
Reinforcement Learning

Summer 2017

Defining MDPs, Planning

time
u

n
d

er
st

an
d

ab
ili

ty
You are here

Slide 10

0

Markov Process

• Where you will go depends only on where you
are

Markov Process: Information state

• The information state of a Markov process

may be different from its physical state

This spider doesn’t like to turn back

Markov Reward Process

• Random wandering through states will
occasionally win you a reward

The Fly Markov Reward Process

• There are, in fact, only four states, not eight

– Manhattan distance between fly and spider = 0 (s0)

– Distance between fly and spider = 1 (s1)

– Distance between fly and spider = 2 (s2)

– Distance between fly and spider = 3 (s3)

• Can, in fact, redefine the MRP entirely in terms of these 4 states

s3 s2 s1 s0

1.0

1.0

1/3 2/3

1/3
2/3

R=0R=-1R=-1R=-1

The discounted return

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ =

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘

• Total future reward all the way to the end

Markov Decision Process

• Markov Reward Process with following change:

– Agent has real agency

– Agent’s actions modify environment’s behavior

c1
c2

c3

c4

c5

c6

c7

c8

The Fly Markov Decision Process
s0

Process
ends

s1

s2 s1

1

a+

s1

a-

s2
a+ a-

s0 s2

1/3

2/3

s3 s2

1

s3

a-

s1 s3

1/3

2/3

1.0

Policy

• The policy is the agent’s choice of action in
each state

– May be stochastic

c2

c3

c4

c5

c6

c7

c8

c1

The state value function of an MDP

• The expected return from any state depends

on the policy you follow

• We will index the value of any state by the

policy to indicate this

𝑣𝜋 𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

Bellman Expectation Equation for State Value Functions of an MDP

Note: Although reward was not dependent on action for the fly example,
more generally it will be

The action value function of an MDP

• The expected return from any state under a

given policy, when you follow a specific action

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

Bellman Expectation Equation for Action Value Functions of an MDP

The Bellman Expectation Equations

• The Bellman expectation equation for state value

function

𝑣𝜋 𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

• The Bellman expectation equation for action value

function

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎

𝑎∈𝒜

𝜋 𝑎|𝑠′ 𝑞𝜋 𝑠′, 𝑎

Computing value functions for the
MDP

• Finding the state and/or action value functions for the MDP:

– Given complete MDP (all transition probabilities 𝑃𝑠,𝑠′
𝑎 , expected

rewards 𝑅𝑠
𝑎, and discount 𝛾)

– and a policy 𝜋

– find all value terms 𝑣𝜋 𝑠 and/or 𝑞𝜋 𝑠, 𝑎

• The Bellman expectation equations are simultaneous

equations that can be solved for the value functions

– Although this will be computationally intractable for very large

state spaces

Optimal Policies

• Different policies can result in different value functions

• What is the optimal policy?

• The optimal policy is the policy that will maximize the
expected total discounted reward at every state:
𝐸 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝐸

𝑘=0

∞

𝛾𝑘𝑟𝑡+𝑘 |𝑆𝑡 = 𝑠

• Why do we consider the discounted return, rather than
the actual return σ𝑘=0

∞ 𝑟𝑡+𝑘?

The optimal policy theorem

• Theorem: For any MDP there exists an optimal policy 𝜋∗
that is better than or equal to every other policy:

𝜋∗ ≥ 𝜋 ∀𝜋

• Corollary: If there are multiple optimal policies
𝜋𝑜𝑝𝑡1, 𝜋𝑜𝑝𝑡2, … all of them achieve the same value function

𝑣𝜋𝑜𝑝𝑡𝑖 𝑠 = 𝑣∗ 𝑠 ∀𝑠

• All optimal policies achieve the same action value function

𝑞𝜋𝑜𝑝𝑡𝑖 𝑠, 𝑎 = 𝑞∗ 𝑠, 𝑎 ∀𝑠, 𝑎

The optimal value function

𝜋∗ 𝑎 𝑠 = ൝
1 𝑓𝑜𝑟 argmax

𝑎′
𝑞∗ 𝑠, 𝑎′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Which gives us
𝑣∗ 𝑠 = max

𝑎
𝑞∗ 𝑠, 𝑎

Pictorially

• Blank circles are states, filled dots are state-
action pairs

𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

𝑣∗ 𝑠
Figures from Sutton

𝑞∗ 𝑠, 𝑎1 𝑞∗ 𝑠, 𝑎2 𝑞∗ 𝑠, 𝑎3

Backup Diagram

The optimal value function

𝜋∗ 𝑎 𝑠 = ൝
1 𝑓𝑜𝑟 argmax

𝑎′
𝑞∗ 𝑠, 𝑎′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Which gives us
𝑣∗ 𝑠 = max

𝑎
𝑞∗ 𝑠, 𝑎

• But, for the optimal policy we also have

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

Backup Diagram

𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

𝑣∗ 𝑠
Figures from Sutton

𝑞∗ 𝑠, 𝑎𝑖

𝑣∗ 𝑠′

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

Backup Diagram

𝑣∗ 𝑠 = max
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

𝑣∗ 𝑠
Figures from Sutton

𝑞∗ 𝑠, 𝑎𝑖

𝑣∗ 𝑠′

Backup Diagram

Figures from Sutton

𝑞∗ 𝑠, 𝑎

𝑣∗ 𝑠′

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

Backup Diagram

Figures from Sutton

𝑞∗ 𝑠, 𝑎

𝑣∗ 𝑠′

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

𝑞∗ 𝑠′, 𝑎′

𝑣∗ 𝑠′ = max
𝑎′

𝑞∗ 𝑠′, 𝑎′

Backup Diagram

Figures from Sutton

𝑞∗ 𝑠, 𝑎

𝑣∗ 𝑠′

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 max

𝑎′
𝑞∗ 𝑠′, 𝑎′

𝑞∗ 𝑠′, 𝑎′

Bellman Optimality Equations

• Optimal value function equation

𝑣∗ 𝑠 = max
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

• Optimal action value equation

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 max

𝑎′
𝑞∗ 𝑠′, 𝑎′

Optimality Relationships

• Given the MDP: 𝒮,𝒫,𝒜,ℛ, 𝛾

• Given the optimal action value functions, the optimal value function can
be found

𝑣∗ 𝑠 = max
𝑎

𝑞∗ 𝑠, 𝑎

• Given the optimal value function, the optimal action value function can be
found

𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗ 𝑠′

• Given the optimal action value function, the optimal policy can be found

𝜋∗ 𝑎 𝑠 = ൝
1 𝑓𝑜𝑟 argmax

𝑎′
𝑞∗ 𝑠, 𝑎′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

“Solving” the MDP

• Solving the MDP equates to finding the optimal policy
𝜋∗ 𝑎 𝑠

• Which is equivalent to finding the optimal value function
𝑣∗ 𝑠

• Or finding the optimal action value function 𝑞∗ 𝑠, 𝑎

• Various solutions will estimate one or the other

– Value based solutions solve for 𝑣∗ 𝑠 and 𝑞∗ 𝑠, 𝑎 and derive
the optimal policy from them

– Policy based solutions directly estimate 𝜋∗ 𝑎 𝑠

Solving the Bellman Optimality
Equation

• No closed form solutions

• Solutions are iterative

• Given the MDP (Planning):
– Value iterations

– Policy iterations

• Not given the MDP (Reinforcement Learning):
– Q-learning

– SARSA..

