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Story so far

• MLPs are universal function approximators

– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of 

gradient descent

– Gradients can be computed by backpropagation
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input 
layer

output layer

The model so far

• Can recognize patterns in data

– E.g. digits

– Or any other vector data

Or, more generally
a vector input



An important observation

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 4
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An important observation

• The neurons in an MLP build up complex patterns from simple pattern 
hierarchically

– Each layer learns to “detect” simple combinations of the patterns detected by 
earlier layers

• This is because the basic units themselves are simple

– Typically linear classifiers or thresholding units

– Incapable of individually holding complex patterns 5

x2

AND AND

OR

x1 x1 x2



What do the neurons capture?

• To understand the behavior of neurons in the network, lets consider an 
individual perceptron

– The perceptron is fully represented by its weights

– For illustration, we consider a simple threshold activation

• What do the weights tell us?

– The perceptron “fires” if the inner product between the weights and the inputs 
exceeds a threshold 6
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The weight as a “template”

• A perceptron fires if its input is within a specified angle of its weight

– Represents a convex region on the surface of the sphere!

• I.e. the perceptron fires if the input  vector is close enough to the weight 
vector

– If the input pattern matches the weight pattern closely enough
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The weights as a correlation filter

• If the correlation between the weight pattern 
and the inputs exceeds a threshold, fire

• The perceptron is a correlation filter!
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The MLP as a Boolean function over 
feature detectors

• The input layer comprises “feature detectors”

– Detect if certain patterns have occurred in the input

• The network is a Boolean function over the feature detectors

• I.e. it is important for the first layer to capture relevant patterns
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The MLP as a cascade of feature 
detectors

• The network is a cascade of feature detectors

– Higher level neurons compose complex templates from 
features represented by lower-level neurons
• They OR or AND the patterns from the lower layer 10
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Story so far

• MLPs are Boolean machines

– They represent Boolean functions over linear boundaries

– They can represent arbitrary boundaries

• Perceptrons are correlation filters

– They detect patterns in the input

• Layers in an MLP are detectors of increasingly complex patterns

– Patterns of lower-complexity patterns

• MLP in classification

– The network will fire if the combination of  the detected basic features 
matches an “acceptable” pattern for a desired class of signal

• E.g.  Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin)  Face
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Changing gears..



A problem

• Does this signal contain the word “Welcome”?

• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..



Finding a Welcome

• Trivial solution:  Train an MLP for the entire 
recording



Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in 
the top recording will not find it in the lower one

– Unless trained with both

– Will require a very large network and a large amount of training data 
to cover every case



Finding a Welcome

• Need a simple network that will fire regardless 

of the location of “Welcome”

– and not fire when there is none



Flowers

• Is there a flower in any of these images



A problem

• Will an MLP that recognizes the left image as a flower 

also recognize the one on the right as a flower?

input 
layer

output layer



A problem

• Need a network that will “fire” regardless of 

the precise location of the target object



The need for shift invariance

• In many problems the location of a pattern is not important

– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the 
pattern

– Moving it by one component results in an entirely different 
input that the MLP wont recognize

• Requirement:  Network must be shift invariant
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Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a 
“window” are input to a “welcome-detector” MLP
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Solution: Scan

• Scan for the target word

– The spectral time-frequency components in a 
“window” are input to a “welcome-detector” MLP



Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually

– “Welcome” may have occurred in any of them



Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

MAX



Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find 
noise

Perceptron



Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all the outputs (Equivalent of Boolean OR)

– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP



Solution: Scan

• The entire operation can be viewed as one giant 
network
– With many subnetworks, one per window

– Restriction: All subnets are identical



The 2-d analogue: Does this picture 
have a flower?

