Neural Networks Learning the network: Part 2 11-785, Fall 2017

Lecture 4

- A multi-class classifier can use log(C) output neurons, each predicting either 0 or 1 to encode C classes. For which of the following reasons is this setup is not typical:
 - It is possible for the classifier to produce a code that does not correspond to any class in this scheme.
 - It is an inefficient representation of the classes in terms of the number of output neurons.
 - It implicitly assumes that some classes are more similar to each other than other classes.
 - It is more computationally expensive to compute the gradient in this scheme.
- In the empirical risk minimization framework, the function which measures the error (divergence function) should always be nonnegative (T/F)?

- If the perceptron rule is used to train a multilayer perceptron network, the training computation scales _____ with the number of data points.
- The perceptron learning rule will find the separating hyperplane with the largest margin(T/F)?

- Which of the following is true of the MADALINE learning algorithm (select all that apply):
 - It computes the gradient of the network with respect to all of the weights in the network.
 - It greedily assigns the desired output label to a hidden node in the network during training.
 - It updates the weights for every training example.
 - To update the weights for a neuron the weighted sum of the inputs, rather than the output of the activation function, is compared to the desired label.
- For a single perceptron with a threshold activation function, the ADALINE learning rule _____ (select all that apply)
 - moves the weights in the direction of the negative gradient of the mean squared error.
 - is equivalent to the perceptron learning rule.
 - is equivalent to the generalized delta rule.
 - enables learning in a network with multiple layers.

- Which of the following activation functions will have the largest magnitude gradient as the input to the activation function increases from 0 in the positive direction:
 - Threshold / Sigmoid / Softplus
- If the empirical risk of a neural network is 0 then (select all that apply):
 - The weights of the network will not change for any of the learning algorithms we have discussed.
 - The network has learned the target function.
 - The network will predict the correct class for *all* data points that it has not seen during training.
 - The network will predict the correct class for *all* data points that is has seen during training.

- Which of the following are advantages of using a sigmoid activation function for all nodes in a neural network?
 - The output of each node has a probabilistic interpretation.
 - The gradient of the function computed by the network with respect to the weights of a neuron is smaller when the input to the neuron is near the mean input to the neuron.
 - By scaling the weights, a learning algorithm can change the output of a neuron to be more linear/less linear with respect to the input.
 - The error signal from the output layer can be used to greedily adjust weights throughout the network.
- If we use the generalized delta rule to update the weights of an output neuron, then the sigmoid activation function is less sensitive to outliers than the identity activation function (T/F)?

Design exercise

- Input: Binary coded number
- Output: One-hot vector
- Input units?
- Output units?
- Architecture?
- Activations?

- The MLP can be constructed to represent anything
- But *how* do we construct it?

Recap: How to learn the function

• By minimizing expected error

$$\widehat{W} = \underset{W}{\operatorname{argmin}} \int_{X} div(f(X;W),g(X))P(X)dX$$
$$= \underset{W}{\operatorname{argmin}} E\left[div(f(X;W),g(X))\right]$$

Recap: Sampling the function

- g(X) is unknown, so sample it
 - Basically, get input-output pairs for a number of samples of input X_i

• Many samples (X_i, d_i) , where $d_i = g(X_i) + noise$

- Good sampling: the samples of X will be drawn from P(X)
- Estimate function from the samples

The *Empirical* risk

• The *expected* error is the average error over the entire input space

$$E[div(f(X;W),g(X))] = \int_X div(f(X;W),g(X))P(X)dX$$

• The *empirical estimate* of the expected error is the *average* error over the samples

$$E\left[div(f(X;W),g(X))\right] \approx \frac{1}{T} \sum_{i=1}^{T} div(f(X_i;W),d_i)$$

Empirical Risk Minimization

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
 - Error on the i-th instance: $div(f(X_i; W), d_i)$
 - Empirical average error on all training data:

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

• Estimate the parameters to minimize the empirical estimate of expected error

$$\widehat{W} = \underset{W}{\operatorname{argmin}} \operatorname{Err}(W)$$

- I.e. minimize the *empirical error* over the drawn samples

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function $Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$

w.r.t W

• This is problem of function minimization

– An instance of optimization

• A CRASH COURSE ON FUNCTION OPTIMIZATION

Caveat about following slides

- The following slides speak of optimizing a function w.r.t a variable "x"
- This is only mathematical notation. In our actual network optimization problem we would be optimizing w.r.t. network weights "w"
- To reiterate "x" in the slides represents the variable that we're optimizing a function over and not the input to a neural network
- Do not get confused!

The problem of optimization

Finding the minimum of a function

• Find the value x at which f'(x) = 0

– Solve

$$\frac{df(x)}{dx} = 0$$

- The solution is a "turning point"
 - Derivatives go from positive to negative or vice versa at this point
- But is it a minimum?

- Both maxima and minima have zero derivative
- Both are turning points

Derivatives of a curve

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative

Derivative of the derivative of the curve f''(x) f(x) f(x) f(x)

- Both *maxima* and *minima* are turning points
- Both *maxima* and *minima* have zero derivative
- The second derivative f''(x) is -ve at maxima and +ve at minima!

• Find the value x at which
$$f'(x) = 0$$
: Solve

$$\frac{df(x)}{dx} = 0$$

- The solution x_{soln} is a turning point
- Check the double derivative at *x*_{soln} : compute

$$f''(x_{soln}) = \frac{df'(x_{soln})}{dx}$$

• If $f''(x_{soln})$ is positive x_{soln} is a minimum, otherwise it is a maximum

What about functions of multiple variables?

