f(x^k)^T
$$

\n
$$
-k = k+1
$$

\n^{11-755/18-797}

Recap: Gradient Descent Algorithm

- In order to minimize any function $f(x)$ w.r.t. x
- Initialize:

$$
-x^0
$$

$$
-k=0
$$

• While $|f(x^{k+1}) - f(x^k)| > \varepsilon$ $\left| \begin{array}{c} f\left(\chi^{k}\right)\end{array}\right|>\varepsilon$

11. Explicitly stating it by component

11-755/18-797

 $-$ For every component i

•
$$
x_i^{k+1} = x_i^k - \eta^k \frac{df}{dx_i}
$$
 [Explicitly s]

Explicitly stating it by component

 $-k = k + 1$

Training Neural Nets through Gradient Descent

Total training error:

$$
Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)
$$

- Gradient descent algorithm:
- Initialize all weights and biases ${w_{ij}^{(k)}}$

 (k) $\sum_{n \text{submodule}}$ Assuming the bias is also represented as a weight

- Using the extended notation: the bias is also a weight
- Do:
	- For every layer k for all i, j , update:

•
$$
w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dErr}{dw_{i,j}^{(k)}}
$$

• Until Err has converged

Training Neural Nets through Gradient Descent

Total training error:

$$
Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)
$$

- Gradient descent algorithm:
- Initialize all weights ${w_{ij}^{(k)}}$
- Do:

 $-$ For every layer k for all i, j, update:

•
$$
w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dErr}{dw_{i,j}^{(k)}}
$$

• Until Err has converged

The derivative

Total training error:

$$
Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)
$$

• Computing the derivative

Training by gradient descent

- Initialize all weights $\left\{w_{ij}^{(k)}\right\}$
- Do:

$$
- \ \ \text{For all } i, j, k, \ \text{initialize } \frac{dEr}{dw_{i,j}^{(k)}} = 0
$$

- $-$ For all $t = 1:T$
	- For every layer k for all i, j :

- Compute
$$
\frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}
$$

\n- Compute $\frac{dErr}{dw_{i,j}^{(k)}} + \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$

- For every layer k for all i, j :

$$
w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dErr}{dw_{i,j}^{(k)}}
$$

• Until Err has converged

The derivative

• So we must first figure out how to compute the derivative of divergences of individual training inputs

Calculus Refresher: Basic rules of calculus

For any differentiable function $y = f(x)$ with derivative $dy =$ $dx =$ the following must hold for sufficiently small Δx $\begin{tabular}{|c|c|} \hline \quad \bullet \end{tabular}$

For any differentiable function $y = f(x_1, x_2, ..., x_M)$ with partial derivatives ∂y ∂y ∂y ∂y ∂y ∂y ∂x_1 ' ∂x_2 ' '''' ∂x_M ∂x_2 '''' ∂x_M ∂x_M the following must hold for sufficiently small $\Delta x_1, \Delta x_2, ..., \Delta x_M$ $\Delta y \approx \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + \dots + \frac{\partial y}{\partial x_M} \Delta x_M$

Calculus Refresher: Chain rule

For any nested function $y = f(g(x))$

$$
\frac{dy}{dx} = \frac{\partial y}{\partial g(x)} \frac{dg(x)}{dx}
$$

 $\frac{dy}{dx} = \frac{\partial y}{\partial g(x)} \frac{dg(x)}{dx}$
Check - we can confirm that : $\Delta y = \frac{dy}{dx} \Delta x$
 $z = g(x) \implies \Delta z = \frac{dg(x)}{dx} \Delta x$ $y = f(z)$ \implies $\Delta y = \frac{dy}{dz} \Delta z = \frac{dy}{dz} \frac{dg(x)}{dx} \Delta x$