• Scan for the desired object

– “Look” for the target object at each position
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Solution: Scan

• Scan for the desired object



Scanning

• Scan for the desired object

• At each location, the entire region is sent 

through an MLP

Input 
(the pixel data)



Scanning the picture to find a flower

• Determine if any of the locations had a flower

– We get one classification output per scanned location

• The score output by the MLP

– Look at the maximum value

max



Its just a giant network with common 
subnets

• Determine if any of the locations had a flower
– We get one classification output per scanned location

• The score output by the MLP

– Look at the maximum value

– Or pass it through an MLP



Its just a giant network with common 
subnets

• The entire operation can be viewed as a single 
giant network

– Composed of many “subnets” (one per window)

– With one key feature: all subnets are identical 



Training the network

• These are really just large networks

• Can just use conventional backpropagation to learn the parameters
– Provide many training examples

• Images with and without flowers

• Speech recordings with and without the word “welcome”

– Gradient descent to minimize the total divergence between predicted and desired outputs

• Backprop learns a network that maps the training inputs to the target binary 
outputs



Training the network: constraint

• These are shared parameter networks

– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the 

subnet must equally update all copies



Learning in shared parameter 
networks

• Consider a simple network with 
shared weights

𝑤𝑖𝑗
𝑘 = 𝑤𝑚𝑛

𝑙 = 𝑤𝒮

– A weight 𝑤𝑖𝑗
𝑘 is required to be 

identical to the weight 𝑤𝑚𝑛
𝑙

• For any training instance 𝑿, a small 
perturbation of 𝑤𝒮perturbs both 

𝑤𝑖𝑗
𝑘 and 𝑤𝑚𝑛

𝑙 identically

– Each of these perturbations will 
individually influence the 
divergence 𝐷𝑖𝑣(𝑑, 𝑦)

𝑿

𝑦
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Computing the divergence of shared 
parameters

𝑑𝐷𝑖𝑣

𝑑𝑤𝒮 =
𝑑𝐷𝑖𝑣

𝑑𝑤𝑖𝑗
𝑘

𝑑𝑤𝑖𝑗
𝑘

𝑑𝑤𝒮 +
𝑑𝐷𝑖𝑣

𝑑𝑤𝑚𝑛
𝑙

𝑑𝑤𝑚𝑛
𝑙

𝑑𝑤𝒮

=
𝑑𝐷𝑖𝑣

𝑑𝑤𝑖𝑗
𝑘 +

𝑑𝐷𝑖𝑣

𝑑𝑤𝑚𝑛
𝑙

• Each of the individual terms can be computed 
via backpropagation

Influence diagram
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Computing the divergence of shared 
parameters

• More generally,  let 𝒮 be any set of edges that have a common value, and 𝑤𝒮 be 
the common weight of the set
– E.g. the set of all red weights in the figure 

𝑑𝐷𝑖𝑣

𝑑𝑤𝒮 =෍

𝑒∈𝒮

𝑑𝐷𝑖𝑣

𝑑𝑤𝑒

• The individual terms in the sum can be computed via backpropagation

𝒮 = 𝑒1, 𝑒1, … , 𝑒𝑁



Standard gradient descent training of 
networks

• Gradient descent algorithm:

• Initialize all weights 𝐖1,𝐖2, … ,𝐖𝐾

• Do:

– For every layer 𝑘 for all 𝑖, 𝑗, update:

• 𝑤𝑖,𝑗
(𝑘)

= 𝑤𝑖,𝑗
(𝑘)

− 𝜂
𝑑𝐸𝑟𝑟

𝑑𝑤𝑖,𝑗
(𝑘)

• Until 𝐸𝑟𝑟 has converged
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Training networks with shared 
parameters

• Gradient descent algorithm:

• Initialize all weights 𝐖1,𝐖2, … ,𝐖𝐾

• Do:

– For every set 𝒮:
• Compute:

𝛻𝒮𝐸𝑟𝑟 =
𝑑𝐸𝑟𝑟

𝑑𝑤𝒮

𝑤𝒮 = 𝑤𝒮 − 𝜂𝛻𝒮𝐸𝑟𝑟

• For every (𝑘, 𝑖, 𝑗) ∈ 𝒮 update:

𝑤𝑖,𝑗
(𝑘)