• QUESTIONS before we dive?

Planning with an MDP

• Problem:

– Given: an MDP 𝒮,𝒫,𝒜,ℛ, 𝛾

– Find: Optimal policy 𝜋∗

• Can either

– Value-based Solution: Find optimal value (or action

value) function, and derive policy from it OR

– Policy-based Solution: Find optimal policy directly

Value-based Planning

• “Value”-based solution

• Breakdown:

– Prediction: Given any policy 𝜋 find value function
𝑣𝜋 𝑠

– Control: Find the optimal policy

Value-based Planning

• “Value”-based solution

• Breakdown:

– Prediction: Given any policy 𝜋 find value function
𝑣𝜋 𝑠

– Control: Find the optimal policy

Preliminaries

• How do we represent the value function?

• Table:
– Value function

• 𝑠 → 𝑣𝜋(𝑠)

• For a process with 𝑁 discrete states, must store/compute 𝑁
unique values

– Action value functions

• 𝑠, 𝑎 → 𝑞𝜋(𝑠, 𝑎)

• For a process with 𝑁 discrete states and 𝑀 discrete actions, must
store/compute 𝑁𝑀 unique values

• Later we will see how to represent these when the
number of states/actions is too large or continuous

The Bellman Expectation Equation for
the value function

𝑣𝜋 𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

• In vector form

𝑣𝜋 𝑠1
𝑣𝜋 𝑠2

⋮
𝑣𝜋 𝑠𝑁

=

𝑅𝑠1
𝑅𝑠2
⋮

𝑅𝑠𝑁

+ 𝛾

𝑃𝑠1,𝑠1 𝑃𝑠2,𝑠1 ⋯ 𝑃𝑠𝑁,𝑠1
𝑃𝑠1,𝑠2 𝑃𝑠2,𝑠2 ⋯ 𝑃𝑠𝑁,𝑠2
⋮ ⋮ ⋱ ⋮

𝑃𝑠1,𝑠𝑁 𝑃𝑠2,𝑠𝑁 ⋯ 𝑃𝑠𝑁,𝑠𝑁

𝑣𝜋 𝑠1
𝑣𝜋 𝑠2

⋮
𝑣𝜋 𝑠𝑁

• Where

– 𝑅𝑠 = σ𝑎∈𝒜 𝜋 𝑎|𝑠 𝑅𝑠
𝑎

– 𝑃𝑠,𝑠′ = σ𝑎∈𝒜 𝜋 𝑎|𝑠 σ𝑠′ 𝑃𝑠,𝑠′
𝑎

The Bellman Expectation Equation for
the value function

𝑣𝜋 𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

• In vector form

𝑣𝜋 𝑠1
𝑣𝜋 𝑠2

⋮
𝑣𝜋 𝑠𝑁

=

𝑅𝑠1
𝑅𝑠2
⋮

𝑅𝑠𝑁

+ 𝛾

𝑃𝑠1,𝑠1 𝑃𝑠2,𝑠1 ⋯ 𝑃𝑠𝑁,𝑠1
𝑃𝑠1,𝑠2 𝑃𝑠2,𝑠2 ⋯ 𝑃𝑠𝑁,𝑠2
⋮ ⋮ ⋱ ⋮

𝑃𝑠1,𝑠𝑁 𝑃𝑠2,𝑠𝑁 ⋯ 𝑃𝑠𝑁,𝑠𝑁

𝑣𝜋 𝑠1
𝑣𝜋 𝑠2

⋮
𝑣𝜋 𝑠𝑁

• Where

– 𝑅𝑠 = σ𝑎∈𝒜 𝜋 𝑎|𝑠 𝑅𝑠
𝑎

– 𝑃𝑠,𝑠′ = σ𝑎∈𝒜 𝜋 𝑎|𝑠 σ𝑠′ 𝑃𝑠,𝑠′
𝑎

𝒱𝜋 = ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋

Solving the MDP

𝒱𝜋 = ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋

• Given the expected rewards at every state, the

transition probability matrix, the discount factor

and the policy:

𝒱𝜋 = I − 𝛾𝒫𝜋
−1ℛ𝜋

• Easy for processes with a small number of states

• Matrix inversion O(N3); intractable for large state

spaces

What about the action value
function?

• The Bellman expectation equation for action

value function

𝑞𝜋 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎

𝑎∈𝒜

𝜋 𝑎|𝑠′ 𝑞𝜋 𝑠′, 𝑎

𝑄𝜋 = ℛ𝜋,𝑄 + 𝛾𝒫𝜋,𝑄𝑄𝜋

𝑁𝑀× 1 𝑁𝑀× 1 𝑁𝑀 ×𝑁𝑀 𝑁𝑀× 1

Even worse!!

So how do we solve these

• The equations are too large, how do we solve
them?

• First, a little lesson – from middle school…

What they never taught you in school

• Consider the following equation:
𝑎𝑥 = 𝑏

• Where 0 < 𝑎 < 2

• Trivial solution: 𝑥 = 𝑎−1𝑏 =
𝑏

𝑎

• But my CPU does not permit division..

– How do I solve this?

What they never taught you in school

• Must solve the following without division
𝑎𝑥 = 𝑏

– where 0 < 𝑎 < 2

• Rewrite as follows

𝑥 = 1 − 𝑎 𝑥 + 𝑏

• The following iteration solves the problem:

𝑥(𝑘+1) = 1 − 𝑎 𝑥(𝑘) + 𝑏

• Can start with any 𝑥(0)

• Proof??