Calculus Refresher: Distributed Chain rule

$$
y = f(g_1(x), g_1(x), \dots, g_M(x))
$$

$$
\frac{dy}{dx} = \frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx}
$$

Check:
$$
\Delta y = \frac{dy}{dx} \Delta x
$$

$$
\Delta y = \frac{\partial y}{\partial g_1(x)} \Delta g_1(x) + \frac{\partial y}{\partial g_2(x)} \Delta g_2(x) + \dots + \frac{\partial y}{\partial g_M(x)} \Delta g_M(x)
$$

$$
\Delta y = \frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} \Delta x + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} \Delta x + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx} \Delta x
$$

$$
\Delta y = \left(\frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx}\right) \Delta x
$$

Distributed Chain Rule: Influence Diagram

• x affects y through each of $g_1...g_M$

Distributed Chain Rule: Influence Diagram

• Small perturbations in x cause small perturbations in each of $g_1 \dots g_M$, each of which individually additively perturbs y

Returning to our problem

• How to compute $\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$

A first closer look at the network

- Showing a tiny 2-input network for illustration
	- Actual network would have many more neurons and inputs

A first closer look at the network

- Showing a tiny 2-input network for illustration
	- Actual network would have many more neurons and inputs
- Explicitly separating the weighted sum of inputs from the activation

A first closer look at the network

- Showing a tiny 2-input network for illustration
	- Actual network would have many more neurons and inputs
- Expanded with all weights and activations shown
- The overall function is differentiable w.r.t every weight, bias and input

Computing the derivative for a single input

- Aim: compute derivative of $Div(Y, d)$ w.r.t. each of the weights
- But first, lets label all our variables and activation functions

Computing the derivative for a single input

Computing the gradient

• What is: $\frac{dDiv(Y,d)}{dw_{i,i}^{(k)}}$

– Derive on board?

Computing the gradient

\n- What is:
$$
\frac{dDiv(Y, d)}{d w_{i,j}^{(k)}}
$$
\n

- Derive on board?
- Note: computation of the derivative requires intermediate and final output values of the network in response to the input

• The network again

Gradients: Local Computation

- Redrawn
- Separately label input and output of each node
Forward Computation

Assuming
$$
w_{0j}^{(1)} = b_j^{(1)}
$$
 and $x_0 = 1$

Forward Computation

Forward Computation

Forward "Pass"

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1...D]$
- Set:

$$
- D_0 = D, \text{ is the width of the 0th (input) layer}
$$

$$
- y_j^{(0)} = x_j, \ j = 1 \dots D; \qquad y_0^{(k=1 \dots N)} = x_0 = 1
$$

\n- For layer
$$
k = 1 \dots N
$$
\n- For $j = 1 \dots D_k$ $\left| \mathbf{D}_k \right|$ is the size of the kth layer
\n- $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$
\n- $y_j^{(k)} = f_k(z_j^{(k)})$
\n

• Output:

$$
- Y = y_j^{(N)}, j = 1..D_N
$$

$$
\frac{\partial Div(Y,d)}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$

$$
\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial y_i} = f'_N\left(z_i^{(N)}\right) \frac{\partial Div}{\partial y_i^{(N)}}
$$

Gradients: Backward Computation $V^{(N-1)}$ $Z^{(k-1)}$ $Y^{(k-1)}$ $Z^{(k)}$ $\frac{f_k}{\sqrt{k}}$ $Y^{(k)}$ $Z^{(k)}$ $\int k$ $Y^{(k)}$ $Z^{(N-1)}$ $\int N=1$ $Y^{(N-1)}$ $Z^{(N)}$ $Y^{(N)}$ fN Div(Y,d) Div(Y,d) f_N and f_N $\partial Div(Y,d)$ ∂Div (N) i $\partial y_i^{(1)}$ $i \qquad \qquad$ $\begin{array}{|c|c|c|}\n\hline\n1\n\end{array}$ $\begin{array}{|c|c|}\n\hline\n1\n\end{array}$ (N) $\big\{\begin{array}{c} \nu \nu \nu \end{array}\big\}$ $\frac{1}{2} \left(\frac{\partial}{\partial \theta} (N) \right)$ $\overline{(N)}$ – J_N $\left(\frac{Z_i}{i}\right)$ $\overline{\frac{\partial}{\partial x_i(N)}}$ $i \int_{\Omega_{\infty}}(N)$ (N) \boldsymbol{i} and the set of \boldsymbol{j} $i \mid$ (k) and (k) \mathcal{O} $\mathcal{$ (k) \overline{OD} \overline{U} (k) \angle $\frac{W_{ij}}{2}$ $_{2}$ (k) $(k-1)$ \angle $a_{2}(k-1)$ $(k-1)$ $_{2a}(k)$ \sim μ ^{*w*}ij (k) and (k)