= 𝑤𝒮

• Until 𝐸𝑟𝑟 has converged
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Training networks with shared 
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Training networks with shared 
parameters

• Gradient descent algorithm:

• Initialize all weights 𝐖1,𝐖2, … ,𝐖𝐾

• Do:

– For every set 𝒮:
• Compute:

𝛻𝒮𝐸𝑟𝑟 =
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• For every training instance 𝑋
• For every set 𝒮:

• For every (𝑘, 𝑖, 𝑗) ∈ 𝒮:
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Training networks with shared 
parameters

• Gradient descent algorithm:

• Initialize all weights 𝐖1,𝐖2, … ,𝐖𝐾

• Do:

– For every set 𝒮:
• Compute:

𝛻𝒮𝐸𝑟𝑟 =
𝑑𝐸𝑟𝑟

𝑑𝑤𝒮

𝑤𝒮 = 𝑤𝒮 − 𝜂𝛻𝒮𝐸𝑟𝑟

• For every (𝑘, 𝑖, 𝑗) ∈ 𝒮 update:

𝑤𝑖,𝑗
(𝑘)

= 𝑤𝒮

• Until 𝐸𝑟𝑟 has converged
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• For every training instance 𝑋
• For every set 𝒮:

• For every (𝑘, 𝑖, 𝑗) ∈ 𝒮:

𝛻𝒮𝐷𝑖𝑣 +=
𝑑𝐷𝑖𝑣

𝑑𝑤𝑖,𝑗
(𝑘)

• 𝛻𝒮𝐸𝑟𝑟 += 𝛻𝒮𝐷𝑖𝑣

Computed by
Backprop



Story so far

• Position-invariant pattern classification can be performed by 
scanning

– 1-D scanning for sound

– 2-D scanning for images

– 3-D and higher-dimensional scans for higher dimensional data

• Scanning is equivalent to composing a large network with repeating 
subnets

– The large network has shared subnets

• Learning in scanned networks: Backpropagation rules must be 
modified to combine gradients from parameters that share the 
same value

– The principle applies in general for networks with shared parameters



Scanning: A closer look

• Scan for the desired object

• At each location, the entire region is sent 

through an MLP

Input 
(the pixel data)



Scanning: A closer look

• The “input layer” is just the pixels in the image 

connecting to the hidden layer

Input layer Hidden layer



Scanning: A closer look

• Consider a single neuron



Scanning: A closer look

• Consider a single perceptron

• At each position of the box, the perceptron is evaluating the part of 
the picture in the box as part of the classification for that region

– We could arrange the outputs of the neurons for each position 
correspondingly to the original picture
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position into a rectangle that’s proportional in size to the original picture



Scanning: A closer look

• Consider a single perceptron

• At each position of the box, the perceptron is evaluating the picture as 
part of the classification for that region

– We could arrange the outputs of the neurons for each position 
correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at each scanned 
position into a rectangle that’s proportional in size to the original picture



Scanning: A closer look

• Similarly, each perceptron’s outputs from each 

of the scanned positions can be arranged as a 

rectangular pattern



Scanning: A closer look

• To classify a specific “patch” in the image, we 

send the first level activations from the 

positions corresponding to that position to the 

next layer



Scanning: A closer look

• We can recurse the logic

– The second level neurons too are “scanning” the rectangular outputs 
of the first-level neurons

– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the 
corresponding locations from the outputs of all the first-level neurons
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Scanning: A closer look

• We can recurse the logic

– The second level neurons too are “scanning” the rectangular outputs 
of the first-level neurons

– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the 
corresponding locations from the outputs of all the first-level neurons



Scanning: A closer look

• To detect a picture at any location in the original 

image, the output layer must consider the 

corresponding outputs of the last hidden layer



Detecting a picture anywhere in the 
image?