What they never taught you in school

• Must solve the following without division
𝑎𝑥 = 𝑏

– where 0 < 𝑎 < 2

• Rewrite as follows

𝑥 = 1 − 𝑎 𝑥 + 𝑏

• The following iteration solves the problem:

𝑥(𝑘+1) = 1 − 𝑎 𝑥(𝑘) + 𝑏

• Can start with any 𝑥(0)

• Proof?? Hint: 0 < 𝑎 < 2 ⇒ 1− a < 1

What they never taught you in school

• Consider any vector equation
𝐱 = 𝐀𝐱 + 𝐛

– Where all Eigen values 𝜆 𝐀 ≤ 1
• And some extra criteria…

– The square submatrix of (𝐈 − 𝐀) corresponding to non-zero
entries of 𝐛 is full rank

– The square submatrix of (𝐈 − 𝐀) corresponding to zero entries of
𝐛 is an identity matrix

• The following iteration solves the problem:

𝐱(𝑘+1) = 𝐀𝐱(𝑘) + 𝐛

Eigen values of a probability matrix

• For any Markov transition probability matrix
𝒫, all Eigenvalues have magnitude less than or
equal to 1

𝜆 𝒫 ≤ 1

Solving for the value function

𝒱𝜋 = ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋

• This can be solved by following iteration

starting from any initial vector

𝒱𝜋
(𝑘+1)

= ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋
(𝑘)

Solving for the value function

𝒱𝜋 = ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋

• This can be solved by following iteration starting from

any initial vector

𝒱𝜋
(𝑘+1)

= ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋
(𝑘)

• But how did that help if we need infinite iterations to

converge?

– Solution: Stop when the changes becomes small

𝒱𝜋
(𝑘+1)

−𝒱𝜋
(𝑘+1)

< 𝜀

Solving for the value function

𝒱𝜋 = ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋

• This can be solved by following iteration starting from

any initial vector

𝒱𝜋
(𝑘+1)

= ℛ𝜋 + 𝛾𝒫𝜋𝒱𝜋
(𝑘)

• But how did that help if we need infinite iterations to

converge?

– Solution: Stop when the changes becomes small

𝒱𝜋
(𝑘+1)

−𝒱𝜋
(𝑘+1)

< 𝜀

Actual Implementation

• Initialize 𝑣𝜋
(0)

𝑠 for all states

• Update

𝑣𝜋
(𝑘+1)

𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋

(𝑘)
𝑠′

• Update may be in batch mode

– Keep sweep through all states to compute 𝑣𝜋
(𝑘+1)

𝑠
– Update 𝑘 = 𝑘 + 1

• Or incremental
– Sweep through all the states performing

𝑣𝜋 𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

Actual Implementation

• Initialize 𝑣𝜋
(0)

𝑠 for all states

• Update

𝑣𝜋
(𝑘+1)

𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋

(𝑘)
𝑠′

• Update may be in batch mode

– Keep sweep through all states to compute 𝑣𝜋
(𝑘+1)

𝑠
– Update 𝑘 = 𝑘 + 1

• Or incremental
– Sweep through all the states performing

𝑣𝜋 𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑠′

This is an instance of dynamic programming:

dynamic programming (also known as dynamic optimization) is a method
for solving a complex problem by breaking it down into a collection of
simpler subproblems, solving each of those subproblems just once, and
storing their solutions. The next time the same subproblem occurs, instead
of recomputing its solution, one simply looks up the previously computed
solution, thereby saving computation time at the expense of a (hopefully)
modest expenditure in storage space. (Each of the subproblem solutions is
indexed in some way, typically based on the values of its input parameters,
so as to facilitate its lookup.) (from wikipedia)

An Example

• All squares, except shaded square have reward -1,
shaded square has reward 0

• Policy: Random – can step in any of the four directions
with equal probability

– If you run into a wall, you just return to the square

• Find the value of being in each square

Example from Sutton

The Gridworld Example

• Actual iterations use random policy
• Right column shows greedy policy according to current value function

𝑣𝜋
(𝑘+1)

𝑠 =

𝑎∈𝒜

𝜋 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋

(𝑘)
𝑠′

The Gridworld Example

• Iterations use random policy

• Greedy policy converges to optimal long before value function of random
policy converges!

Value-based Planning

• “Value”-based solution

• Breakdown:

– Prediction: Given any policy 𝜋 find value function
𝑣𝜋 𝑠

– Control: Find the optimal policy

Revisit the gridworld

Example from Sutton

Revisit the gridworld

• Actual iterations use random policy
• Right column shows greedy policy according to current value function

Revisit the gridworld

• Iterations use random policy

• Greedy policy converges to optimal long before value function of random
policy converges!

Finding an optimal policy

• Start with any policy, e.g. random policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):
– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Compute action value function ∀𝑠, 𝑎:

𝑞𝜋(𝑘) 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋(𝑘) 𝑠′

– Find the greedy policy

𝜋 𝑘+1 𝑎|𝑠 = ൝
1 𝑓𝑜𝑟 𝑎 = argmax

𝑎′
𝑞𝜋(𝑘) 𝑠, 𝑎′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Finding an optimal policy: Compact

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 𝑎|𝑠 = ൞
1 𝑓𝑜𝑟 𝑎 = argmax

𝑎′
𝑅𝑠
𝑎′ + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎′ 𝑣𝜋(𝑘) 𝑠′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Finding an optimal policy: Shorthand

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

THIS IS KNOWN AS POLICY ITERATION
In each iteration, we find a policy, and then find its value

Policy Iteration

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

• This will provably converge to the optimal policy 𝜋∗
• In the Gridworld example this converged in one iteration

• More generally, it will take several iterations

– Convergence when policy no longer changes

Generalized Policy Iteration

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use any algorithm to find the value function 𝑣𝜋(𝑘) 𝑠

– Use any algorithm to find an update policy

𝜋 𝑘+1 s = 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑣𝜋(𝑘) 𝑠

Such that 𝜋 𝑘+1 s ≥ 𝜋 𝑘 s

• Guaranteed to converge to the optimal policy

Generalized Policy Iteration

• Start with any policy 𝜋(0)

𝑉 𝜋

• Guaranteed to converge to the optimal policy

Evaluation (anyhow)

Improvement (anyhow)

Optimality theorem

• All states will hit their optimal value together

• Theorem:

A policy 𝜋 𝑎|𝑠 has optimal value
𝑣𝜋 𝑠 = 𝑣∗ 𝑠

in any state 𝑠 if and only if for every state 𝑠′
reachable from 𝑠,

𝑣𝜋 𝑠′ = 𝑣∗ 𝑠′

Policy Iteration

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

• This will provably converge to the optimal policy 𝜋∗
• In the Gridworld example this converged in one iteration

• More generally, it will take several iterations

– Convergence when policy no longer changes

Policy Iteration

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

• This will provably converge to the optimal policy 𝜋∗
• In the Gridworld example this converged in one iteration

• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Revisit the gridworld

• Iterations use random policy

• Greedy policy converges to optimal long before value function of random
policy converges!