- The optimum point is still "turning" point
 - Shifting in any direction will increase the value
 - For smooth functions, miniscule shifts will not result in any change at all
- We must find a point where shifting in any direction by a microscopic amount will not change the value of the function

A brief note on derivatives of multivariate functions

The Gradient of a scalar function

The Gradient ∇f(X) of a scalar function f(X) of a multi-variate input X is a multiplicative factor that gives us the change in f(X) for tiny variations in X

 $df(X) = \nabla f(X)dX$

Gradients of scalar functions with multi-variate inputs

• Consider $f(X) = f(x_1, x_2, ..., x_n)$

• Check:

$$df(X) = \nabla f(X)dX$$

= $\frac{\partial f(X)}{\partial x_1} dx_1 + \frac{\partial f(X)}{\partial x_2} dx_2 + \dots + \frac{\partial f(X)}{\partial x_n} dx_n$

0.5

A well-known vector property

 $\mathbf{u}^{\mathrm{T}}\mathbf{v} = |\mathbf{u}||\mathbf{v}|cos\theta$

 The inner product between two vectors of fixed lengths is maximum when the two vectors are aligned

-i.e. when $\theta = 0$

Properties of Gradient

- $df(X) = \nabla f(X) dX$
 - The inner product between $\nabla f(X)$ and dX
- Fixing the length of dX

- E.g. |dX| = 1

- df(X) is max if dX is aligned with $\nabla f(X)$
 - $\angle \nabla f(X), dX = 0$

- The function f(X) increases most rapidly if the input increment dX is perfectly aligned to $\nabla f(X)$

• The gradient is the direction of fastest increase in f(X)

Properties of Gradient: 2

• The gradient vector $\nabla f(X)$ is perpendicular to the level curve

The Hessian

The Hessian of a function f (x₁, x₂, ..., x_n) is given by the second derivative

 $\nabla^2 f(x_1, \dots, x_n) \coloneqq \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$

Returning to direct optimization...

Finding the minimum of a scalar function of a multi-variate input

• The optimum point is a turning point – the gradient will be 0

Unconstrained Minimization of function (Multivariate)

1. Solve for the *X* where the gradient equation equals to zero

$\nabla f(X) = 0$

- 2. Compute the Hessian Matrix $\nabla^2 f(X)$ at the candidate solution and verify that
 - Hessian is positive definite (eigenvalues positive) -> to identify local minima
 - Hessian is negative definite (eigenvalues negative) -> to identify local maxima

Unconstrained Minimization of function (Example)

• Minimize

$$f(x_1, x_2, x_3) = (x_1)^2 + x_1(1 - x_2) - (x_2)^2 - x_2x_3 + (x_3)^2 + x_3$$

• Gradient

$$\nabla f = \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix}^T$$

Unconstrained Minimization of function (Example)

• Set the gradient to null

$$\nabla f = 0 \Longrightarrow \begin{bmatrix} 2x_1 + 1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 + 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

• Solving the 3 equations system with 3 unknowns

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Unconstrained Minimization of

- Compute the Hessian matrix $\nabla^2 f = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Evaluate the eigenvalues of the Hessian matrix

$$\lambda_1 = 3.414, \ \lambda_2 = 0.586, \ \lambda_3 = 2$$

 All the eigenvalues are positives => the Hessian matrix is positive definite

• The point
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$
 is a minimum

- Often it is not possible to simply solve $\nabla f(X) = 0$
 - The function to minimize/maximize may have an intractable form
- In these situations, iterative solutions are used
 - Begin with a "guess" for the optimal X and refine it iteratively until the correct value is obtained

- Iterative solutions
 - Start from an initial guess X_0 for the optimal X
 - Update the guess towards a (hopefully) "better" value of f(X)
 - Stop when f(X) no longer decreases
- Problems:
 - Which direction to step in
 - How big must the steps be

- Iterative solution:
 - Start at some point
 - Find direction in which to shift this point to decrease error
 - This can be found from the derivative of the function
 - A positive derivative \rightarrow moving left decreases error
 - A negative derivative \rightarrow moving right decreases error
 - Shift point in this direction

- Iterative solution: Trivial algorithm
 - Initialize x^0
 - While $f'(x^k) \neq 0$
 - If $sign(f'(x^k))$ is positive: - $x^{k+1} = x^k - step$
 - Else

$$-x^{k+1} = x^k + step$$

- What must step be to ensure we actually get to the optimum?

- Iterative solution: Trivial algorithm
 - Initialize x^0

- While
$$f'(x^k) \neq 0$$

•
$$x^{k+1} = x^k - sign(f'(x^k))$$
.step

- Identical to previous algorithm

- Iterative solution: Trivial algorithm
 - Initialize x_0

- While
$$f'(x^k) \neq 0$$

• $x^{k+1} = x^k - \eta^k f'(x^k)$
- η^k is the "step size"

Gradient descent/ascent (multivariate)

- The gradient descent/ascent method to find the minimum or maximum of a function *f* iteratively
 - To find a maximum move in the direction of the gradient $x^{k+1} = x^k + \eta^k \nabla f(x^k)^T$
 - To find a minimum move exactly opposite the direction of the gradient

$$x^{k+1} = x^k - \eta^k \nabla f(x^k)^T$$

- Many solutions to choosing step size η^k
 - Later lecture

1. Fixed step size

• Fixed step size

– Use fixed value for η^k

What is the optimal step size?

- Step size is critical for fast optimization
- Will revisit this topic later
- For now, simply assume a potentiallyiteration-dependent step size

Gradient descent convergence criteria

• The gradient descent algorithm converges when one of the following criteria is satisfied

Overall Gradient Descent Algorithm

• Initialize:

$$-x^{0}$$

$$-k = 0$$

• While
$$\left| f(x^{k+1}) - f(x^k) \right| > \varepsilon$$

 $-x^{k+1} = x^k - \eta^k \nabla f(x^k)^T$
 $-k = k+1$

• Returning to our problem..

Problem Statement

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function $Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$

w.r.t W

• This is problem of function minimization

– An instance of optimization

Preliminaries

• Before we proceed: the problem setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- What are these input-output pairs?