• Recursing the logic, we can create a map for 

the neurons in the next layer as well

– The map is a flower detector for each location of 

the original image
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• To detect a picture at any location in the original image, 
the output layer must consider the corresponding output of 
the last hidden layer

• Actual problem? Is there a flower in the image

– Not “detect the location of a flower”



Detecting a picture anywhere in the 
image?

• Is there a flower in the picture?

• The output of the almost-last layer is also a grid/picture

• The entire grid can be sent into a final neuron that performs a logical “OR” 
to detect a picture

– Finds the max output from all the positions

– Or..



Detecting a picture in the image

• Redrawing the final layer

– “Flatten” the output of the neurons into a single 

block, since the arrangement is no longer important

– Pass that through an MLP



Generalizing a bit

• At each location, the net searches for a flower

• The entire map of outputs is sent through a 

follow-up perceptron (or MLP) to determine if 

there really is a flower in the picture



Generalizing a bit

• The final objective is determine if the picture has a flower

• No need to use only one MLP to scan the image

– Could use multiple MLPs..

– Or a single larger MLPs with multiple outputs

• Each providing independent evidence of the presence of a flower



Generalizing a bit..

• The final objective is determine if the picture has a flower

• No need to use only one MLP to scan the image

– Could use multiple MLPs..

– Or a single larger MLPs with multiple output

• Each providing independent evidence of the presence of a flower



For simplicity..

• We will continue to assume the simple version 

of the model for the sake of explanation



Recall: What does an MLP learn?

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 101
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Recall: How does an MLP represent 
patterns

• The neurons in an MLP build up complex patterns 
from simple pattern hierarchically

– Each layer learns to “detect” simple combinations of the 
patterns detected by earlier layers 102

DIGIT OR NOT?



Returning to our problem:
What does the network learn?

• The entire MLP looks for a flower-like pattern 

at each location



The behavior of the layers

• The first layer neurons “look” at the entire “block” to extract block-level 
features

– Subsequent layers only perform classification over these block-level features

• The first layer neurons is responsible for evaluating the entire block of 
pixels

– Subsequent layers only look at a single pixel in their input maps 



Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates blocks of outputs from the first layer
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Distributing the scan

• We can distribute the pattern matching over two layers and 
still achieve the same block analysis at the second layer

– The first layer evaluates smaller blocks of pixels

– The next layer evaluates blocks of outputs from the first layer

– This effectively evaluates the larger block of the original image



Distributing the scan

• The higher layer implicitly learns the 

arrangement of sub patterns that represents 

the larger pattern (the flower in this case)



This is still just scanning with a shared 
parameter network

• With a minor modification…



This is still just scanning with a shared 
parameter network

• The network that analyzes individual blocks is 

now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.



This is still just scanning with a shared 
parameter network

• The network that analyzes individual blocks is 

now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Layer 2

No sharing at this level
within a block
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• Building the pattern over 3 layers
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• Building the pattern over 3 layers



The 3-layer shared parameter net

• Building the pattern over 3 layers



The 3-layer shared parameter net

• Building the pattern over 3 layers

All weights shown are unique



The 3-layer shared parameter net

• Building the pattern over 3 layers

Colors indicate
shared parameters



The 3-layer shared parameter net

• Building the pattern over 3 layers

Colors indicate
shared parameters



This logic can be recursed

We are effectively evaluating the
yellow block with the share parameter
net to the right

Every block is evaluated using the same
net in the overall computation



Using hierarchical build-up of features

• We scan the figure using the shared parameter network

• The entire operation can be viewed as a single giant 
network
– Where individual subnets are themselves shared-parameter 

nets



Why distribute?