Policy Iteration

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

• This will provably converge to the optimal policy 𝜋∗
• In the Gridworld example this converged in one iteration

• More generally, it will take several iterations

– Convergence when policy no longer changes

In the gridworld example we didn’t even need to run this to convergence

The optimal policy was found long before the actual value function converged
even in the first upper iteration

Do we even need the prediction DP to converge?

Optimal policy estimation

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use 𝐿 iterations of prediction DP to find the value function

𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

• This will provably converge to the optimal policy 𝜋∗

Optimal policy estimation

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use 1 iterations of prediction DP to find the value

function 𝑣𝜋(𝑘) 𝑠

– Find the greedy policy

𝜋 𝑘+1 s = 𝑔𝑟𝑒𝑒𝑑𝑦 𝑣𝜋(𝑘) 𝑠

Optimal policy estimation

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use 1 iterations of prediction DP to find the value function
𝑣𝜋(𝑘) 𝑠

𝑣𝜋 𝑘 𝑠 =

𝑎∈𝒜

𝜋 𝑘 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑘 𝑠′

– Find the greedy policy

𝜋 𝑘+1 s = argmax
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋(𝑘) 𝑠′

Optimal policy estimation

• Start with any policy 𝜋(0)

• Iterate (𝑘 = 0 … convergence):

– Use 1 iterations of prediction DP to find the value function
𝑣𝜋(𝑘) 𝑠

𝑣𝜋 𝑘 𝑠 =

𝑎∈𝒜

𝜋 𝑘 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑘 𝑠′

– Find the greedy policy

𝜋 𝑘+1 s = argmax
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋(𝑘) 𝑠′

BUG

Reordering and writing carefully
• Start with any initial value function 𝑣𝜋 0 𝑠

• Iterate (𝑘 = 1 … convergence):

– Find the greedy policy

𝜋 𝑘 𝑎|𝑠 = ൞
1 𝑓𝑜𝑟 𝑎 = argmax

𝑎′
𝑅𝑠
𝑎′ + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎′ 𝑣𝜋(𝑘−1) 𝑠′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– Use 1 iterations of prediction DP to find the value function 𝑣𝜋(𝑘) 𝑠

𝑣𝜋 𝑘 𝑠 =

𝑎∈𝒜

𝜋 𝑘 𝑎|𝑠 𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑘−1 𝑠′

Merging

• Start with any initial value function 𝑣𝜋 0 𝑠

• Iterate (𝑘 = 1 … convergence):

– Update the value function

𝑣𝜋 𝑘 𝑠 = max
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣𝜋 𝑘−1 𝑠′

• Note: no explicit policy estimation

– Directly learns value

– The subscript 𝜋 is a misnomer

Value Iteration

• Start with any initial value function 𝑣∗
(0)

𝑠

• Iterate (𝑘 = 1 … convergence):

– Update the value function

𝑣∗
(𝑘)

𝑠 = max
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗

(𝑘−1)
𝑠′

• Note: no explicit policy estimation

• Directly learning optimal value function

• Guaranteed to give you optimal value function at convergence

– But intermediate value function estimates may not represent any
policy

Value iteration

𝑣∗
(𝑘)

𝑠 = max
𝑎

𝑅𝑠
𝑎 + 𝛾

𝑠′

𝑃𝑠,𝑠′
𝑎 𝑣∗

(𝑘−1)
𝑠′

• Each state simply inherits the cost of its best
neighbour state

– Cost of neighbor is the value of the neighbour plus
cost of getting there

Value Iteration Example

• Target: Find the shortest path

• Every step costs -1

Practical Issues

• Updates can be batch mode

– Explicitly compute 𝑣∗
(𝑘+1)

𝑠 from 𝑣∗
(𝑘)

𝑠 for all states

– Set k = k+1

• Or asynchronous

– Compute 𝑣∗ 𝑠 in place while we sweep over states

– 𝑣∗ 𝑠 ← max
𝑎

𝑅𝑠
𝑎 + 𝛾σ𝑠′𝑃𝑠,𝑠′

𝑎 𝑣∗ 𝑠

Recap

• Learned about prediction

– Estimating value function given MDP and policy

• Learned Policy iteration

– Iterate prediction and policy estimation

• Learned about Value iteration

– Directly estimate optimal value function

Alternate strategy

• Worked with Value function

– For N states, estimates N terms

• Could alternately work with action-value
function

– For M actions, must estimate MN terms

• Much more expensive

• But more useful in some scenarios

Next Up

• We’ve worked so far with planning

– Someone gave us the MDP

• Next: Reinforcement Learning

– MDP unknown..

Problem so far

• Given all details of the MDP
– Compute optimal value function

– Compute optimal action value
function

– Compute optimal policy

• This is the problem of planning

• Problem: In real life, nobody gives
you the MDP
– How do we plan???

Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without
knowing the underlying MDP?

– Model-free planning

• How do you find the optimal policy, without
knowing the underlying MDP?

– Model-free control

Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without knowing the underlying
MDP?

– Model-free planning

• How do you find the optimal policy, without knowing the underlying MDP?

– Model-free control

• Assumption: We can identify the states, know the actions, and measure
rewards, but have no knowledge of the system dynamics

– The key knowledge required to “solve” for the best policy

– A reasonable assumption in many discrete-state scenarios

– Can be generalized to other scenarios with infinite or unknowable state

Model-Free Assumption

• Can see the fly

• Know the distance to the fly

• Know possible actions (get closer/farther)

• But have no idea of how the fly will respond

– Will it move, and if so, to what corner

Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without
knowing the underlying MDP?

– Model-free planning

• How do you find the optimal policy, without
knowing the underlying MDP?

– Model-free control

Model-Free Assumption

• Can see the fly and distance to the fly

• But have no idea of how the fly will respond to actions

– Will it move, and if so, to what corner

• But will always try to reduce distance to fly (have a known, fixed, policy)

• What is the value of being a distance D from the fly?