j $\overline{u_j}$ and $\overline{u_j}$

 i j $^{\circ}$.

 i ^{02}j

 $j^{U}y_i^{UZ_j}$ j^{UZ_j}

Backward Pass

• Output layer (N) :

$$
- \text{ For } i = 1 \dots D_N
$$

•
$$
\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$

•
$$
\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}
$$

• For layer $k = N - 1$ downto 0

$$
- \text{ For } i = 1 \dots D_k
$$

•
$$
\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}
$$

•
$$
\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}
$$

•
$$
\frac{\partial D}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}} \text{ for } j = 1 ... D_{k-1}
$$

Backward Pass

• Output layer (N) :

$$
- \text{ For } i = 1 \dots D_N
$$

•
$$
\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$

 $-$ For $i = 1 ... D_N$ propagated "backwards" through Called "Backpropagation" because the derivative of the error is the network

•
$$
\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}
$$

Very analogous to the forward pass:
 u to 0

For layer
$$
k = N - 1
$$
 down

For
$$
i = 1...D_k
$$

•
$$
\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}
$$
 Backwar

$$
\begin{array}{c}\n\text{Backward weighted combination} \\
\text{of next layer}\n\end{array}
$$

 $\partial z_j^{(k+1)}$ Backward equivalent of activation

•
$$
\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Di}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}
$$

•
$$
\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}} \text{ for } j = 1 ... D_{k-1}
$$

For comparison: the forward pass again

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1...D]$
- Set:

$$
-D_0 = D
$$
, is the width of the 0th (input) layer

$$
-y_j^{(0)} = x_j, \ j = 1 \dots D; \qquad y_0^{(k=1 \dots N)} = x_0 = 1
$$

- For layer $-$ For $j = 1 ... D_k$ • $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k)}$ $(k) = \nabla N_k$... (k) (l) $i,j \, Yi$ (k) ₂($k-1$) \mathbf{i} N_{k} (k) $(n-k)$ $i=0$ W , j Y , i • $y_j^{(k)} = f_k(z_j^{(k)})$ (k) \qquad $f\left(x^{(k)}\right)$ $k\left(\frac{Z_j}{Z}\right)$ (k)
- Output:

$$
-Y=y_j^{(N)}, j=1..D_N
$$

- Have assumed so far that
	- computation of other neurons in the same (or previous) layers
	-
	-
	-
- Not discussed in class, but explained in slides
	- Will appear in quiz. Please read the slides 127

Special Case 1. Vector activations

• Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations

 $Z^{(k)}$ $V^{(k)}$ $\mathsf{Y}^{(k-1)}$ $\mathsf{Z}^{(k)}$ $\mathsf{Z}^{(k)}$ $\mathsf{Z}^{(k)}$ $\int_{k}^{(k-1)} z^{(k)}$ $Y^{(k)}$

Scalar activation: Modifying a z_i only changes corresponding y_i

 $y_i^{(k)} = f(z_i^{(k)})$

Vector activation: Modifying a z_i potentially changes all, $y_1 ... y_M$

$$
\begin{bmatrix} y_1^{(k)} \\ y_2^{(k)} \\ \vdots \\ y_M^{(k)} \end{bmatrix} = f \begin{pmatrix} z_1^{(k)} \\ z_2^{(k)} \\ \vdots \\ z_D^{(k)} \end{pmatrix}_{129}
$$

"Influence" diagram

Scalar activation: Each z_i influences one y_i

Vector activation: Each z_i influences all, $y_1 ... y_M$

The number of outputs

- Note: The number of outputs $(y^{(k)})$ need not be the same as the number of inputs $(z^{(k)})$
	- May be more or fewer

Scalar Activation: Derivative rule

• In the case of *scalar* activation functions, the derivative of the error w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t. to any input is a sum of partial derivatives

– Regardless of the number of outputs $y_j^{(k)}$

Example Vector Activation: Softmax

- For future reference
-

Vector Activations

- In reality the vector combinations can be anything
	- E.g. linear combinations, polynomials, logistic (softmax), etc.