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

• This is problem of function minimization

– An instance of optimization

- Given a training set of input-output pairs
- $(X_{1}, \underline{d_{1}}), (X_{2}, \underline{d_{2}}), \dots, (X_{T}, \underline{d_{T}})$ What are these input-output pairs? $Err(W) = \frac{1}{T} \sum_{i} div(f(X_{i}; W), d_{i})$ w.r.t W
 What is f() and what are its
- This is problem of functio parameters?

An instance of optimization

• Given a training set of input-output pairs

An instance of optimization

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W
What is f() and
what are its

This is problem of functio parameters W?

An instance of optimization

What is f()? Typical network

- Multi-layer perceptron
- A *directed* network with a set of inputs and outputs
 - No loops
- Generic terminology
 - We will refer to the inputs as the *input units*
 - No neurons here the "input units" are just the inputs
 - We refer to the outputs as the output units
 - Intermediate units are "hidden" units

The individual neurons

- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A differentiable activation function applied the sum of weighted inputs and a bias

$$y = f\left(\sum_{i} w_i x_i + b\right)$$

- More generally: *any* differentiable function

$$y = f(x_1, x_2, ..., x_N; W)$$
 60

The individual neurons

- Individual neurons operate on a set of inputs and produce a single output
 - Standard setup: A differentiable activation function applied the sum of weighted inputs and a bias
 We will assume this

$$y = f\left(\sum_{i} w_i x_i + b\right) \bigstar$$

- More generally: *any* differentiable function $y = f(x_1, x_2, ..., x_N; W)$ We will assume this unless otherwise specified

Parameters are weights w_i and bias b

Activations and their derivatives

н.

$f(z) = \frac{1}{1 + \exp(-z)}$	f'(z) = f(z)(1 - f(z))
$f(z) = \tanh(z)$	$f'(z) = (1 - f^2(z))$
$f(z) = \begin{cases} 0, & z < 0 \\ z, & z \ge 0 \end{cases}$	This space left intentionally (kind of) blank
$f(z) = \log(1 + \exp(z))$	$f'(z) = \frac{1}{1 + \exp(-z)}$

Some popular activation functions and their derivatives

Vector Activations

We can also have neurons that have *multiple coupled* outputs

$$[y_1, y_2, \dots, y_l] = f(x_1, x_2, \dots, x_k; W)$$

- Function *f*() operates on set of inputs to produce set of outputs
- Modifying the parameters W will affect *all* outputs

Vector activation example: Softmax

• Example: Softmax *vector* activation

$$z_{i} = \sum_{j} w_{ji} x_{j} + b_{i}$$
$$y = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$$

Parameters are weights w_{ji} and bias b_i

Multiplicative combination: Can be viewed as a case of vector activations

$$z_i = \sum_j w_{ji} x_j + b_i$$

$$y_i = \prod_l (z_l)^{\alpha_{li}}$$

Parameters are weights w_{ii} and bias b_i

A layer of multiplicative combination is a special case of vector activation ٠

Typical network

- We assume a "layered" network for simplicity
 - We will refer to the inputs as the input layer
 - No neurons here the "layer" simply refers to inputs
 - We refer to the outputs as the output layer
 - Intermediate layers are "hidden" layers

Typical network

 In a layered network, each layer of perceptrons can be viewed as a single vector activation

- The input layer is the Oth layer
- We will represent the output of the i-th perceptron of the kth layer as $y_i^{(k)}$
 - Input to network: $y_i^{(0)} = x_i$
 - Output of network: $y_i = y_i^{(N)}$
- We will represent the weight of the connection between the i-th unit of the k-1th layer and the jth unit of the k-th layer as w^(k)_{ii}
 - The bias to the jth unit of the k-th layer is $b_i^{(k)}$

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- What are these input-output pairs?

$$Err(W) = \frac{1}{T} \sum_{i} div(f(X_i; W), d_i)$$

w.r.t W

• This is problem of function minimization

– An instance of optimization

Vector notation

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- $X_n = [x_{n1}, x_{n2}, \dots, x_{nD}]$ is the nth input vector
- $d_n = [d_{n1}, d_{n2}, \dots, d_{nL}]$ is the nth desired output
- $Y_n = [y_{n1}, y_{n2}, ..., y_{nL}]$ is the nth vector of *actual* outputs of the network
- We will sometimes drop the first subscript when referring to a *specific* instance

Representing the input

- Vectors of numbers
 - (or may even be just a scalar, if input layer is of size 1)
 - E.g. vector of pixel values
 - E.g. vector of speech features
 - E.g. real-valued vector representing text
 - We will see how this happens later in the course
 - Other real valued vectors

Representing the output

- If the desired *output* is real-valued, no special tricks are necessary
 - Scalar Output : single output neuron
 - d = scalar (real value)
 - Vector Output : as many output neurons as the dimension of the desired output
 - $d = [d_1 d_2 ... d_L]$ (vector of real values)

Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - -1 = Yes it's a cat
 - 0 = No it's not a cat.

Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
- Output activation: Typically a sigmoid
 - Viewed as the probability P(Y = 1|X) of class value 1
 - Indicating the fact that for actual data, in general an feature value X may occur for both classes, but with different probabilities
 - Is differentiable

Representing the output

- If the desired output is binary (is this a cat or not), use a simple 1/0 representation of the desired output
 - 1 = Yes it's a cat
 - 0 = No it's not a cat.
- Sometimes represented by *two independent* outputs, one representing the desired output, the other representing the *negation* of the desired output
 - Yes: → [1 0]
 - No: → [0 1]

Multi-class output: One-hot representations

- Consider a network that must distinguish if an input is a cat, a dog, a camel, a hat, or a flower
- We can represent this set as the following vector:

[cat dog camel hat flower][⊤]

- For inputs of each of the five classes the desired output is:
 - cat: $[1000]^{T}$
 - dog: $[0 1 0 0 0]^{T}$
 - camel: $[0 0 1 0 0]^{T}$
 - hat: $[0 0 0 1 0]^{T}$
 - flower: $[0 \ 0 \ 0 \ 0 \ 1]^{T}$
- For an input of any class, we will have a five-dimensional vector output with four zeros and a single 1 at the position of that class
- This is a one hot vector

Multi-class networks

- For a multi-class classifier with N classes, the one-hot representation will have N binary outputs
 - An N-dimensional binary vector
- The neural network's output too must ideally be binary (N-1 zeros and a single 1 in the right place)
- More realistically, it will be a probability vector
 - N probability values that sum to 1.