Methods

• Monte-Carlo Learning

• Temporal-Difference Learning

– TD(1)

– TD(K)

– TD(𝜆)

Monte-Carlo learning to learn the
value of a policy 𝜋

• Just “let the system run” while following the policy 𝜋 and
learn the value of different states

• Procedure: Record several episodes of the following

– Take actions according to policy 𝜋

– Note states visited and rewards obtained as a result

– Record entire sequence:

– 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, … , 𝑆𝑇

– Assumption: Each “episode” ends at some time

• Estimate value functions based on observations by counting

Monte-Carlo Value Estimation

• Objective: Estimate value function 𝑣𝜋(𝑠) for every

state 𝑠, given recordings of the kind:

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, … , 𝑆𝑇

• Recall, the value function is the expected return:

𝑣𝜋 𝑠 = 𝐸 𝐺𝑡|𝑆𝑡 = 𝑠

= 𝐸 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−𝑡−1𝑅𝑇|𝑆𝑡 = 𝑠

• To estimate this, we replace the statistical expectation

𝐸 𝐺𝑡|𝑆𝑡 = 𝑠 by the empirical average 𝑎𝑣𝑔 𝐺𝑡|𝑆𝑡 = 𝑠

A bit of notation

• We actually record many episodes

– 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 1 = 𝑆11, 𝐴11 , 𝑅12, 𝑆12, 𝐴12, 𝑅13 , … , 𝑆1𝑇1
– 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 2 = 𝑆21 , 𝐴21 , 𝑅22 , 𝑆22, 𝐴22 , 𝑅23 , … , 𝑆2𝑇2
– …

– Different episodes may be different lengths

Counting Returns

• For each episode, we count the returns at all
times:

– 𝑆11, 𝐴11, 𝑅12, 𝑆12, 𝐴12, 𝑅13, 𝑆13, 𝐴13, 𝑅14,… , 𝑆1𝑇1

• Return at time t

– 𝐺1,1 = 𝑅12 + 𝛾𝑅13 +⋯+ 𝛾
𝑇1−2𝑅1𝑇1

– 𝐺1,2 = 𝑅13 + 𝛾𝑅14 +⋯+ 𝛾
𝑇1−3𝑅1𝑇1

– …

– 𝐺𝑡 = 𝑅1,𝑡+1 + 𝛾𝑅1,𝑡+2 +⋯+ 𝛾
𝑇1−𝑡−2𝑅1𝑇1

𝐺1,1

Counting Returns

• For each episode, we count the returns at all
times:

– 𝑆11, 𝐴11, 𝑅12, 𝑆12, 𝐴12, 𝑅13, 𝑆13, 𝐴13, 𝑅14,… , 𝑆1𝑇1

• Return at time t

– 𝐺1,1 = 𝑅12 + 𝛾𝑅13 +⋯+ 𝛾
𝑇1−2𝑅1𝑇1

– 𝐺1,2 = 𝑅13 + 𝛾𝑅14 +⋯+ 𝛾
𝑇1−3𝑅1𝑇1

– …

– 𝐺𝑡 = 𝑅1,𝑡+1 + 𝛾𝑅1,𝑡+2 +⋯+ 𝛾
𝑇1−𝑡−2𝑅1𝑇1

𝐺1,2

Counting Returns

• For each episode, we count the returns at all
times:

– 𝑆11, 𝐴11, 𝑅12, 𝑆12, 𝐴12, 𝑅13, 𝑆13, 𝐴13, 𝑅14,… , 𝑆1𝑇1

• Return at time t

– 𝐺1,1 = 𝑅12 + 𝛾𝑅13 +⋯+ 𝛾
𝑇1−2𝑅1𝑇1

– 𝐺1,2 = 𝑅13 + 𝛾𝑅14 +⋯+ 𝛾
𝑇1−3𝑅1𝑇1

– …

– 𝐺1,𝑡 = 𝑅1,𝑡+1 + 𝛾𝑅1,𝑡+2 +⋯+ 𝛾
𝑇1−𝑡−2𝑅1𝑇1

Estimating the Value of a State

• To estimate the value of any state, identify the
instances of that state in the episodes:

– 𝑆11, 𝐴11, 𝑅12 , 𝑆12 , 𝐴12 , 𝑅13, 𝑆13, 𝐴13 , 𝑅14, … , 𝑆1𝑇1

• Compute the average return from those
instances

𝑣𝜋 𝑠𝑎 = 𝑎𝑣𝑔 𝐺1,1, 𝐺1,3, …

𝒔𝒂 𝑠𝑏 𝒔𝒂 …

Estimating the Value of a State

• For every state 𝑠

– Initialize: Count 𝑁 𝑠 = 0, Total return 𝑣𝜋 𝑠 = 0

– For every episode 𝑒
• For every time 𝑡 = 1…𝑇𝑒

– Compute 𝐺𝑡
– If (𝑆𝑡== 𝑠)

» 𝑁 𝑠 = 𝑁 𝑠 + 1

» 𝑣𝜋 𝑠 = 𝑣𝜋 𝑠 + 𝐺𝑡

– 𝑣𝜋 𝑠 = 𝑣𝜋 𝑠 /𝑁(𝑠)

• Can be done more efficiently..

Online Version
• For all 𝑠 Initialize: Count 𝑁 𝑠 = 0, Total return
𝑡𝑜𝑡𝑣𝜋 𝑠 = 0

• For every episode 𝑒

– For every time 𝑡 = 1…𝑇𝑒
• Compute 𝐺𝑡

• 𝑁 𝑆𝑡 = 𝑁 𝑆𝑡 + 1

• tot𝑣𝜋 𝑆𝑡 = 𝑡𝑜𝑡𝑣𝜋 𝑆𝑡 + 𝐺𝑡

– For every state 𝑠 : 𝑣𝜋 𝑠 = 𝑡𝑜𝑡𝑣𝜋 𝑠 /𝑁(𝑠)

• Updating values at the end of each episode

• Can be done more efficiently..

Monte Carlo estimation

• Learning from experience explicitly

• After a sufficiently large number of episodes, in
which all states have been visited a sufficiently
large number of times, we will obtain good
estimates of the value functions of all states

• Easily extended to evaluating action value
functions

Estimating the Action Value function

• To estimate the value of any state-action pair,
identify the instances of that state-action pair
in the episodes:

– 𝑆1, 𝐴1, 𝑅2, 𝑆2 , 𝐴2, 𝑅3, 𝑆3 , 𝐴3, 𝑅4, … , 𝑆𝑇

• Compute the average return from those
instances

𝑞𝜋 𝑠𝑎, 𝑎𝑥 = 𝑎𝑣𝑔 𝐺1,1, …

𝒔𝒂 𝒂𝒙 𝑠𝑏 𝑎𝑦 𝒔𝒂 𝑎𝑦 …

Online Version

• For all 𝑠, 𝑎 Initialize: Count 𝑁 𝑠, 𝑎 = 0, Total value

𝑡𝑜𝑡𝑞𝜋 𝑠, 𝑎 = 0

• For every episode 𝑒

– For every time 𝑡 = 1…𝑇𝑒

• Compute 𝐺𝑡

• 𝑁 𝑆𝑡 , 𝐴𝑡 = 𝑁 𝑆𝑡 , 𝐴𝑡 + 1

• tot𝑞𝜋 𝑆𝑡, 𝐴𝑡 = 𝑡𝑜𝑡𝑞𝜋 𝑆𝑡 , 𝐴𝑡 + 𝐺𝑡

– For every 𝑠, 𝑎 : 𝑞 𝑠, 𝑎 = 𝑡𝑜𝑡𝑞𝜋 𝑠, 𝑎 /𝑁(𝑠, 𝑎)

