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Which open source project?



Related math.  What is it talking 
about?



And a Wikipedia page explaining it all



The unreasonable effectiveness of 
recurrent neural networks..

• All previous examples were generated blindly 
by a recurrent neural network..

• http://karpathy.github.io/2015/05/21/rnn-
effectiveness/



Modelling Series

• In many situations one must consider a series 
of inputs to produce an output

– Outputs to may be a series

• Examples: .. 



Should I invest..

• Stock market

– Must consider the series of stock values in the past several days to decide if it 
is wise to invest today
• Ideally consider all of history

• Note: Inputs are vectors.  Output may be scalar or vector

– Should I invest, vs. should I invest in X

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?
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Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything simple boxes

– Each box actually represents an entire layer with many units
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Representational shortcut

• Input at each time is a vector

• Each layer has many neurons

– Output layer too may have many neurons

• But will represent everything simple boxes

– Each box actually represents an entire layer with many units



The stock predictor

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+3)
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The stock predictor

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network
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Y(t+5)



The stock predictor

• The sliding predictor
– Look at the last few days

– This is just a convolutional neural net applied to series data
• Also called a Time-Delay neural network
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Finite-response model

• This is a finite response system

– Something that happens today only affects the 
output of the system for 𝑁 days into the future

• 𝑁 is the width of the system

𝑌𝑡 = 𝑓 𝑋𝑡, 𝑋𝑡−1, … , 𝑋𝑡−𝑁



The stock predictor

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+2)

• This is a finite response system
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• 𝑁 is the width of the system
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The stock predictor
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The stock predictor
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• This is a finite response system

– Something that happens today only affects the output of the 
system for 𝑁 days into the future

• 𝑁 is the width of the system

𝑌𝑡 = 𝑓 𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑁



The stock predictor
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Y(t+5)

• This is a finite response system

– Something that happens today only affects the output of the 
system for 𝑁 days into the future

• 𝑁 is the width of the system
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• This is a finite response system

– Something that happens today only affects the output of the 
system for 𝑁 days into the future

• 𝑁 is the width of the system

𝑌𝑡 = 𝑓 𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑁



Finite-response model

• This is a finite response system
– Something that happens today only affects the output 

of the system for 𝑁 days into the future
• 𝑁 is the width of the system

𝑌𝑡 = 𝑓 𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑁
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Finite-response

• Problem:  Increasing the “history” makes the 
network more complex

– No worries, we have the CPU and memory

• Or do we?

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)



Systems often have long-term 
dependencies

• Longer-term trends –

– Weekly trends in the market

– Monthly trends in the market

– Annual trends

– Though longer history tends to affect us less than more 
recent events..



We want infinite memory

• Required:  Infinite response systems
– What happens today can continue to affect the output 

forever
• Possibly  with weaker and weaker influence

𝑌𝑡 = 𝑓 𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−∞

Time



Examples of infinite response systems

𝑌𝑡 = 𝑓 𝑋𝑡 , 𝑌𝑡−1
– Required: Define initial state:  𝑌𝑡−1 for 𝑡 = −1

– An input at 𝑋0 at 𝑡 = 0 produces 𝑌0
– 𝑌0 produces 𝑌1 which produces 𝑌2 and so on until 𝑌∞ even 

if 𝑋1…𝑋∞ are 0
• i.e. even if there are no further inputs!

• This is an instance of a NARX network

– “nonlinear autoregressive network with exogenous inputs”

– 𝑌𝑡 = 𝑓 𝑋0:𝑡 , 𝑌0:𝑡−1

• Output contains information about the entire past



A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)
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A one-tap NARX network

• A NARX net with recursion from the output

Time
X(t)

Y(t)



A more complete representation

• A NARX net with recursion from the output

• Showing all computations

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

Brown boxes show output nodes
Yellow boxes are outputs



Same figure redrawn

• A NARX net with recursion from the output

• Showing all computations

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)

Brown boxes show output nodes
All outgoing arrows are the same output



A more generic NARX network

• The output 𝑌𝑡 at time 𝑡 is computed from the 

past 𝐾 outputs 𝑌𝑡−1, … , 𝑌𝑡−𝐾 and the current 

and past 𝐿 inputs  𝑋𝑡, … , 𝑋𝑡−𝐿

Time
X(t)

Y(t)



A “complete” NARX network

• The output 𝑌𝑡 at time 𝑡 is computed from all 

past outputs and all inputs until time t

– Not really a practical model

Time
X(t)

Y(t)



NARX Networks

• Very popular for time-series prediction

– Weather

– Stock markets

– As alternate system models in tracking systems

• Any phenomena with distinct “innovations” 
that “drive” an output



An alternate model for infinite response 
systems: the state-space model

ℎ𝑡 = 𝑓 𝑥𝑡, ℎ𝑡−1
𝑦𝑡 = 𝑔 ℎ𝑡

• ℎ𝑡 is the state of the network

• Need to define initial state ℎ−1

• This is a recurrent neural network

• State summarizes information about the entire 
past



The simple state-space model

• The state (green) at any time is determined by the input at 
that time, and the state at the previous time