Special Case 2: Multiplicative networks

- Some types of networks have *multiplicative* combination – In contrast to the additive combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backpropagation: Multiplicative **Networks**

• Some types of networks have *multiplicative* combination

**Multiplicative combintion as a case of
vector activations** vector activations

• A layer of multiplicative combination is a special case of vector activation

Multiplicative combintion: Can be viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation 139

Backward Pass for softmax output layer

- Output layer (N) :
	- For $i = 1 ... D_N$

•
$$
\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$

- $\frac{\partial Div}{\partial (N)} = \sum_{i} \frac{\partial D}{\partial (N)} \frac{(Y,d)}{(N)} y_i^{(N)}$ $\partial z_i^{(N)}$ - Δj $\partial y_j^{(N)}$ y ∂D (Y,d) (N) $(S$ (N) $\partial y_j^{(N)}$ y_i $\left(\begin{matrix} v_{ij} & y_j \end{matrix}\right)$ $(N)\left(\begin{array}{cc} c & c \end{array} \right)$ $ij - y_j$) (N) $j_{\overline{a_{2i}(N)}} y_i \quad \overline{u_{ij}}$
- For layer $k = N 1$ downto 0

$$
- \text{ For } i = 1 \dots D_k
$$

•
$$
\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}
$$

\n•
$$
\frac{\partial Div}{\partial z_i^{(k)}} = f'_k \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}
$$

\n•
$$
\frac{\partial Di}{\partial w_{ij}^{(k+1)}} = y_j^{(k)} \frac{\partial Di}{\partial z_i^{(k+1)}}
$$
 for $j = 1...D_{k-1}$

activations $x_1 \longrightarrow w_1$ w_1

- Activation functions are sometimes not actually differentiable
	- E.g. The RELU (Rectified Linear Unit)
		- And its variants: leaky RELU, randomized leaky RELU
	- E.g. The "max" function
- Must use "subgradients" where available
	- Or "secants" ¹⁴²

The subgradient

- (0)) $\leq v$ ⁻ $(x x_0)$ $T(\gamma - \gamma)$ $0²$ • A subgradient of a function $f(x)$ at a point x_0 is any vector v such that
 $(f(x) - f(x_0)) \ge v^T(x - x_0)$

• Guaranteed to exist only for convex functions

– "bowl" shaped functions

– For non-convex functions, the equival • A subgradient of a function $f(x)$ at a point x_0 is any vector v such that
 $(f(x) - f(x_0)) \ge v^T(x - x_0)$

• Guaranteed to exist only for convex functions

– "bowl" shaped functions

– For non-convex functions, the equival
- Guaranteed to exist only for convex functions
	- "bowl" shaped functions
	- For non-convex functions, the equivalent concept is a "quasi-secant"
- increase
- -

- Can use any subgradient
	- At the differentiable points on the curve, this is the same as the gradient
	- Typically, will use the equation given

- Vector equivalent of subgradient
	- 1 w.r.t. the largest incoming input
		- Incremental changes in this input will change the output
	- 0 for the rest
		- Incremental changes to these inputs will not change the output $\frac{1}{145}$

- Multiple outputs, each selecting the max of a different subset of inputs
	- Will be seen in convolutional networks
- Gradient for any output:
	- 1 for the specific component that is maximum in corresponding input subset
	- $-$ 0 otherwise 146

Backward Pass: Recap

• Output layer (N) :

$$
- \text{ For } i = 1 ... D_N
$$

•
$$
\frac{\partial Div}{\partial Y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$