• Distribution forces localized patterns in lower 
layers

– More generalizable

• Number of parameters…



Parameters in Undistributed network

• Only need to consider what happens in one block

– All other blocks are scanned by the same net

• (𝐾2 + 1)𝑁1 weights in first layer

• (𝑁1 + 1)𝑁2weights in second layer

– (𝑁𝑖−1 + 1)𝑁𝑖weights in subsequent ith layer

• Total parameters:    𝒪 𝐾2𝑁1 + 𝑁1𝑁2 + 𝑁2𝑁3…

– Ignoring the bias term

N1 units

N2 units𝐾 × 𝐾 block



When distributed over 2 layers

• First layer:  𝑁1 lower-level units, each looks at 𝐿2 pixels

– 𝑁1(𝐿
2 + 1) weights

• Second layer needs (
𝐾

𝐿

2
𝑁1 + 1)𝑁2 weights

• Subsequent layers needs 𝑁𝑖−1𝑁𝑖 when distributed over 2 layers only

– Total parameters:    𝒪 𝐿2𝑁1 +
𝐾

𝐿

2
𝑁1𝑁2 + 𝑁2𝑁3…

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

𝐾 × 𝐾 block

𝐿 × 𝐿 cell



When distributed over 3 layers

• First layer:  𝑁1 lower-level (groups of) units, each looks at 𝐿1
2 pixels

– 𝑁1(𝐿1
2 + 1) weights

• Second layer:  𝑁2 (groups of) units looking at groups of 𝐿2 × 𝐿2 connections from each of 𝑁1 first-level 
neurons

– (𝐿2
2𝑁1 + 1)𝑁2 weights

• Third layer: 

– (
𝐾

𝐿1𝐿2

2
𝑁2 + 1)𝑁3 weights

• Subsequent layers need 𝑁𝑖−1𝑁𝑖 neurons

– Total parameters:    𝒪 𝐿1
2𝑁1 + 𝐿2

2𝑁1𝑁2 +
𝐾

𝐿1𝐿2

2
𝑁2𝑁3 +⋯



Comparing Number of Parameters

• 𝒪 𝐾2𝑁1 +𝑁1𝑁2 +𝑁2𝑁3…

• For this example, let 𝐾 =
16, 𝑁1 = 4,𝑁2 = 2,𝑁3 = 1

• Total 1034 weights

Conventional MLP, not distributed
Distributed (3 layers)

• 𝒪 ൬𝐿1
2𝑁1 + 𝐿2

2𝑁1𝑁2 +



Comparing Number of Parameters

• 𝒪 𝐾2𝑁1 + σ𝑖𝑁𝑖𝑁𝑖+1

Conventional MLP, not distributed
Distributed (3 layers)

• 𝒪 ቆ𝐿1
2𝑁1 +

σ𝑖<𝑛𝑐𝑜𝑛𝑣−1 𝐿𝑖
2𝑁𝑖𝑁𝑖+1 +

𝐾

ς𝑖 ℎ𝑜𝑝𝑖

2

𝑁𝑛𝑐𝑜𝑛𝑣−1𝑁𝑛𝑐𝑜𝑛𝑣 +

These terms dominate..



Why distribute?

• Distribution forces localized patterns in lower layers

– More generalizable

• Number of parameters…

– Large (sometimes order of magnitude) reduction in parameters

• Gains increase as we increase the depth over which the blocks are distributed

• Key intuition:  Regardless of the distribution, we can view the 
network as “scanning” the picture with an MLP

– The only difference is the manner in which parameters are shared in 
the MLP



Hierarchical composition: A different 
perspective

• The entire operation can be redrawn as before 

as maps of the entire image



Building up patterns

• The first layer looks at small sub regions of the 

main image

– Sufficient to detect, say, petals
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• The second layer looks at regions of the output of the first layer

– To put the petals together into a flower

– This corresponds to looking at a larger region of the original input image
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Some modifications

• The first layer looks at sub regions of the main image

– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer

– To put the petals together into a flower

– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion



Terminology

• The pattern in the input image that each neuron sees is its “Receptive Field”
– The squares show the sizes of the receptive fields for the first, second and third-layer neurons

• The actual receptive field for a first layer neurons is simply its arrangement of 
weights

• For the higher level neurons, the actual receptive field is not immediately obvious 
and must be calculated
– What patterns in the input do the neurons actually respond to?