• An input at t=0 affects outputs forever

• Also known as a recurrent neural net

Time

X(t)

Y(t)

t=0

h-1



An alternate model for infinite response 
systems: the state-space model

ℎ𝑡 = 𝑓 𝑥𝑡, ℎ𝑡−1
𝑦𝑡 = 𝑔 ℎ𝑡

• ℎ𝑡 is the state of the network

• Need to define initial state ℎ−1

• The state an be arbitrarily complex



Single hidden layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

X(t)

Y(t)

t=0

h-1



Multiple recurrent layer RNN

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time

Y(t)

X(t)

t=0



A more complex state

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)



Or the network may be even more 
complicated

• Shades of NARX

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)



Generalization with other recurrences

• All column (including incoming edges) are 

identical

Time

Y(t)

X(t)

t=0



State dependencies may be simpler

• Recurrent neural network

• All columns are identical

• An input at t=0 affects outputs forever

Time
X(t)

Y(t)



Multiple recurrent layer RNN

• We can also have skips..

Time

Y(t)

X(t)

t=0



A Recurrent Neural Network

• Simplified models often drawn

• The loops imply recurrence



The detailed version of the simplified 
representation

Time

X(t)

Y(t)

t=0

h-1



Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0



Multiple recurrent layer RNN

Time

Y(t)

X(t)

t=0



Equations

• Note superscript in indexing, which indicates layer of 
network from which inputs are obtained

• Assuming vector function at output, e.g. softmax

• The state node activation, 𝑓1() is typically tanh()

• Every neuron also has a bias input

𝑌(𝑡) = 𝑓2 

𝑗

𝑤𝑗𝑘
1
ℎ𝑗

1
𝑡 + 𝑏𝑘

1
, 𝑘 = 1. .𝑀

ℎ𝑖
1
(𝑡) = 𝑓1 

𝑗

𝑤𝑗𝑖
0
𝑋𝑗 𝑡 +

𝑗

𝑤𝑗𝑖
11

ℎ𝑖
1

𝑡 − 1 + 𝑏𝑖
1

ℎ𝑖
1

−1 = 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝑋

ℎ(1)

𝑌



Equations

𝑌(𝑡) = 𝑓3 

𝑗

𝑤𝑗𝑘
2
ℎ𝑗

2
𝑡 + 𝑏𝑘

3
, 𝑘 = 1. .𝑀

ℎ𝑖
2
(𝑡) = 𝑓2 

𝑗

𝑤𝑗𝑖
1
ℎ𝑗

1
(𝑡) +

𝑗

𝑤𝑗𝑖
22

ℎ𝑖
2

𝑡 − 1 + 𝑏𝑖
2

ℎ𝑖
1

−1 = 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

• Assuming vector function at output, e.g. softmax 𝑓3()

• The state node activations, 𝑓𝑘() are typically tanh()

• Every neuron also has a bias input

ℎ𝑖
2

−1 = 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

ℎ𝑖
1
(𝑡) = 𝑓1 

𝑗

𝑤𝑗𝑖
0
𝑋𝑗 𝑡 +

𝑗

𝑤𝑗𝑖
11

ℎ𝑖
1

𝑡 − 1 + 𝑏𝑖
1

𝑋

ℎ(1)

𝑌

ℎ(2)



Equations

𝑌𝑖(𝑡) = 𝑓3 

𝑗

𝑤𝑗𝑘
2
ℎ𝑗

2
𝑡 +

𝑗

𝑤𝑗𝑘
1,3

ℎ𝑗
1
(𝑡) + 𝑏𝑘

3
, 𝑘 = 1. .𝑀

ℎ𝑖
2
(𝑡) = 𝑓2 

𝑗

𝑤𝑗𝑖
1,2

ℎ𝑗
1
(𝑡) +

𝑗

𝑤𝑗𝑖
0,2

𝑋𝑗 𝑡 +

𝑖

𝑤𝑖𝑖
2,2

ℎ𝑖
2

𝑡 − 1 + 𝑏𝑖
2

ℎ𝑖
1

−1 = 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

ℎ𝑖
2

−1 = 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

ℎ𝑖
1
(𝑡) = 𝑓1 

𝑗

𝑤𝑗𝑖
0,1

𝑋𝑗 𝑡 +

𝑖

𝑤𝑖𝑖
1,1

ℎ𝑖
1

𝑡 − 1 + 𝑏𝑖
1



Variants on recurrent nets

• 1:  Conventional MLP
• 2: Sequence generation,  e.g. image to caption
• 3: Sequence based prediction or classification, e.g.  Speech recognition,   

text classification

Images from
Karpathy



Variants

• 2:  Sequence to sequence, e.g. stock problem, label prediction

• 1:  Delayed sequence to sequence

• Etc…

Images from
Karpathy



How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence inputs
– (𝐗𝑖 , 𝐃𝑖),  where 