Multi-class classification: Output

• Softmax *vector* activation is often used at the output of multi-class classifier nets

$$z_{i} = \sum_{j} w_{ji}^{(n)} y_{j}^{(n-1)}$$
$$y_{i} = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$$

• This can be viewed as the probability $y_i = P(class = i|X)$

Typical Problem Statement

- We are given a number of "training" data instances
- E.g. images of digits, along with information about which digit the image represents
- Tasks:
 - Binary recognition: Is this a "2" or not
 - Multi-class recognition: Which digit is this? Is this a digit in the first place?

- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Typical Problem statement: multiclass classification

Training data

- Given, many positive and negative examples (training data),
 - learn all weights such that the network does the desired job

Problem Setup: Things to define

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- Minimize the following function

- An instance of optimization

Examples of divergence functions

• For real-valued output vectors, the (scaled) L₂ divergence is popular

$$Div(Y,d) = \frac{1}{2} ||Y - d||^2 = \frac{1}{2} \sum_{i} (y_i - d_i)^2$$

- Squared Euclidean distance between true and desired output
- Note: this is differentiable

$$\frac{dDiv(Y,d)}{dy_i} = (y_i - d_i)$$

$$\nabla_Y Div(Y,d) = [y_1 - d_1, y_2 - d_2, \dots]$$

For binary classifier

For binary classifier with scalar output, Y ∈ (0,1), d is 0/1, the cross entropy between the probability distribution [Y, 1 − Y] and the ideal output probability [d, 1 − d] is popular

$$Div(Y,d) = -dlogY - (1-d)\log(1-Y)$$

- Minimum when d = Y
- Derivative

$$\frac{dDiv(Y,d)}{dY} = \begin{cases} -\frac{1}{Y} & \text{if } d = 1\\ \frac{1}{1-Y} & \text{if } d = 0 \end{cases}$$

For multi-class classification

- Desired output *d* is a one hot vector $[0 \ 0 \dots 1 \ \dots 0 \ 0 \ 0]$ with the 1 in the *c*-th position (for class *c*)
- Actual output will be probability distribution $[y_1, y_2, ...]$
- The cross-entropy between the desired one-hot output and actual output:

$$Div(Y, d) = -\sum_{i} d_i \log y_i$$

• Derivative

$$\frac{dDiv(Y,d)}{dY_{i}} = \begin{cases} -\frac{1}{y_{c}} & \text{for the } c - th \text{ component} \\ 0 & \text{for remaining component} \end{cases}$$
$$\nabla_{Y}Div(Y,d) = \begin{bmatrix} 0 & 0 & \dots & -\frac{1}{y_{c}} & \dots & 0 & 0 \end{bmatrix}$$

85

Problem Setup

- Given a training set of input-output pairs $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
- The error on the ith instance is $div(Y_i, d_i)$
- The total error

$$Err = \frac{1}{T} \sum_{i} div(Y_i, d_i)$$

Minimize *Err* w.r.t $\left\{ w_{ij}^{(k)}, b_j^{(k)} \right\}$

Recap: Gradient Descent Algorithm

- In order to minimize any function f(x) w.r.t. x
- Initialize:

$$-x^0$$
$$-k = 0$$

• While $|f(x^{k+1}) - f(x^k)| > \varepsilon$ $-x^{k+1} = x^k - \eta^k \nabla f(x^k)^T$ -k = k+1

Recap: Gradient Descent Algorithm

- In order to minimize any function f(x) w.r.t. x
- Initialize:

$$-x^0$$
$$-k = 0$$

• While $|f(x^{k+1}) - f(x^k)| > \varepsilon$

– For every component i

•
$$x_i^{k+1} = x_i^k - \eta^k \frac{df}{dx_i}$$

Explicitly stating it by component

-k = k + 1

Training Neural Nets through Gradient Descent

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

- Gradient descent algorithm:
- Initialize all weights and biases $\left\{w_{ij}^{(k)}\right\}$

Assuming the bias is also represented as a weight

- Using the extended notation: the bias is also a weight
- Do:
 - For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dErr}{dw_{i,j}^{(k)}}$$

• Until *Err* has converged

Training Neural Nets through Gradient Descent

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(\boldsymbol{Y}_{t}, \boldsymbol{d}_{t})$$

- Gradient descent algorithm:
- Initialize all weights $\{w_{ij}^{(k)}\}$
- Do:

– For every layer k for all i, j, update:

•
$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \eta \frac{dErr}{dw_{i,j}^{(k)}}$$

• Until *Err* has converged

The derivative

Total training error:

$$Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t)$$

Computing the derivative

Training by gradient descent

- Initialize all weights $\left\{w_{ij}^{(k)}\right\}$
- Do:

- For all
$$i, j, k$$
, initialize $\frac{dEr}{dw_{i,j}^{(k)}} = 0$

- For all t = 1: T
 - For every layer k for all i, j:

- Compute
$$\frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$$

- Compute $\frac{dErr}{dw_{i,j}^{(k)}} + = \frac{dDiv(Y_t, d_t)}{dw_{i,j}^{(k)}}$

- For every layer k for all i, j:

$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dErr}{dw_{i,j}^{(k)}}$$

• Until *Err* has converged

The derivative

 So we must first figure out how to compute the derivative of divergences of individual training inputs

Calculus Refresher: Basic rules of calculus

For any differentiable function y = f(x)with derivative $\frac{dy}{dx}$ the following must hold for sufficiently small $\Delta x \longrightarrow \Delta y \approx \frac{dy}{dx} \Delta x$