– Will not actually be simple, identifiable patterns like “petal” and “inflorescence”



Some modifications

• The final layer may feed directly into a multi layer 

perceptron rather than a single neuron

• This is exactly the shared parameter net we just 

saw



Accounting for jitter

• We would like to account for some jitter in the 

first-level patterns

– If a pattern shifts by one pixel, is it still a petal?
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• We would like to account for some jitter in the first-level patterns

– If a pattern shifts by one pixel, is it still a petal?

– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region 
around it

– Max filtering or Max pooling
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Accounting for jitter

• We would like to account for some jitter in the first-level patterns

– If a pattern shifts by one pixel, is it still a petal?

– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region 
around it

– Max filtering or  Max pooling

Max

1 1

5 6

Max 6



The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted 

sum of inputs, each neuron just computes the 

maximum over all inputs

Max layer



The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted 

sum of inputs, each neuron just computes the 

maximum over all inputs

Max layer



Accounting for jitter

• The max filtering can also be performed as a 

scan

Max

1 1

5 6

Max 6



Accounting for jitter

• The “max filter” operation too “scans” the 

picture

Max

1 3

6 5
Max

6 6



Accounting for jitter

Max

3 2

5 7
Max

6 6 7

• The “max filter” operation too “scans” the 

picture
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Accounting for jitter

Max

• The “max filter” operation too “scans” the 

picture
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than one pixel
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“Strides”

• The “max” operations may “stride” by more 

than one pixel

Max



“Strides”

• The “max” operations may “stride” by more than one pixel

– This will result in a shrinking of the map

– The operation is usually called “pooling”

• Pooling a number of outputs to get a single output

• Also called “Down sampling”

Max



Shrinking with a max

• In this example we actually shrank the image 

after the max

– Adjacent “max” operators did not overlap

– The stride was the size of the max filter itself

Max layer



Non-overlapped strides

• Non-overlapping strides: Partition the output of the 
layer into blocks

• Within each block only retain the highest value

– If you detect a petal anywhere in the block, a petal is 
detected..



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 

and stride 2 6 8

3 4

Max Pooling



Higher layers

• The next layer works on the max-pooled maps

Max
pool



The overall structure

• In reality we can have many layers of “convolution” (scanning) followed by 
max pooling (and reduction) before the final MLP

– The individual perceptrons at any “scanning” or “convolutive” layer are called 
“filters”
• They “filter” the input image to produce an output image (map)

– As mentioned, the individual max operations are also called max pooling or 
max filters



The overall structure

• This entire structure is called a Convolutive

Neural Network



Convolutive Neural Network

Input image First layer filters

First layer maxpooling Second layer filters

Second layer maxpooling



1-D convolution

• The 1-D scan version of the convolutional neural 
network is the time-delay neural network

– Used primarily for speech recognition



1-D scan version

• The 1-D scan version of the convolutional 
neural network



1-D scan version

• The 1-D scan version of the convolutional 
neural network

The spectrographic time-frequency components are
the input layer
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1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech



1-D scan version

• The 1-D scan version of the convolutional neural network

• A final perceptron (or MLP) to aggregate evidence
– “Does this recording have the target word”



Time-Delay Neural Network

• This structure is called the Time-Delay Neural 
Network



Story so far
• Neural networks learn patterns in a hierarchical manner

– Simple to complex

• Pattern classification tasks such as “does this picture contain a cat” are best 
performed by scanning for the target pattern

• Scanning for patterns can be viewed as classification with a large shared-
parameter network

• Scanning an input with a network and combining the outcomes is equivalent to 
scanning with individual neurons
– First level neurons scan the input

– Higher-level neurons scan the “maps” formed by lower-level neurons

– A final “decision” layer (which may be a max, a perceptron, or an MLP) makes the final 
decision

• At each layer,  a scan by a neuron may optionally be followed by a “max” (or any 
other) “pooling” operation to account for deformation

• For 2-D (or higher-dimensional) scans, the structure is called a convnet

• For 1-D scan along time, it is called a Time-delay neural network