– 𝐗𝑖 = 𝑋𝑖,0, … , 𝑋𝑖,𝑇

– 𝐃𝑖 = 𝐷𝑖,0, … , 𝐷𝑖,𝑇

• Train network parameters to minimize the error between the output of the 
network 𝐘𝑖 = 𝑌𝑖,0, … , 𝑌𝑖,𝑇 and the desired outputs

– This is the most generic setting. In other settings we just “remove” some of the input or 
output entries

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)



Training: Forward pass

• For each training input:

• Forward pass:  pass the entire data sequence through the network, 
generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)



Training: Computing gradients

• For each training input:

• Backward pass: Compute gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

Will only focus on one training instance

All subscripts represent components and not training instance index



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• This is not just the sum of the divergences at individual times
▪ Unless we explicitly define it that way



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop:   Compute 
𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑇)
for all i

In general we will be required to compute 
𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑡)
for all 𝑖 and 𝑡 as we will see. This can

be a source of significant difficulty in many scenarios.



h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(𝑇)

𝐷𝑖𝑣(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑡)
for all i for all T

𝐷𝑖𝑣(𝑇 − 1)𝐷𝑖𝑣(𝑇 − 2)𝐷𝑖𝑣(2)𝐷𝑖𝑣(1)𝐷𝑖𝑣(0)

𝐷𝐼𝑉

Must compute

𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑡)
=
𝑑𝐷𝑖𝑣(𝑡)

𝑑𝑌𝑖(𝑡)

Will usually get

Special case, when the overall divergence is a simple combination of local
divergences at each time:



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop:   Compute 
𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑇)
for all i

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖(𝑇)
=

𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑇)

𝑑𝑌𝑖(𝑇)

𝑑𝑍𝑖(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖(𝑇)
=

𝑗

𝑑𝐷𝐼𝑉

𝑑𝑌𝑗(𝑇)

𝑑𝑌𝑗(𝑇)

𝑑𝑍𝑖(𝑇)
OR

Vector output activation



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑇)
for all i

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
(1)
(𝑇)

=
𝑑𝐷𝑖𝑣(𝑇)

𝑑𝑌𝑖(𝑇)

𝑑𝑌𝑖(𝑇)

𝑑𝑍𝑖
(1)
(𝑇)

𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇)
=

𝑗

𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
(1)
(𝑇)

𝑑𝑍𝑗
(1)
(𝑇)

𝑑ℎ𝑖(𝑇)
=

𝑗

𝑤𝑖𝑗
(1) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
(1)
(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
(1)
(𝑇)

=
𝑑𝐷𝑖𝑣(𝑇)

𝑑𝑌𝑖(𝑇)

𝑑𝑌𝑖(𝑇)

𝑑𝑍𝑖
(1)
(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(1)

=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
(1)
(𝑇)

𝑑𝑍𝑗
(1)
(𝑇)

𝑑𝑤𝑖𝑗
(1)

=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1

𝑇
ℎ𝑖(𝑇)

𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇)
=

𝑗

𝑤𝑖𝑗
(1) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
(1)
(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
(1)
(𝑇)

=
𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑇)

𝑑𝑌𝑖(𝑇)

𝑑𝑍𝑖
(1)
(𝑇)

𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇)
=

𝑗

𝑤𝑖𝑗
(1) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
(1)
(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(1)

=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1

𝑇
ℎ𝑖(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
(0)
(𝑇)

=
𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇)

𝑑ℎ𝑖(𝑇)

𝑑𝑍𝑖
(0)
(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(0)

=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑇
𝑋𝑖(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(11)

=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑇
ℎ𝑖(𝑇 − 1)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(0)

=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑇
𝑋𝑖(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
1
(𝑇 − 1)

=
𝑑𝐷𝐼𝑉

𝑑𝑌𝑖(𝑇 − 1)

𝑑𝑌𝑖(𝑇 − 1)

𝑑𝑍𝑖
1
(𝑇 − 1)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

Vector output activation

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
1
(𝑇 − 1)

=

𝑗

𝑑𝐷𝐼𝑉

𝑑𝑌𝑗(𝑇 − 1)

𝑑𝑌𝑗(𝑇 − 1)

𝑑𝑍𝑖
1
(𝑇 − 1)

OR



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇 − 1)
=

𝑗

𝑤𝑖𝑗
(1) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1
(𝑇 − 1)

+

𝑗

𝑤𝑖𝑗
(11) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0
(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇 − 1)
=

𝑗

𝑤𝑖𝑗
(1) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1
(𝑇 − 1)

+

𝑗

𝑤𝑖𝑗
(11) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0
(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(1)

+=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1

𝑇 − 1
ℎ𝑖(𝑇 − 1)Note the addition



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
0
(𝑇 − 1)