For any differentiable function $y = f(x_1, x_2, ..., x_M)$ with partial derivatives $\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, ..., \frac{\partial y}{\partial x_M}$ the following must hold for sufficiently small $\Delta x_1, \Delta x_2, ..., \Delta x_M$ $\Delta y \approx \frac{\partial y}{\partial x_1} \Delta x_1 + \frac{\partial y}{\partial x_2} \Delta x_2 + ... + \frac{\partial y}{\partial x_M} \Delta x_M$

Calculus Refresher: Chain rule

For any nested function y = f(g(x))

$$\frac{dy}{dx} = \frac{\partial y}{\partial g(x)} \frac{dg(x)}{dx}$$

Check - we can confirm that : $\Delta y = \frac{dy}{dx} \Delta x$ $z = g(x) \implies \Delta z = \frac{dg(x)}{dx} \Delta x$ $y = f(z) \implies \Delta y = \frac{dy}{dz} \Delta z = \frac{dy}{dz} \frac{dg(x)}{dx} \Delta x$

Calculus Refresher: Distributed Chain rule

$$y = f(g_1(x), g_1(x), \dots, g_M(x))$$

$$\frac{dy}{dx} = \frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx}$$

Check:
$$\Delta y = \frac{dy}{dx} \Delta x$$
$$\Delta y = \frac{\partial y}{\partial g_1(x)} \Delta g_1(x) + \frac{\partial y}{\partial g_2(x)} \Delta g_2(x) + \dots + \frac{\partial y}{\partial g_M(x)} \Delta g_M(x)$$
$$\Delta y = \frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} \Delta x + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} \Delta x + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx} \Delta x$$
$$\Delta y = \left(\frac{\partial y}{\partial g_1(x)} \frac{dg_1(x)}{dx} + \frac{\partial y}{\partial g_2(x)} \frac{dg_2(x)}{dx} + \dots + \frac{\partial y}{\partial g_M(x)} \frac{dg_M(x)}{dx} \right) \Delta x$$

Distributed Chain Rule: Influence Diagram

• x affects y through each of $g_1 \dots g_M$

Distributed Chain Rule: Influence Diagram

 Small perturbations in x cause small perturbations in each of g₁ ... g_M, each of which individually additively perturbs y

Returning to our problem

• How to compute $\frac{dDiv(Y,d)}{dw_{i,i}^{(k)}}$

A first closer look at the network

- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs

A first closer look at the network

- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Explicitly separating the weighted sum of inputs from the activation

A first closer look at the network

- Showing a tiny 2-input network for illustration
 - Actual network would have many more neurons and inputs
- Expanded with all weights and activations shown
- The overall function is differentiable w.r.t every weight, bias and input

Computing the derivative for a *single* input

- Aim: compute derivative of Div(Y, d) w.r.t. each of the weights
- But first, lets label *all* our variables and activation functions

Computing the derivative for a *single* input

Computing the gradient

• What is: $\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$

- Derive on board?

Computing the gradient

• What is:
$$\frac{dDiv(Y,d)}{dw_{i,j}^{(k)}}$$

- Derive on board?
- Note: computation of the derivative requires intermediate and final output values of the network in response to the input

• The network again

Gradients: Local Computation

- Redrawn
- Separately label input and output of each node

Forward Computation

Assuming
$$w_{0j}^{(1)} = b_j^{(1)}$$
 and $x_0 = 1$

Forward Computation

Forward Computation

Forward "Pass"

- Input: *D* dimensional vector $\mathbf{x} = [x_j, j = 1 \dots D]$
- Set:

$$- D_0 = D$$
, is the width of the 0th (input) layer
 $- y_j^{(0)} = x_j$, $j = 1 \dots D$; $y_0^{(k=1\dots N)} = x_0 = 1$

• For layer
$$k = 1 \dots N$$

- For $j = 1 \dots D_k$ D_k is the size of the kth layer
• $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$
• $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$

• Output:

$$-Y = y_j^{(N)}, j = 1..D_N$$

$$\frac{\partial Div(Y,d)}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

$$\frac{\partial Div}{\partial z_i^{(N)}} = \frac{\partial y_i^{(N)}}{\partial z_i^{(N)}} \frac{\partial Div}{\partial y_i} = f_N' \left(z_i^{(N)} \right) \frac{\partial Div}{\partial y_i^{(N)}}$$

Gradients: Backward Computation Z^(k-1) $z^{(N-1)} f_{N-1}$ $z^{(k)}$ f_k V^(k-1) **y**^(k) **V**^(N-1) $Z^{(N)}$ **Y**^(N) Div(Y,d) Div(Y,d) t_N $\partial Div(Y,d)$ ∂Div $\partial Y_i = \partial y_i^{(N)}$ $\frac{\partial Div}{\partial z_{i}^{(N)}} = f_{N}' \left(z_{i}^{(N)} \right) \frac{\partial Div}{\partial y_{i}^{(N)}}$ 1 $\frac{\partial Div}{\partial y_i^{(k-1)}} = \sum_i \frac{\partial z_j^{(k)}}{\partial y_i^{(k-1)}} \frac{\partial Div}{\partial z_i^{(k)}} = \sum_i w_{ij}^{(k)} \frac{\partial Div}{\partial z_i^{(k)}}$

Backward Pass

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

•
$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

• For layer k = N - 1 downto 0

- For
$$i = 1 \dots D_k$$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

•
$$\frac{\partial D}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_{k-1}$

Backward Pass

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

•
$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

Called "Backpropagation" because the derivative of the error is propagated "backwards" through the network

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}}$$

Very analogous to the forward pass: $\boldsymbol{0}$

For layer
$$k = N - 1$$
 downto $\overset{\mathbf{v}}{\mathbf{0}}$
- For $i = 1 \dots D_k$

• $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Di}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}} \overset{\bullet}{\to}$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$

Backward weighted combination of next layer

Backward equivalent of activation

•
$$\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}}$$
 for $j = 1 \dots D_{k-1}$