•
$$
\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Di}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}
$$
 OR
$$
\sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}
$$
 (vector activation)

• For layer $k = N - 1$ downto 0

$$
- \text{ For } i = 1 \dots D_k
$$

$$
\begin{aligned}\n\bullet \quad & \frac{\partial D i}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial D i v}{\partial z_j^{(k+1)}} \\
\bullet \quad & \frac{\partial D i v}{\partial z_i^{(k)}} = \frac{\partial D i v}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}} \quad OR \quad \sum_j \frac{\partial D i v}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} \quad \text{(vector activation)} \\
\bullet \quad & \frac{\partial D i v}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial D i v}{\partial z_i^{(k+1)}} \quad \text{for } j = 1 \dots D_{k-1} \\
\end{aligned}
$$

Overall Approach

- For each data instance
	- Forward pass: Pass instance forward through the net. Store all intermediate outputs of all computation
	- Backward pass: Sweep backward through the net, iteratively compute all derivatives w.r.t weights
- Actual Error is the sum of the error over all training instances

$$
Err = \frac{1}{|\{X\}|} \sum_{X} Div(Y(X), d(X))
$$

• Actual gradient is the sum or average of the derivatives computed for each training instance

$$
\nabla_{W} \mathbf{Err} = \frac{1}{|\{X\}|} \sum_{X} \nabla_{W} Div(Y(X), d(X)) \quad W \leftarrow W - \eta \nabla_{W} \mathbf{Err}
$$

Training by BackProp

- Initialize all weights $(W^{(1)}, W^{(2)}, ..., W^{(K)})$
- Do:

Initialize
$$
Err = 0
$$
; For all *i*, *j*, *k*, initialize $\frac{dErr}{dw_{i,j}^{(k)}} = 0$

- For all $t = 1$: T (Loop over training instances)
	- Forward pass: Compute
		- $-$ Output Y_t
		- $Err += Div(Y_t, d_t)$) and the contract of \mathcal{L}
	- Backward pass: For all i, j, k :

- Compute
$$
\frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}
$$

\n- Compute $\frac{dErr}{dw_{i,j}^{(k)}} + \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$

 $-$ For all i, j, k, update:

$$
w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dErr}{dw_{i,j}^{(k)}}
$$

• Until Err has converged 149

Vector formulation

- For layered networks it is generally simpler to think of the process in terms of vector operations
	- Simpler arithmetic
	- Fast matrix libraries make operations *much* faster
- We can restate the entire process in vector terms
	- On slides, please read
	- This is what is *actually* used in any real system
	- Will appear in quiz

Vector formulation

- Arrange all inputs to the network in a vector x
- Arrange the *inputs* to neurons of the kth layer as a vector z_k
- Arrange the outputs of neurons in the kth layer as a vector y_k
- Arrange the weights to any layer as a matrix W_k
	- Similarly with biases

15 1

Vector formulation

• The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

$$
\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \qquad \qquad \mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k) \qquad \qquad \text{as} \qquad \mathbf{y}_k = \mathbf{y}_k \mathbf{y}_{k-1} + \mathbf{b}_k \qquad \qquad \mathbf{y}_k = \mathbf{y}_k \mathbf{y}_{
$$

The forward pass: Evaluating the network

-
-
-

 \mathbf{X}

$$
\mathbf{y}_1 = f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \tag{155}
$$

$$
\mathbf{y}_1 = f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) \tag{156}
$$

$$
y_2 = f_2(W_2 f_1(W_1 x + b_1) + b_2)
$$

$$
y_2 = f_2(W_2 f_1(W_1 x + b_1) + b_2)
$$

The Complete computation

159 $Y = f_N(\mathbf{W}_N f_{N-1}(\ldots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \ldots) + \mathbf{b}_N)$ ₁₅₉

Forward pass:

Initialize $y_0 = x$

For k = 1 to N:
$$
\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \quad \mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)
$$