=
𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇 − 1)

𝑑ℎ𝑖(𝑇 − 1)

𝑑𝑍𝑖
0
(𝑇 − 1)



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
0
(𝑇 − 1)

=
𝑑𝐷𝐼𝑉

𝑑ℎ𝑖(𝑇 − 1)

𝑑ℎ𝑖(𝑇 − 1)

𝑑𝑍𝑖
0
(𝑇 − 1)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(0)

+=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑇 − 1
𝑋𝑖(𝑇 − 1)

Note the addition



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(0)

+=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑇 − 1
𝑋𝑖(𝑇 − 1)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(11)

+=
𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑇 − 1
ℎ𝑖(𝑇 − 2)

Note the addition



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑ℎ−1
=

𝑗

𝑤𝑖𝑗
(11) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1
(0)



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑𝑍𝑖
𝑘
(𝑡)

=
𝑑𝐷𝐼𝑉

𝑑ℎ𝑖
𝑘
(𝑡)

𝑓𝑘
′ 𝑍𝑖

𝑘
(𝑡)

𝑑𝐷𝐼𝑉

𝑑ℎ𝑖
𝑘
(𝑡)

=

𝑗

𝑤𝑖,𝑗
(𝑘) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
𝑘+1

(𝑡)
+

𝑗

𝑤𝑖,𝑗
(𝑘,𝑘) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
𝑘
(𝑡 + 1)

Not showing derivatives
at output neurons 



Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(0)

=

𝑡

𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑡
𝑋𝑖(𝑡)

𝑑𝐷𝐼𝑉

𝑑𝑤𝑖𝑗
(11)

=

𝑡

𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
0

𝑡
ℎ𝑖(𝑡 − 1)

𝑑𝐷𝐼𝑉

𝑑ℎ−1
=

𝑗

𝑤𝑖𝑗
(11) 𝑑𝐷𝐼𝑉

𝑑𝑍𝑗
1
(0)



BPTT

• Can be generalized to any architecture



Extensions to the RNN: Bidirectional 
RNN

• RNN with both forward and backward recursion

– Explicitly models the fact that just as the future can be predicted 
from the past, the past can be deduced from the future



Bidirectional RNN

• A forward net process the data from t=0 to t=T

• A backward net processes it backward from t=T down to t=0

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)



Bidirectional RNN: Processing an input 
string

• The forward net process the data from t=0 to t=T

– Only computing the hidden states, initially

• The backward net processes it backward from t=T down to t=0

X(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)



Bidirectional RNN: Processing an input 
string

• The backward nets processes the input data in reverse time,  end to beginning

– Initially only the hidden state values are computed

– Clearly, this is not an online process and requires the entire input data

– Note: This is not the backward pass of backprop.

• The backward net processes it backward from t=T down to t=0

X(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)



Bidirectional RNN: Processing an input 
string

• The computed states of both networks are 

used to compute the final output at each time

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)



Backpropagation in BRNNs

• Forward pass:  Compute both forward and 

backward networks and final output

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)



Backpropagation in BRNNs

• Backward pass:  Define a divergence from the desired output

• Separately perform back propagation on both nets

– From t=T down to t=0 for the forward net

– From t=0 up to t=T for the backward net

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

Div()d1..dT

Div



Backpropagation in BRNNs

• Backward pass:  Define a divergence from the desired output

• Separately perform back propagation on both nets

– From t=T down to t=0 for the forward net

– From t=0 up to t=T for the backward net

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

Div()d1..dT

Div



Backpropagation in BRNNs

• Backward pass:  Define a divergence from the desired output

• Separately perform back propagation on both nets

– From t=T down to t=0 for the forward net

– From t=0 up to t=T for the backward net

Y(0)

t

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

Div()d1..dT

Div



RNNs..

• Excellent models for time-series analysis tasks

– Time-series prediction

– Time-series classification

– Sequence prediction..



So how did this happen



So how did this happen

More on this later..



RNNs..

• Excellent models for time-series analysis tasks

– Time-series prediction

– Time-series classification

– Sequence prediction..

– They can even simplify some problems that are 
difficult for MLPs



Recall: A Recurrent Neural Network

Time
X(t)

Y(t)



MLPs vs RNNs

• The addition problem:  Add two N-bit numbers to produce a N+1-
bit number

– Input is binary

– Will require large number of training instances

• Output must be specified for every pair of inputs

• Weights that generalize will make errors

– Network trained for N-bit numbers will not work for N+1 bit numbers

1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 

MLP

1 0 1 0 1 0 1 1 1 1 0 



MLPs vs RNNs

• The addition problem:  Add two N-bit 

numbers to produce a N+1-bit number

• RNN solution:  Very simple, can add two 

numbers of any size

1 0

1

RNN unitPrevious
carry

Carry
out



MLP: The parity problem

• Is the number of “ones” even or odd
• Network must be complex to capture all patterns

– At least one hidden layer of size N plus an output neuron
– Fixed input size

1 0 0 0 1 1 0 0 1 0

MLP

1



RNN: The parity problem

• Trivial solution

• Generalizes to input of any size

1

0

1

RNN unit

Previous
output



RNNs..