For comparison: the forward pass again

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1 \dots D]$
- Set:

$$- D_0 = D$$
, is the width of the 0th (input) layer

$$-y_j^{(0)} = x_j, \ j = 1 \dots D; \quad y_0^{(k=1\dots N)} = x_0 = 1$$

- For layer k = 1 ... N- For $j = 1 ... D_k$ • $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)}$ • $y_j^{(k)} = f_k \left(z_j^{(k)} \right)$
- Output:

$$-Y = y_j^{(N)}, j = 1..D_N$$

- Have assumed so far that
 - 1. The computation of the output of one neuron does not directly affect computation of other neurons in the same (or previous) layers
 - 2. Outputs of neurons only combine through weighted addition
 - 3. Activations are actually differentiable
 - All of these conditions are frequently not applicable
- Not discussed in class, but explained in slides
 - Will appear in quiz. Please read the slides

Special Case 1. Vector activations

 Vector activations: all outputs are functions of all inputs

Special Case 1. Vector activations

y^(k-1) y^(k)

Scalar activation: Modifying a z_i only changes corresponding y_i

 $y_i^{(k)} = f\left(z_i^{(k)}\right)$

Vector activation: Modifying a z_i potentially changes all, $y_1 \dots y_M$

$$\begin{bmatrix} y_{1}^{(k)} \\ y_{2}^{(k)} \\ \vdots \\ y_{M}^{(k)} \end{bmatrix} = f \begin{pmatrix} \begin{bmatrix} z_{1}^{(k)} \\ z_{2}^{(k)} \\ \vdots \\ z_{D}^{(k)} \end{bmatrix} \end{pmatrix}_{129}$$

"Influence" diagram

Scalar activation: Each z_i influences one y_i Vector activation: Each z_i influences all, $y_1 \dots y_M$

The number of outputs

- Note: The number of outputs (y^(k)) need not be the same as the number of inputs (z^(k))
 - May be more or fewer

Scalar Activation: Derivative rule

 In the case of *scalar* activation functions, the derivative of the error w.r.t to the input to the unit is a simple product of derivatives

Derivatives of vector activation

• For *vector* activations the derivative of the error w.r.t. to any input is a sum of partial derivatives

- Regardless of the number of outputs $y_i^{(k)}$

Example Vector Activation: Softmax

- For future reference
- δ_{ij} is the Kronecker delta: $\delta_{ij} = 1$ if i = j, 0 if $i \neq j_{134}$

Vector Activations

- In reality the vector combinations can be anything
 - E.g. linear combinations, polynomials, logistic (softmax), etc.

Special Case 2: Multiplicative networks

- Some types of networks have *multiplicative* combination
 In contrast to the *additive* combination we have seen so far
- Seen in networks such as LSTMs, GRUs, attention models, etc.

Backpropagation: Multiplicative Networks

• Some types of networks have *multiplicative* combination

Multiplicative combintion as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation

Multiplicative combintion: Can be viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation

Backward Pass for softmax output layer d

- Output layer (N) :
 - $For i = 1 \dots D_N$

•
$$\frac{\partial Div}{\partial y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

- $\frac{\partial Div}{\partial z_i^{(N)}} = \sum_j \frac{\partial D}{\partial y_j^{(N)}} y_i^{(N)} \left(\delta_{ij} y_j^{(N)}\right)$
- For layer k = N 1 downto 0

- For
$$i = 1 \dots D_k$$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

• $\frac{\partial Div}{\partial z_i^{(k)}} = f'_k \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$
• $\frac{\partial Di}{\partial w_{ij}^{(k+1)}} = y_j^{(k)} \frac{\partial Di}{\partial z_i^{(k+1)}}$ for $j = 1 \dots D_{k-1}$

Special Case 3: Non-differentiable activations

- Activation functions are sometimes not actually differentiable
 - E.g. The RELU (Rectified Linear Unit)
 - And its variants: leaky RELU, randomized leaky RELU
 - E.g. The "max" function
- Must use "subgradients" where available
 - Or "secants"

The subgradient

- A subgradient of a function f(x) at a point x_0 is any vector v such that $(f(x) - f(x_0)) \ge v^T (x - x_0)$
- Guaranteed to exist only for convex functions
 - "bowl" shaped functions
 - For non-convex functions, the equivalent concept is a "quasi-secant"
- The subgradient is a direction in which the function is guaranteed to increase
- If the function is differentiable at x_0 , the subgradient is the gradient
 - The gradient is not always the subgradient though

Subgradients and the RELU

- Can use any subgradient
 - At the differentiable points on the curve, this is the same as the gradient
 - Typically, will use the equation given

Subgradients and the Max

- Vector equivalent of subgradient
 - 1 w.r.t. the largest incoming input
 - Incremental changes in this input will change the output
 - 0 for the rest
 - Incremental changes to these inputs will not change the output

- Multiple outputs, each selecting the max of a different subset of inputs
 - Will be seen in convolutional networks
- Gradient for any output:
 - 1 for the specific component that is maximum in corresponding input subset
 - 0 otherwise

Backward Pass: Recap

• Output layer (N) :

- For
$$i = 1 \dots D_N$$

•
$$\frac{\partial Div}{\partial Y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$

• $\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Di}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}} \qquad OR \qquad \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}}$ (vector activation)

• For layer k = N - 1 downto 0

- For
$$i = 1 \dots D_k$$

•
$$\frac{\partial Di}{\partial y_i^{(k)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = \frac{\partial Div}{\partial y_i^{(k)}} \frac{\partial y_i^{(k)}}{\partial z_i^{(k)}} \quad OR \qquad \sum_j \frac{\partial Div}{\partial y_j^{(k)}} \frac{\partial y_j^{(k)}}{\partial z_i^{(k)}} \text{ (vector activation)}$$

•
$$\frac{\partial Div}{\partial w_{ji}^{(k+1)}} = y_j^{(k)} \frac{\partial Div}{\partial z_i^{(k+1)}} \text{ for } j = 1 \dots D_{k-1}$$