\nOutput $\mathbf{Y} = \mathbf{y}_N$

The Forward Pass

- Set $y_0 = x$
- For layer $k = 1$ to N:
	- Recursion:

$$
\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k
$$

$$
\mathbf{y}_k = \boldsymbol{f}_k(\mathbf{z}_k)
$$

• Output:

$$
\mathbf{Y}=\mathbf{y}_N
$$

The network is a nested function

 $Y = f_N(W_N f_{N-1}(\ldots f_2(W_2 f_1(W_1 X + \mathbf{b}_1) + \mathbf{b}_2) \ldots) + \mathbf{b}_N)$

The error for any x is also a nested function

 $Div(Y, d) = Div(f_N(\mathbf{W}_N f_{N-1}(\ldots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \ldots) + \mathbf{b}_N), d)$

Calculus recap 2: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a Jacobian
- It is the matrix of partial derivatives given below

$$
\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f \left(\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \right)
$$

Using vector notation

$$
\mathbf{y} = f(\mathbf{z})
$$

$$
J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \cdots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \cdots & \frac{\partial y_2}{\partial z_D} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \cdots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}
$$

Check:
$$
\Delta y = J_y(z) \Delta z
$$

Jacobians can describe the derivatives of neural activations w.r.t their input bians can describe the den

eural activations w.r.t the

$$
J_{y}(\mathbf{z}) = \begin{bmatrix} \frac{dy_{1}}{dz_{1}} & 0 & \cdots & 0 \\ 0 & \frac{dy_{2}}{dz_{2}} & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & \frac{dy_{D}}{dz_{D}} \end{bmatrix}
$$

- For Scalar activations
	- Number of outputs is identical to the number of inputs
- Jacobian is a diagonal matrix
	- Diagonal entries are individual derivatives of outputs w.r.t inputs
	- Not showing the superscript " (k) " in equations for brevity 164

bians can describe the den

eural activations w.r.t the Jacobians can describe the derivatives of neural activations w.r.t their input

$$
y_i = f(z_i)
$$

$$
J_{y}(\mathbf{z}) = \begin{bmatrix} f'(y_{1}) & 0 & \cdots & 0 \\ 0 & f'(y_{2}) & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & f'(y_{M}) \end{bmatrix}
$$

• For scalar activations (shorthand notation):

- Jacobian is a diagonal matrix
- Diagonal entries are individual derivatives of outputs w.r.t inputs

For Vector activations

- Jacobian is a full matrix
	- Entries are partial derivatives of individual outputs w.r.t individual inputs

Special case: Affine functions

- Matrix **W** and bias **b** operating on vector \bf{y} to produce vector z
- The Jacobian of z w.r.t y is simply the matrix W

Vector derivatives: Chain rule

- We can define a chain rule for Jacobians
- For vector functions of vector inputs:

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule

- The chain rule can combine Jacobians and Gradients
- For scalar functions of vector inputs $(g()$ is vector):

Note the order: The derivative of the outer function comes first

169

Special Case

• Scalar functions of Affine functions

of a product of tensor terms that occur in the right order

In the following slides we will also be using the notation $\nabla_{\mathbf{z}} \mathbf{Y}$ to represent the Jacobian $J_Y(z)$ to explicitly illustrate the chain rule

In general $V_{\bf a} {\bf b}$ represents a derivative of ${\bf b}$ w.r.t. ${\bf a}$ and could be a gradient (for scalar ${\bf b}$) Or a Jacobian (for vector **b**)

First compute the gradient of the divergence w.r.t. Y. The actual gradient depends on the divergence function.

$$
\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}}Div. \nabla_{\mathbf{z}_N} \mathbf{Y}
$$

 $\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div J_{\mathbf{Y}}(\mathbf{z}_N)$

matrix for scalar activations

$$
\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}}Div \mathbf{W}_{N-1}
$$

 $\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$

 $\nabla_{\mathbf{W}_1} Div = \mathbf{x} \nabla_{\mathbf{z}_1} Div$ $\overline{V_{\mathbf{b}_1}Div} = \overline{V_{\mathbf{z}_1}Div}$