• Excellent models for time-series analysis tasks

– Time-series prediction

– Time-series classification

– Sequence prediction..

– They can even simplify problems that are difficult 
for MLPs

• But first – a problem..



The vanishing gradient problem

• A particular problem with training deep 
networks..

– The gradient of the error with respect to weights 
is unstable..



Some useful preliminary math: The 
problem with training deep networks

• A multilayer perceptron is a nested function

𝑌 = 𝑓𝑁 𝑊𝑁−1𝑓𝑁−1 𝑊𝑁−2𝑓𝑁−2 …𝑊0𝑋

• 𝑊𝑘 is the weights matrix at the kth layer

• The error for 𝑋 can be written as

𝐷𝑖𝑣(𝑋) = 𝐷 𝑓𝑁 𝑊𝑁−1𝑓𝑁−1 𝑊𝑁−2𝑓𝑁−2 …𝑊0𝑋

W0 W1 W2



Training deep networks

• Vector derivative chain rule: for any 𝑓 𝑊𝑔 𝑋 :

𝑑𝑓 𝑊𝑔 𝑋

𝑑𝑋
=
𝑑𝑓 𝑊𝑔 𝑋

𝑑𝑊𝑔 𝑋

𝑑𝑊𝑔 𝑋

𝑑𝑔 𝑋

𝑑𝑔 𝑋

𝑑𝑋

𝛻𝑋𝑓 = 𝛻𝑍𝑓.𝑊. 𝛻𝑋𝑔

• Where

– 𝑍 = 𝑊𝑔 𝑋

– 𝛻𝑍𝑓 is the jacobian matrix of 𝑓(𝑍)w.r.t 𝑍

• Using the notation 𝛻𝑍𝑓 instead of 𝐽𝑓(𝑧) for consistency

Poor notation



Training deep networks

• For 

𝐷𝑖𝑣(𝑋) = 𝐷 𝑓𝑁 𝑊𝑁−1𝑓𝑁−1 𝑊𝑁−2𝑓𝑁−2 …𝑊0𝑋

• We get:

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• Where

– 𝛻𝑓𝑘𝐷𝑖𝑣 is the gradient 𝐷𝑖𝑣(𝑋) of the error w.r.t the output of the 

kth layer of the network

• Needed to compute the gradient of the error w.r.t 𝑊𝑘−1

– 𝛻𝑓𝑛 is jacobian of 𝑓𝑁() w.r.t. to its current input

– All blue terms are matrices



The Jacobian of the hidden layers

• 𝛻𝑓𝑡() is the derivative of the output of the (layer of) 
hidden recurrent neurons with respect to their input

– A matrix where the diagonal entries are the derivatives of the 
activation of the recurrent hidden layer

ℎ𝑖
1
(𝑡) = 𝑓1 𝑧𝑖

1
𝑡𝑋

ℎ1

𝑌

𝛻𝑓𝑡 𝑧𝑖 =

𝑓𝑡,1
′ (𝑧1) 0 ⋯ 0

0 𝑓𝑡,2
′ (𝑧2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓𝑡,𝑁

′ (𝑧𝑁)



The Jacobian

• The derivative (or subgradient) of the activation function is 
always bounded

– The diagonals of the Jacobian are bounded

• There is a limit on how much multiplying a vector by the 
Jacobian will scale it

ℎ𝑖
1
(𝑡) = 𝑓1 𝑧𝑖

1
𝑡

𝑋

ℎ1

𝑌

𝛻𝑓𝑡 𝑧𝑖 =

𝑓𝑡,1
′ (𝑧1) 0 ⋯ 0

0 𝑓𝑡,2
′ (𝑧2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓𝑡,𝑁

′ (𝑧𝑁)



The derivative of the hidden state 
activation

• Most common activation functions, such as sigmoid, tanh() and RELU 
have derivatives that are always less than 1

• The most common activation for the hidden units in an RNN is the tanh() 

– The derivative of tanh()is always less than 1

• Multiplication by the Jacobian is always a shrinking operation

𝛻𝑓𝑡 𝑧𝑖 =

𝑓𝑡,1
′ (𝑧1) 0 ⋯ 0

0 𝑓𝑡,2
′ (𝑧2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓𝑡,𝑁

′ (𝑧𝑁)



Training deep networks

• As we go back in layers, the Jacobians of the 

activations constantly shrink the derivative

– After a few instants the derivative of the divergence at 

any time is totally “forgotten”

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁.𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘



What about the weights

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• In a single-layer RNN, the weight matrices are 
identical