Overall Approach

- For each data instance
 - Forward pass: Pass instance forward through the net. Store all intermediate outputs of all computation
 - Backward pass: Sweep backward through the net, iteratively compute all derivatives w.r.t weights
- Actual Error is the sum of the error over all training instances

$$\mathbf{Err} = \frac{1}{|\{X\}|} \sum_{X} Div(Y(X), d(X))$$

• Actual gradient is the sum or average of the derivatives computed for each training instance

$$\nabla_{W}\mathbf{Err} = \frac{1}{|\{X\}|} \sum_{X} \nabla_{W}Div(Y(X), d(X)) \quad W \leftarrow W - \eta \nabla_{W}\mathbf{Err}$$

Training by BackProp

- Initialize all weights $(W^{(1)}, W^{(2)}, \dots, W^{(K)})$
- Do:

- Initialize
$$Err = 0$$
; For all i, j, k , initialize $\frac{dErr}{dw_{i,i}^{(k)}} = 0$

- For all t = 1:T (Loop over training instances)

- Forward pass: Compute
 - Output Y_t
 - $Err += Div(Y_t, d_t)$
- Backward pass: For all *i*, *j*, *k*:

- Compute
$$\frac{dDiv(Y_t,d_t)}{dw_{i,j}^{(k)}}$$

- Compute $\frac{dErr}{dw_{i,j}^{(k)}} + = \frac{dDiv(Y_t,d_t)}{dw_{i,j}^{(k)}}$

- For all *i*, *j*, *k*, update:

$$w_{i,j}^{(k)} = w_{i,j}^{(k)} - \frac{\eta}{T} \frac{dErr}{dw_{i,j}^{(k)}}$$

• Until *Err* has converged

Vector formulation

- For layered networks it is generally simpler to think of the process in terms of vector operations
 - Simpler arithmetic
 - Fast matrix libraries make operations *much* faster
- We can restate the entire process in vector terms
 - On slides, please read
 - This is what is *actually* used in any real system
 - Will appear in quiz

Vector formulation

- Arrange all inputs to the network in a vector **x**
- Arrange the *inputs* to neurons of the kth layer as a vector \mathbf{z}_k
- Arrange the outputs of neurons in the kth layer as a vector \mathbf{y}_{k}
- Arrange the weights to any layer as a matrix \mathbf{W}_k
 - Similarly with biases

Vector formulation

• The computation of a single layer is easily expressed in matrix notation as (setting $y_0 = x$):

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k \qquad \mathbf{y}_k = \boldsymbol{f}_k(\mathbf{z}_k)$$

The forward pass: Evaluating the network

- - •
 - •

Χ

$$\mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{y}_1 = f_1(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$
157

$$\mathbf{y}_2 = f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$
¹⁵⁸

The Complete computation

 $Y = f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N)$ ¹⁵⁹

Forward pass: Initialize

 $\mathbf{y}_0 = \mathbf{x}$

For k = 1 to N:
$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
 $\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$
Output $\mathbf{Y} = \mathbf{y}_N$

The Forward Pass

- Set $y_0 = x$
- For layer k = 1 to N:
 - Recursion:

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
$$\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

• Output:

$$\mathbf{Y}=\mathbf{y}_N$$

The network is a nested function

 $\mathbf{Y} = f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N)$

• The error for any **x** is also a nested function

 $Div(Y, d) = Div(f_N(\mathbf{W}_N f_{N-1}(\dots f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) \dots) + \mathbf{b}_N), d)$

Calculus recap 2: The Jacobian

- The derivative of a vector function w.r.t. vector input is called a *Jacobian*
- It is the matrix of partial derivatives given below

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = f\left(\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_D \end{bmatrix} \right)$$

Using vector notation

$$\mathbf{y} = f(\mathbf{z})$$

$$J_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{\partial y_1}{\partial z_1} & \frac{\partial y_1}{\partial z_2} & \cdots & \frac{\partial y_1}{\partial z_D} \\ \frac{\partial y_2}{\partial z_1} & \frac{\partial y_2}{\partial z_2} & \cdots & \frac{\partial y_2}{\partial z_D} \\ \cdots & \cdots & \ddots & \cdots \\ \frac{\partial y_M}{\partial z_1} & \frac{\partial y_M}{\partial z_2} & \cdots & \frac{\partial y_M}{\partial z_D} \end{bmatrix}$$

Check:
$$\Delta \mathbf{y} = J_{\mathbf{y}}(\mathbf{z})\Delta \mathbf{z}$$

Jacobians can describe the derivatives of neural activations w.r.t their input

$$H_{\mathbf{y}}(\mathbf{z}) = \begin{bmatrix} \frac{dy_1}{dz_1} & 0 & \cdots & 0 \\ 0 & \frac{dy_2}{dz_2} & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & \frac{dy_D}{dz_D} \end{bmatrix}$$

- For Scalar activations
 - Number of outputs is identical to the number of inputs
- Jacobian is a diagonal matrix
 - Diagonal entries are individual derivatives of outputs w.r.t inputs
 - Not showing the superscript "(k)" in equations for brevity

Jacobians can describe the derivatives of neural activations w.r.t their input

$$y_i = f(z_i)$$

$$J_{y}(\mathbf{z}) = \begin{bmatrix} f'(y_{1}) & 0 & \cdots & 0 \\ 0 & f'(y_{2}) & \cdots & 0 \\ \cdots & \cdots & \ddots & \cdots \\ 0 & 0 & \cdots & f'(y_{M}) \end{bmatrix}$$

• For scalar activations (shorthand notation):

- Jacobian is a diagonal matrix
- Diagonal entries are individual derivatives of outputs w.r.t inputs

For Vector activations

- Jacobian is a full matrix
 - Entries are partial derivatives of individual outputs
 w.r.t individual inputs

Special case: Affine functions

- Matrix W and bias b operating on vector y to produce vector z
- The Jacobian of **z** w.r.t **y** is simply the matrix **W**