In some problems we will also want to compute the derivative w.r.t. the input

The Backward Pass **•** Set $y_N = Y$, $y_0 = x$

• Initialize: Compute $\nabla_{y_N} Div = \nabla_Y Div$

• For layer k = N downto 1: – Compute $J_{y_k}(\mathbf{z}_k)$

• Will require intermediate values computed in the forward pass

- Set $y_N = Y$, $y_0 = x$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_{\mathbf{y}} Div$
- - - Will require intermediate values computed in the forward pass
	- Recursion:

$$
\nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div \, J_{\mathbf{y}_k}(\mathbf{z}_k)
$$

$$
\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_k} Div \, \mathbf{W}_k
$$

– Gradient computation:

$$
\nabla_{\mathbf{W}_k} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_k} Div
$$

$$
\nabla_{\mathbf{b}_k} Div = \nabla_{\mathbf{z}_k} Div
$$

The Backward Pass **•** Set $y_N = Y$, $y_0 = x$

• Initialize: Compute $\nabla_{y_N} Div = \nabla_Y Div$

• For layer k = N downto 1: – Compute $J_{y_k}(\mathbf{z}_k)$

• Will require intermediate values computed in the forward pass

- Set $y_N = Y$, $y_0 = x$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_{\mathbf{y}} Div$
- - - Will require intermediate values computed in the forward pass
	- Recursion:

Note analogy to forward pass

$$
\nabla_{\mathbf{z}_k} Div = \nabla_{\mathbf{y}_k} Div \int_{\mathbf{y}_k} (\mathbf{z}_k)
$$

$$
\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_k} Div \mathbf{W}_k
$$

– Gradient computation:

$$
\nabla_{\mathbf{W}_k} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_k} Div
$$

$$
\nabla_{\mathbf{b}_k} Div = \nabla_{\mathbf{z}_k} Div
$$

For comparison: The Forward Pass

- Set $y_0 = x$
- For layer $k = 1$ to N:
	- Recursion:

$$
\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k
$$

$$
\mathbf{y}_k = \boldsymbol{f}_k(\mathbf{z}_k)
$$

• Output:

$$
\mathbf{Y}=\mathbf{y}_N
$$

Neural network training algorithm

- Initialize all weights and biases $(\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, ..., \mathbf{W}_N, \mathbf{b}_N)$ \bullet
- Do: \bullet
	- $Err=0$
	- For all k, initialize $\nabla_{\mathbf{W}_k} Err = 0$, $\nabla_{\mathbf{b}_k} Err = 0$
	- For all $t = 1:T$
		- Forward pass: Compute
			- Output $Y(X_t)$
			- Divergence $Div(Y_t, d_t)$
			- $Err += Div(Y_t, d_t)$
		- Backward pass: For all k compute:
			- $\nabla_{W_k} Div(Y_t, d_t); \nabla_{h_k} Div(Y_t, d_t)$
			- $-\nabla_{\mathbf{W}_k} Err \mathbf{W}_k$ $Div(Y_t, d_t), \nabla_{\mathbf{b}_k} Err \mathbf{W}_k$ $Div(Y_t, d_t)$
	- For all k , update:

$$
\mathbf{W}_k = \mathbf{W}_k - \frac{\eta}{T} (\nabla_{\mathbf{W}_k} Err)^T; \qquad \mathbf{b}_k = \mathbf{b}_k - \frac{\eta}{T} (\nabla_{\mathbf{W}_k} Err)^T
$$

Until *Err* has converged \bullet

Setting up for digit recognition

- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation

 $- Y \in (0,1)$

- $-$ d is either 0 or 1
- Use KL divergence
- Backpropagation to learn network parameters **189** 189

Recognizing the digit

Training data

- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
	- First ten outputs correspond to the ten digits
		- Optional 11th is for none of the above
- -
- Backpropagation with KL divergence to learn network 190

Issues

- Convergence: How well does it learn
	- And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- \bullet Etc..

Next up

• Convergence and generalization