• The chain product for 𝛻𝑓𝑘𝐷𝑖𝑣 will 

– Expand 𝛻𝐷 along directions in which the singular values 
of the weight matrices are greater than 1

– Shrink 𝛻𝐷 in directions where the singular values ae less 
than 1 

– Exploding or vanishing gradients



Exploding/Vanishing gradients

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• Every blue term is a matrix

• 𝛻𝐷 is proportional to the actual error

– Particularly for L2 and KL divergence

• The chain product for 𝛻𝑓𝑘𝐷𝑖𝑣 will 

– Expand 𝛻𝐷 in directions where each stage has singular 

values greater than 1

– Shrink 𝛻𝐷 in directions where each stage has singular 

values less than 1 



Gradient problems in deep networks

• The gradients in the lower/earlier layers can explode or 
vanish

– Resulting in insignificant or unstable gradient descent updates

– Problem gets worse as network depth increases

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁.𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

ELU  activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

RELU  activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Sigmoid  activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Tanh activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

ELU  activation,  Individual instances



Vanishing gradients

• ELU activations maintain gradients longest

• But in all cases gradients effectively vanish 
after about 10 layers!

– Your results may vary

• Both batch gradients and gradients for 
individual instances disappear

– In reality a tiny number may actually blow up.



Recurrent nets are very deep nets

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• The relation between 𝑋(0) and 𝑌(𝑇) is one of a very deep 
network

– Gradients from errors at t = 𝑇 will vanish by the time they’re 
propagated to 𝑡 = 0

X(0)

hf(-1)

Y(T)



Vanishing stuff..

• Not merely during back propagation

• Stuff gets forgotten in the forward pass too
– Otherwise outputs would saturate or blow up

– Typically forgotten in a dozen or so timesteps

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)



The long-term dependency problem

• Any other pattern of any length can happen between 
pattern 1 and pattern 2

– RNN will “forget” pattern 1 if intermediate stuff is too long

– “Jane”  the next pronoun referring to her will be “she”

• Can learn such dependencies in theory; in practice will not

– Vanishing gradient problem

PATTERN1  […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..



Exploding/Vanishing gradients

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• Can we replace this with something that doesn’t 

fade or blow up?

• 𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷𝐶𝜎𝑁𝐶𝜎𝑁−1𝐶 …𝜎𝑘



Enter – the constant error carousel

• History is carried through uncompressed

– No weights, no nonlinearities

– Only scaling is through the s “gating” term that captures other 
triggers 

– E.g. “Have I seen Pattern2”? 

Time

× × × ×ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

t+1 t+2 t+3 t+4



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Time



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time



Enter the LSTM

• Long Short-Term Memory

• Explicitly latch information to prevent decay / 
blowup

• Following notes borrow liberally from 

• http://colah.github.io/posts/2015-08-
Understanding-LSTMs/



Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as 
inputs

• Processed through a tanh() activation function

– As mentioned earlier, tanh() is the generally used activation for the hidden 
layer

• Current recurrent output passed to next higher layer and next time instant



Long Short-Term Memory

• The 𝜎() are multiplicative gates that decide if 
something is important or not

• Remember,  every line actually represents a vector



LSTM: Constant Error Carousel

• Key component: a remembered cell state



LSTM: CEC

• 𝐶𝑡 is the linear history carried by the constant-error 
carousel

• Carries information through, only affected by a gate

– And addition of history, which too is gated..



LSTM: Gates

• Gates are simple sigmoidal units with outputs in 
the range (0,1)

• Controls how much of the information is to be let 
through



LSTM: Forget gate

• The first gate determines whether to carry over the history or to 
forget it

– More precisely, how much of the history to carry over

– Also called the “forget” gate 

– Note, we’re actually distinguishing between the cell memory 𝐶 and 
the state ℎ that is coming over time!  They’re related though



LSTM: Input gate

• The second gate has two parts

– A perceptron layer that determines if there’s something 
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell



LSTM: Memory cell update

• The second gate has two parts

– A perceptron layer that determines if there’s something 
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell



LSTM: Output and Output gate

• The output of the cell

– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory 
forward

– While we’re at it, lets toss in an output gate

• To decide if the memory contents are worth reporting at this time



LSTM: The “Peephole” Connection

• Why not just let the cell directly influence the 

gates while at it

– Party!!



The complete LSTM unit

• With input, output, and forget gates and the 

peephole connection..