Vector derivatives: Chain rule

- We can define a chain rule for Jacobians
- For vector functions of vector inputs:

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule

- The chain rule can combine Jacobians and Gradients
- For *scalar* functions of vector inputs (*g*() is vector):

Note the order: The derivative of the outer function comes first

Special Case

Scalar functions of Affine functions

of a product of tensor terms that occur in the right order

In the following slides we will also be using the notation $\nabla_z Y$ to represent the Jacobian $J_Y(z)$ to explicitly illustrate the chain rule

In general $\nabla_a \mathbf{b}$ represents a derivative of \mathbf{b} w.r.t. \mathbf{a} and could be a gradient (for scalar \mathbf{b}) Or a Jacobian (for vector \mathbf{b})

First compute the gradient of the divergence w.r.t. Y. The actual gradient depends on the divergence function.

$$\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div \cdot \nabla_{\mathbf{z}_N} \mathbf{Y}$$

 $\nabla_{\mathbf{z}_N} Div = \nabla_{\mathbf{Y}} Div J_{\mathbf{Y}}(\mathbf{z}_N)$

matrix for scalar activations

$$\nabla_{\mathbf{y}_{N-2}} Div = \nabla_{\mathbf{z}_{N-1}} Div \mathbf{W}_{N-1}$$

 $\nabla_{\mathbf{z}_1} Div = \nabla_{\mathbf{y}_1} Div J_{\mathbf{y}_1}(\mathbf{z}_1)$

 $\nabla_{\mathbf{W}_{1}}Div = \mathbf{x}\nabla_{\mathbf{z}_{1}}Div$ $\nabla_{\mathbf{b}_{1}}Div = \nabla_{\mathbf{z}_{1}}Div$

In some problems we will also want to compute the derivative w.r.t. the input

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Recursion:

$$\nabla_{\mathbf{z}_{k}} Div = \nabla_{\mathbf{y}_{k}} Div J_{\mathbf{y}_{k}}(\mathbf{z}_{k})$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

- Gradient computation:

$$\nabla_{\mathbf{W}_{k}} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$
$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

The Backward Pass

- Set $\mathbf{y}_N = Y$, $\mathbf{y}_0 = \mathbf{x}$
- Initialize: Compute $\nabla_{\mathbf{y}_N} Div = \nabla_Y Div$
- For layer k = N downto 1:
 - Compute $J_{\mathbf{y}_k}(\mathbf{z}_k)$
 - Will require intermediate values computed in the forward pass
 - Recursion:

Note analogy to forward pass

$$\nabla_{\mathbf{z}_{k}} Div = \nabla_{\mathbf{y}_{k}} Div J_{\mathbf{y}_{k}}(\mathbf{z}_{k})$$
$$\nabla_{\mathbf{y}_{k-1}} Div = \nabla_{\mathbf{z}_{k}} Div \mathbf{W}_{k}$$

- Gradient computation:

$$\nabla_{\mathbf{W}_{k}} Div = \mathbf{y}_{k-1} \nabla_{\mathbf{z}_{k}} Div$$
$$\nabla_{\mathbf{b}_{k}} Div = \nabla_{\mathbf{z}_{k}} Div$$

For comparison: The Forward Pass

- Set **y**₀ = **x**
- For layer k = 1 to N:
 - Recursion:

$$\mathbf{z}_k = \mathbf{W}_k \mathbf{y}_{k-1} + \mathbf{b}_k$$
$$\mathbf{y}_k = \mathbf{f}_k(\mathbf{z}_k)$$

• Output:

$$\mathbf{Y}=\mathbf{y}_N$$

Neural network training algorithm

- Initialize all weights and biases $(\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_N, \mathbf{b}_N)$
- Do:
 - Err = 0
 - For all k, initialize $\nabla_{\mathbf{W}_k} Err = 0$, $\nabla_{\mathbf{b}_k} Err = 0$
 - For all t = 1:T
 - Forward pass : Compute
 - Output $Y(X_t)$
 - Divergence $Div(Y_t, d_t)$
 - $Err += Div(Y_t, d_t)$
 - Backward pass: For all k compute:
 - $\nabla_{\mathbf{W}_k} Div(Y_t, d_t); \nabla_{\mathbf{b}_k} Div(Y_t, d_t)$
 - $\nabla_{\mathbf{W}_{k}} Err += \nabla_{\mathbf{W}_{k}} \mathbf{D}i\boldsymbol{\nu}(\boldsymbol{Y}_{t}, \boldsymbol{d}_{t}); \quad \nabla_{\mathbf{b}_{k}} Err += \nabla_{\mathbf{b}_{k}} \mathbf{D}i\boldsymbol{\nu}(\boldsymbol{Y}_{t}, \boldsymbol{d}_{t})$
 - For all *k*, update:

$$\mathbf{W}_{k} = \mathbf{W}_{k} - \frac{\eta}{T} \left(\nabla_{\mathbf{W}_{k}} Err \right)^{T}; \qquad \mathbf{b}_{k} = \mathbf{b}_{k} - \frac{\eta}{T} \left(\nabla_{\mathbf{W}_{k}} Err \right)^{T}$$

• Until *Err* has converged

Setting up for digit recognition

Training data

- Simple Problem: Recognizing "2" or "not 2"
- Single output with sigmoid activation

 $- Y \in (0,1)$

- d is either 0 or 1
- Use KL divergence
- Backpropagation to learn network parameters

Recognizing the digit

Training data

- More complex problem: Recognizing digit
- Network with 10 (or 11) outputs
 - First ten outputs correspond to the ten digits
 - Optional 11th is for none of the above
- Softmax output layer:
 - Ideal output: One of the outputs goes to 1, the others go to 0
- Backpropagation with KL divergence to learn network

Issues

- Convergence: How well does it learn
 - And how can we improve it
- How well will it generalize (outside training data)
- What does the output really mean?
- *Etc.*.

Next up

• Convergence and generalization