• Updating values at the end of each episode

Monte Carlo: Good and Bad

• Good:

– Will eventually get to the right answer

– Unbiased estimate

• Bad:

– Cannot update anything until the end of an episode
• Which may last for ever

– High variance! Each return adds many random values

– Slow to converge

Online methods for estimating the
value of a policy: Temporal

Difference Leaning (TD)

• Idea: Update your value estimates after every
observation

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

– Do not actually wait until the end of the episode

Update for S1 Update for S2 Update for S3

Incremental Update of Averages

• Given a sequence 𝑥1, 𝑥2, 𝑥3, … a running estimate of
their average can be computed as

𝜇𝑘 =
1

𝑘

𝑖=1

𝑘

𝑥𝑖

• This can be rewritten as:

𝜇𝑘 =
(𝑘 − 1)𝜇𝑘−1 + 𝑥𝑘

𝑘
• And further refined to

𝜇𝑘 = 𝜇𝑘−1 +
1

𝑘
𝑥𝑘 − 𝜇𝑘−1

Incremental Update of Averages

• Given a sequence 𝑥1 , 𝑥2, 𝑥3, … a running
estimate of their average can be computed as

𝜇𝑘 = 𝜇𝑘−1 +
1

𝑘
𝑥𝑘 − 𝜇𝑘−1

• Or more generally as
𝜇𝑘 = 𝜇𝑘−1 + 𝛼 𝑥𝑘 − 𝜇𝑘−1

• The latter is particularly useful for non-stationary
environments

Incremental Updates

• Example of running average of a uniform
random variable

𝜇𝑘 = 𝜇𝑘−1 +
1

𝑘
𝑥𝑘 − 𝜇𝑘−1

𝜇𝑘 = 𝜇𝑘−1 + 𝛼 𝑥𝑘 − 𝜇𝑘−1

𝛼 = 0.1

𝛼 = 0.05

𝛼 = 0.03

Incremental Updates

• Correct equation is unbiased and converges to true value

• Equation with 𝛼 is biased (early estimates can be expected
to be wrong) but converges to true value

𝜇𝑘 = 𝜇𝑘−1 +
1

𝑘
𝑥𝑘 − 𝜇𝑘−1

𝜇𝑘 = 𝜇𝑘−1 + 𝛼 𝑥𝑘 − 𝜇𝑘−1

𝛼 = 0.1

𝛼 = 0.05

𝛼 = 0.03

Updating Value Function
Incrementally

• Actual update

𝑣𝜋 𝑠 =
1

𝑁(𝑠)

𝑖=1

𝑁(𝑠)

𝐺𝑡(𝑖)

• 𝑁(𝑠) is the total number of visits to state s across all

episodes

• 𝐺𝑡(𝑖) is the discounted return at the time instant of the i-th

visit to state 𝑠

Online update

• Given any episode

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

• Update the value of each state visited

𝑁 𝑆𝑡 = 𝑁 𝑆𝑡 + 1

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 +
1

𝑁(𝑆𝑡)
𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• Incremental version

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute Gt

Online update

• Given any episode

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

• Update the value of each state visited

𝑁 𝑆𝑡 = 𝑁 𝑆𝑡 + 1

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 +
1

𝑁(𝑆𝑡)
𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• Incremental version

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• Still an unrealistic rule
• Requires the entire track until the end of the episode to compute Gt

Problem

TD solution

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• But
𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1

• We can approximate 𝐺𝑡+1 by the expected
return at the next state 𝑆𝑡+1

Problem

Counting Returns

• For each episode, we count the returns at all times:

– 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

• Return at time t

– 𝐺1 = 𝑅2 + 𝛾𝑅3 +⋯+ 𝛾𝑇−2𝑅𝑇

– 𝐺2 = 𝑅3 + 𝛾𝑅4 +⋯+ 𝛾𝑇−3𝑅𝑇
– …

– 𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑇−𝑡−2𝑅𝑇

• Can rewrite as

– 𝐺1 = 𝑅2 + 𝛾𝐺2
• Or

– 𝐺1 = 𝑅2 + 𝛾𝑅3 + 𝛾2 𝐺3
– …

– 𝐺𝑡 = 𝑅𝑡+1 + σ𝑖=1
𝑁 𝛾𝑖 𝑅𝑡+1+𝑖 + 𝛾𝑁+1𝐺𝑡+1+𝑁

TD solution

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• But

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝐺𝑡+1

• We can approximate 𝐺𝑡+1 by the expected return at

the next state 𝑆𝑡+1 ≈ 𝑣𝜋 𝑆𝑡+1
𝐺𝑡 ≈ 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1

• We don’t know the real value of 𝑣𝜋 𝑆𝑡+1 but we can

“bootstrap” it by its current estimate

Problem

TD(1) true online update

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑣𝜋 𝑆𝑡

• Where

𝐺𝑡 ≈ 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1

• Giving us

– 𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 − 𝑣𝜋 𝑆𝑡

TD(1) true online update

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼𝛿𝑡

• Where

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 − 𝑣𝜋 𝑆𝑡

• 𝛿𝑡 is the TD error

– The error between an (estimated) observation of

𝐺𝑡 and the current estimate 𝑣𝜋 𝑆𝑡

TD(1) true online update

• For all 𝑠 Initialize: 𝑣𝜋 𝑠 = 0

• For every episode 𝑒

– For every time 𝑡 = 1…𝑇𝑒

• 𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1 − 𝑣𝜋 𝑆𝑡

• There’s a “lookahead” of one state, to know

which state the process arrives at at the next time

• But is otherwise online, with continuous updates

TD(1)
• Updates continuously – improve estimates as soon as you

observe a state (and its successor)

• Can work even with infinitely long processes that never
terminate

• Guaranteed to converge to the true values eventually

– Although initial values will be biased as seen before

– Is actually lower variance than MC!!