𝑥𝑡

ℎ𝑡−1 ℎ𝑡

𝐶𝑡−1 𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh



Backpropagation rules: Forward

• Forward rules:

𝑥𝑡

ℎ𝑡−1 ℎ𝑡

𝐶𝑡−1 𝐶𝑡

𝑓𝑡
𝑖𝑡 𝑜𝑡

ሚ𝐶𝑡
s() s() s()tanh

tanh

Gates

Variables



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

𝑥𝑡+1

𝐶𝑡+1

ሚ𝐶𝑡+1
s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 =

ℎ𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡 𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ

ℎ𝑡+1

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡 𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ
′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜

ℎ𝑡+1

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡 𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 +

ℎ𝑡+1

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑓𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

𝑓𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎′ . 𝑊𝐶𝑓

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖 +

𝛻𝐶𝑡+1𝐷𝑖𝑣 ∘ 𝑖𝑡+1 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊ℎ𝑖

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖 +

𝛻𝐶𝑡+1𝐷𝑖𝑣 ∘ 𝑜𝑡+1 ∘ 𝑡𝑎𝑛ℎ
′ . 𝑊ℎ𝑖 + 𝛻ℎ𝑡+1𝐷𝑖𝑣 ∘ 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊ℎ𝑜

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖 +

𝛻𝐶𝑡+1𝐷𝑖𝑣 ∘ 𝑜𝑡+1 ∘ 𝑡𝑎𝑛ℎ
′ . 𝑊ℎ𝑖 + 𝛻ℎ𝑡+1𝐷𝑖𝑣 ∘ 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊ℎ𝑜

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1

Not explicitly deriving the derivatives w.r.t weights;
Left as an exercise



Gated Recurrent Units: Lets simplify 
the LSTM

• Simplified LSTM which addresses some of 

your concerns of why



Gated Recurrent Units: Lets simplify 
the LSTM

• Combine forget and input gates

– In new input is to be remembered, then this means 
old memory is to be forgotten

• Why compute twice?



Gated Recurrent Units: Lets simplify 
the LSTM

• Don’t bother to separately maintain compressed and regular 
memories

– Pointless computation!

• But compress it before using it to decide on the usefulness of the 
current input!



LSTM Equations
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• 𝑖 = 𝜎 𝑥𝑡𝑈
𝑖 + 𝑠𝑡−1𝑊

𝑖

• 𝑓 = 𝜎 𝑥𝑡𝑈
𝑓 + 𝑠𝑡−1𝑊

𝑓

• 𝑜 = 𝜎 𝑥𝑡𝑈
𝑜 + 𝑠𝑡−1𝑊

𝑜

• 𝑔 = tanh 𝑥𝑡𝑈
𝑔 + 𝑠𝑡−1𝑊

𝑔

• 𝑐𝑡 = 𝑐𝑡−1 ∘ 𝑓 + 𝑔 ∘ 𝑖

• 𝑠𝑡 = tanh 𝑐𝑡 ∘ 𝑜

• 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑉𝑠𝑡

• 𝒊: input gate, how much of the new 

information will be let through the memory 

cell. 

• 𝒇: forget gate, responsible for information 

should be thrown away from memory cell. 

• 𝒐: output gate, how much of the information 

will be passed to expose to the next time 

step.

• 𝒈: self-recurrent which is equal to standard 

RNN

• 𝒄𝒕: internal memory of the memory cell 

• 𝒔𝒕: hidden state 

• 𝐲: final output

LSTM Memory Cell



LSTM architectures example

• Each green box is now an entire LSTM or GRU 

unit

• Also keep in mind each box is an array of units

Time
X(t)

Y(t)



Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units. 

• Can have multiple layers of LSTM units in either direction

– Its also possible to have MLP feed-forward layers between the hidden layers..

• The output nodes (orange boxes) may be complete MLPs

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)



Some typical problem settings

• Lets consider a few typical problems

• Issues:

– How to define the divergence()

– How to compute the gradient

– How to backpropagate

– Specific problem: The constant error carousel..



Time series prediction using NARX nets

• NARX networks are commonly used for scalar time series prediction

– All boxes are scalar

– Sigmoid activations are commonly used in the hidden layer(s)

• Linear activation in output layer

• The network is trained to minimize the L2 divergence between desired and actual output

– NARX networks are less susceptible to vanishing gradients than conventional RNNs

– Training often uses methods other than backprop/gradient descent, e.g. simulated annealing or genetic 
algorithms



Example of Narx Network

• “Solar and wind forecasting by NARX neural networks,”  Piazza, Piazza and Vitale, 
2016

• Data: hourly global solar irradiation (MJ/m2 ), hourly wind speed (m/s) measured 
at two meters above ground level and the mean hourly temperature recorded 
during seven years, from 2002 to 2008 

• Target: Predict solar irradiation and wind speed from temperature readings

Inputs may use either past 
predicted output values, or 
past true values or the past 
error in prediction



Example of NARX Network: Results

• Used GA to train the net.

• NARX nets are generally the structure of choice 
for time series prediction problems



Which open source project?



Language modelling using RNNs

• Problem:  Given a sequence of words (or 
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??



Language modelling: Representing 
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) 

order
• E.g.  [ A  AARDVARD AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 
zeros and a single 1 (in the position of the word in the 
ordered list of words)

• Characters can be similarly represented
– English will require about 100 characters, to include both 

cases, special characters such as commas, hyphens, 
apostrophes, etc., and the space character



Predicting words

• Given one-hot representations of 𝑊1…𝑊𝑛−1, predict 𝑊𝑛

• Dimensionality problem: All inputs 𝑊1…𝑊𝑛−1 are both 
very high-dimensional and very sparse

𝑊𝑛 = 𝑓 W_1,𝑊1, … ,𝑊𝑛−1

Four score and seven years ???

Nx1 one-hot vectors

𝑓()

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

⋮

0
1
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑊𝑛



Predicting words

• Given one-hot representations of 𝑊1…𝑊𝑛−1, predict 𝑊𝑛

• Dimensionality problem: All inputs 𝑊1…𝑊𝑛−1 are both 
very high-dimensional and very sparse

𝑊𝑛 = 𝑓 W_1,𝑊1, … ,𝑊𝑛−1

Four score and seven years ???

Nx1 one-hot vectors

𝑓()

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

⋮

0
1
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑊𝑛



The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit 
cube

– Actual volume of space used = 0
• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: 𝒪
𝑁

2𝑁

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)



Why one-hot representation

• The one-hot representation makes no assumptions about the relative 
importance of words

– All word vectors are the same length

• It makes no assumptions about the relationships between words

– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)



Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace

– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪
𝑁

2𝑀

– If properly learned, the distances between projected points will capture semantic 
relations between the words

(1,0,0)

(0,1,0)

(0,0,1)



Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪
𝑁

2𝑀

– If properly learned, the distances between projected points will capture semantic relations 
between the words

• This will also require linear transformation (stretching/shrinking/rotation) of the subspace

(1,0,0)

(0,1,0)

(0,0,1)



The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊𝑖 by 𝑃𝑊𝑖

– 𝑃 is an 𝑀 × 𝑁 matrix

– 𝑃𝑊𝑖 is now an 𝑀-dimensional vector

– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

𝑊𝑛 = 𝑓 𝑃𝑊1, 𝑃𝑊2, … , 𝑃𝑊𝑛−1

Four score and seven years ???

𝑓()

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

⋮

0
1
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑊𝑛

𝑃

𝑃

𝑃

(1,0,0)

(0,1,0)

(0,0,1)



“Projection”

• P is a simple linear transform

• A single transform can be implemented as a layer of M neurons with linear activation

• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with 
tied weights

𝑊𝑛 = 𝑓 𝑃𝑊1, 𝑃𝑊2, … , 𝑃𝑊𝑛−1

(1,0,0)

(0,1,0)

(0,0,1)

⋮ ⋮

⋮ ⋮

𝑓()

0
1
⋮
0
0

𝑊𝑛
⋮ ⋮

⋮

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑁
𝑀



Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003

– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional 
representations 𝑃𝑊 of words

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊4

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑃

𝑊8

𝑃

𝑊9

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10



Alternative models to learn 
projections

• Soft bag of words: Predict word based on words in 
immediate context

– Without considering specific position

• Skip-grams:  Predict adjacent words based on current 
word

• More on these in a future lecture 

𝑃

Mean pooling

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑊4

𝑃

𝑊7

𝑊5 𝑊6 𝑊8 𝑊9 𝑊10𝑊4

Color indicates
shared parameters



Generating Language: The model

• The hidden units are (one or more layers of) LSTM units

• Trained via backpropagation from a lot of text

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊4

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑃

𝑊8

𝑃

𝑊9

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10𝑊2 𝑊3 𝑊4



Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3



Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑊4



Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊5𝑊4



Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination
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Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)



Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/



Speech recognition using Recurrent 
Nets

• Recurrent neural networks (with LSTMs) can be 
used to perform speech recognition

– Input: Sequences of audio feature vectors

– Output: Phonetic label of each vector
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Speech recognition using Recurrent 
Nets

• Alternative: Directly output phoneme, character or word sequence

• Challenge: How to define the loss function to optimize for training

– Future lecture

– Also homework
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CNN-LSTM-DNN for speech recognition

• Ensembles of RNN/LSTM, DNN, & Conv
Nets (CNN) :

• T. Sainath,  O. Vinyals, A. Senior, H. Sak. 
“Convolutional, Long Short-Term Memory, 
Fully Connected Deep Neural Networks,” 
ICASSP 2015.



Translating Videos to Natural Language Using Deep 
Recurrent Neural Networks 

Translating Videos to Natural Language Using Deep Recurrent Neural Networks 
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015. 





Summary

• Recurrent neural networks are more powerful than MLPs
– Can use causal (one-direction) or non-causal (bidirectional) context to make 

predictions
– Potentially Turing complete

• LSTM structures are more powerful than vanilla RNNs
– Can “hold” memory for arbitrary durations

• Many applications
– Language modelling

• And generation

– Machine translation
– Speech recognition
– Time-series prediction
– Stock prediction
– Many others..



Not explained

• Can be combined with CNNs

– Lower-layer CNNs to extract features for RNN

• Can be used in tracking

– Incremental prediction