• Only incorporates one RV at any time

• TD can give correct answers when MC goes wrong

– Particularly when TD is allowed to loop over all learning
episodes

TD vs MC

• What are V(A) and V(B)

– Using MC

– Using TD(1), where you are allowed to repeatedly go over
the data

• NOT PRESENTED : THE RANDOM WALK
EXAMPLE

TD – look ahead further?

• TD(1) has a look ahead of 1 time step
𝐺𝑡 ≈ 𝑅𝑡+1 + 𝛾𝑣𝜋 𝑆𝑡+1

• But we can look ahead further out

– 𝐺𝑡(2) = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2 𝑣𝜋 𝑆𝑡+2

– …

– 𝐺𝑡(𝑁) = 𝑅𝑡+1σ𝑖=1
𝑁 𝛾𝑖 𝑅𝑡+1+𝑖 + 𝛾𝑁+1𝑣𝜋 𝑆𝑡+𝑁

TD(N) with lookahead

𝑣𝜋 𝑆𝑡 = 𝑣𝜋 𝑆𝑡 + 𝛼𝛿𝑡(𝑁)

• Where

𝛿𝑡(𝑁) = 𝑅𝑡+1 +
𝑖=1

𝑁

𝛾𝑖 𝑅𝑡+1+𝑖 + 𝛾𝑁+1𝑣𝜋 𝑆𝑡+𝑁 − 𝑣𝜋 𝑆𝑡

• 𝛿𝑡(𝑁) is the TD error with N step lookahead

•

• RANDOM WALK EXAMPLE: LOOKAHEAD IS
GOOD PLOTS

Lookahead is good

• Good: The further you look ahead, the better your
estimates get

• Problems:

– But you also get more variance

– At infinite lookahead, you’re back at MC

• Also, you have to wait to update your estimates

– A lag between observation and estimate

• So how much lookahead must you use

Looking Into The Future

• How much various TDs look into the future

• Which do we use?

Solution: Why choose?

• Each lookahead provides an estimate of Gt

• Why not just combine the lot with discounting?

TD(l)

• Combine the predictions from all lookaheads
with an exponentially falling weight

– Weights sum to 1.0

Something magical just happened

• TD(l) looks into the
infinite future

– I.e. we must have all
the rewards of the
future to compute our
updates

– How does that help?

The contribution of future rewards to
the present update

• All future rewards contribute to the update of
the value of the current state

TIME

1 − 𝜆

(1 − 𝜆)𝜆

(1 − 𝜆)𝜆2

(1 − 𝜆)𝜆3

(1 − 𝜆)𝜆4

(1 − 𝜆)𝜆5

(1 − 𝜆)𝜆6

Rt+1

Rt+2

Rt+3

Rt+4

Rt+5

Rt+6

Rt+7

St

St+1

St+2

St+3

St+4

St+5

St+6

St+7

The contribution of current reward to
past states

• All current reward contributes to the update
of the value of all past states!

TIME

1 − 𝜆

(1 − 𝜆)𝜆

(1 − 𝜆)𝜆2

(1 − 𝜆)𝜆3

(1 − 𝜆)𝜆4

(1 − 𝜆)𝜆5

(1 − 𝜆)𝜆6

Rt

TD(l) backward view

• The Eligibility trace:

– Keeps track of total weight for any state

• Which may have occurred at multiple times in the past

TIME

1 − 𝜆

(1 − 𝜆)𝜆

(1 − 𝜆)𝜆2

(1 − 𝜆)𝜆3

(1 − 𝜆)𝜆4

(1 − 𝜆)𝜆5

(1 − 𝜆)𝜆6

Rt

Add these weights to compute contribution
to red state..

TD(l)

• Maintain an eligibility trace for every state

• Computes total weight for the state until the
present time

TD(l)

• At every time, update the value of every state
according to its eligibility trace

• Any state that was visited will be updated

– Those that were not will not be, though

The magic of TD(l)

• Managed to get the effect of inifinite lookahead, by
performing infinite lookbehind

– Or at least look behind to the beginning

• Every reward updates the value of all states leading to the
reward!

– E.g., in a chess game, if we win, we want to increase the value of
all game states we visited, not just the final move

– But early states/moves must gain much less than later moves

• When 𝜆 = 1 this is exactly equivalent to MC

Story so far

• Want to compute the values of all states,
given a policy, but no knowledge of dynamics

• Have seen monte-carlo and temporal
difference solutions

– TD is quicker to update, and in many situations
the better soluton

– TD(l) actually emulates an infinite lookahead

• But we must choose good values of a and l

Optimal Policy: Control

• We learned how to estimate the state value
functions for an MDP whose transition
probabilities are unknown for a given policy

• How do we find the optimal policy?

Value vs. Action Value

• The solution we saw so far only computes the value functions of
states

• Not sufficient – to compute the optimal policy from value functions
alone, we will need extra information, namely transition
probabilities

– Which we do not have

• Instead, we can use the same method to compute action value
functions

– Optimal policy in any state : Choose the action that has the largest
optimal action value

Value vs. Action value

• Given only value functions, the optimal policy
must be estimated as:

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

• This is model free (no need for knowledge of
model parameters)

Problem of optimal control

• From a series of episodes of the kind:
𝑆1 , 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

• Find the optimal action value function 𝑞∗ 𝑠, 𝑎

– The optimal policy can be found from it

• Ideally do this online

– So that we can continuously improve our policy
from ongoing experience

Exploration vs. Exploitation

• Optimal policy search happens while gathering experience while
following a policy

• For fastest learning, we will follow an estimate of the optimal policy

• Risk: We run the risk of positive feedback

– Only learn to evaluate our current policy

– Will never learn about alternate policies that may turn out to be
better

• Solution: We will follow our current optimal policy 1 − 𝜖 of the time

– But choose a random action 𝜖 of the time

– The “epsilon-greedy” policy

GLIE Monte Carlo
• Greedy in the limit with infinite exploration

• Start with some random initial policy 𝜋

• Start the process at the initial state, and follow an action according to initial policy
𝜋

• Produce the episode

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

• Process the episode using the following online update rules:

• Compute the 𝜖-greedy policy for each state

𝜋 𝑎 𝑠 = ൞

1 − 𝜖 𝑓𝑜𝑟 𝑎 = 𝑎𝑟𝑔max
𝑎′

𝑄(𝑠, 𝑎′)

𝜖

𝑁𝑎 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Repeat

GLIE Monte Carlo
• Greedy in the limit with infinite exploration

• Start with some random initial policy 𝜋

• Start the process at the initial state, and follow an action according to initial policy
𝜋

• Produce the episode

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇

• Process the episode using the following online update rules:

• Compute the 𝜖-greedy policy for each state

𝜋 𝑎 𝑠 = ൞

1 − 𝜖 𝑓𝑜𝑟 𝑎 = 𝑎𝑟𝑔max
𝑎′

𝑄(𝑠, 𝑎′)

𝜖

𝑁𝑎 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Repeat

On-line version of GLIE: SARSA

• Replace 𝐺𝑡 with an estimate

• TD(1) or TD(l)

– Just as in the prediction problem

• TD(1) SARSA

SARSA
• Initialize 𝑄(𝑠, 𝑎) for all 𝑠, 𝑎

• Start at initial state 𝑆1

• Select an initial action 𝐴1

• For t = 1.. Terminate

– Get reward 𝑅𝑡
– Let system transition to new state 𝑆𝑡+1
– Draw 𝐴𝑡+1 according to 𝜖 -greedy policy

𝜋 𝑎 𝑠 = ൞

1 − 𝜖 𝑓𝑜𝑟 𝑎 = 𝑎𝑟𝑔max
𝑎′

𝑄(𝑠, 𝑎′)

𝜖

𝑁𝑎 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– Update

– 𝑄 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 −𝑄 𝑆𝑡 , 𝐴𝑡

SARSA(l)

• Again, the TD(1) estimate can be replaced by a TD(l)
estimate

• Maintain an eligibility trace for every state-action pair:

• Update every state-action pair visited so far

•

SARSA(l)

• For all 𝑠, 𝑎 initialize Q(𝑠, 𝑎)

• For each episode 𝑒

– For all 𝑠, 𝑎 initialize 𝐸 𝑠, 𝑎 = 0

– Initialize 𝑆1, 𝐴1

– For 𝑡 = 1…𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• Observe 𝑅𝑡+1, 𝑆𝑡+1
• Choose action 𝐴𝑡+1 using policy obtained from 𝑄

• 𝛿 = 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)

• 𝐸 𝑆𝑡 , 𝐴𝑡 += 1

• For all 𝑠, 𝑎

– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)

On-policy vs. Off-policy
• SARSA assumes you’re following the same policy that you’re learning

• Its possible to follow one policy, while learning from others

– E.g. learning by observation

• The policy for learning is the whatif policy

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4, … , 𝑆𝑇
መ𝐴2 መ𝐴3

• Modifies learning rule

𝑄 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 −𝑄 𝑆𝑡 , 𝐴𝑡

• to

𝑄 𝑆𝑡 , 𝐴𝑡 = 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, መ𝐴𝑡+1 − 𝑄 𝑆𝑡 , 𝐴𝑡

• Q will actually represent the action value function of the hypothetical
policy

hypothetical

SARSA: Suboptimality

• SARSA: From any state-action (S,A), accept
reward (R), transition to next state (S’), choose
next action(A’)

• Use TD rules to update:
𝛿 = 𝑅 + 𝛾𝑄 𝑆′, 𝐴′ − 𝑄 𝑆′, 𝐴′

𝛿

• Problem: which policy do we use to choose 𝐴′

SARSA: Suboptimality

• SARSA: From any state-action (S,A), accept reward (R),

transition to next state (S’), choose next action(A’)

• Problem: which policy do we use to choose 𝐴′

• If we choose the current judgment of the best action at

S’ we will become too greedy

– Never explore

• If we choose a sub-optimal policy to follow, we will

never find the best policy

Solution: Off-policy learning

• The policy for learning is the whatif policy

𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3, 𝑅4,… , 𝑆𝑇
መ𝐴2 መ𝐴3

• Use the best action for St+1 as your hypothetical

off-policy action

• But actually follow an epsilon-greedy action

– The hypothetical action is guaranteed to be better

than the one you actually took

– But you still explore (non-greedy)

hypothetical

Q-Learning

• From any state-action pair S,A

– Accept reward R

– Transition to S’

– Find the best action A’ for S’

– Use it to update Q(S,A)

– But then actually perform an epsilon-greedy
action A’’ from S’

Q-Learning (TD(1) version)

• For all 𝑠, 𝑎 initialize Q(𝑠, 𝑎)

• For each episode 𝑒

– Initialize 𝑆1, 𝐴1
– For 𝑡 = 1…𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• Observe 𝑅𝑡+1, 𝑆𝑡+1

• Choose action 𝐴𝑡+1 at 𝑆𝑡+1 using epsilon-greedy policy
obtained from 𝑄

• Choose action መ𝐴𝑡+1 at 𝑆𝑡+1 as መ𝐴𝑡+1 = 𝑎𝑟𝑔max
𝑎

𝑄(𝑆𝑡+1, 𝑎)

• 𝛿 = 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, መ𝐴𝑡+1 − 𝑄(𝑆𝑡, 𝐴𝑡)

• 𝑄 𝑆𝑡, 𝐴𝑡 = 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼𝛿

Q-Learning (TD(l) version)

• For all 𝑠, 𝑎 initialize Q(𝑠, 𝑎)

• For each episode 𝑒

– For all 𝑠, 𝑎 initialize 𝐸 𝑠, 𝑎 = 0

– Initialize 𝑆1, 𝐴1
– For 𝑡 = 1…𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• Observe 𝑅𝑡+1, 𝑆𝑡+1
• Choose action 𝐴𝑡+1 at 𝑆𝑡+1 using epsilon-greedy policy obtained from 𝑄

• Choose action መ𝐴𝑡+1 at 𝑆𝑡+1 as መ𝐴𝑡+1 = 𝑎𝑟𝑔max
𝑎

𝑄(𝑆𝑡+1, 𝑎)

• 𝛿 = 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, መ𝐴𝑡+1 −𝑄(𝑆𝑡 , 𝐴𝑡)

• 𝐸 𝑆𝑡 , 𝐴𝑡 += 1

• For all 𝑠, 𝑎

– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝛾𝜆𝐸(𝑠, 𝑎)

What about the actual policy?

• Optimal greedy policy:

𝜋 𝑎 𝑠 = ൝
1 𝑓𝑜𝑟 𝑎 = 𝑎𝑟𝑔max

𝑎′
𝑄(𝑠, 𝑎′)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Exploration policy

𝜋 𝑎 𝑠 = ൞

1 − 𝜖 𝑓𝑜𝑟 𝑎 = 𝑎𝑟𝑔max
𝑎′

𝑄(𝑠, 𝑎′)

𝜖

𝑁𝑎 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Ideally 𝜖 should decrease with time

Q-Learning

• Currently most-popular RL algorithm

• Topics not covered:

– Value function approximation

– Continuous state spaces

– Deep-Q learning

– Action replay

– Application to real problem..

