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Recurrent nets are very deep nets

• The relation between  and  is one of a very deep network

– Gradients from errors at  will vanish by the time they’re 

propagated to 
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Recall: Vanishing stuff..

• Stuff gets forgotten in the forward pass too
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The long-term dependency problem

• Any other pattern of any length can happen between pattern 1 and 
pattern 2

– RNN will “forget” pattern 1 if intermediate stuff is too long

– “Jane”  the next pronoun referring to her will be “she”

• Must know to “remember” for extended periods of time and “recall” 
when necessary

– Can be performed with a multi-tap recursion, but how many taps?

– Need an alternate way to “remember” stuff

PATTERN1  […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..



And now we enter the domain of..



Exploding/Vanishing gradients

• Can we replace this with something that doesn’t 

fade or blow up?

• Can we have a network that just “remembers” 

arbitrarily long, to be recalled on demand?



Enter – the constant error carousel

• History is carried through uncompressed

– No weights, no nonlinearities

– Only scaling is through the s “gating” term that captures other 
triggers 

– E.g. “Have I seen Pattern2”? 

Time

× × × ×ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

t+1 t+2 t+3 t+4



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 
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Enter the LSTM

• Long Short-Term Memory

• Explicitly latch information to prevent decay / 
blowup

• Following notes borrow liberally from 

• http://colah.github.io/posts/2015-08-
Understanding-LSTMs/



Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as 
inputs

• Processed through a tanh() activation function

– As mentioned earlier, tanh() is the generally used activation for the hidden 
layer

• Current recurrent output passed to next higher layer and next time instant



Long Short-Term Memory

• The 𝜎() are multiplicative gates that decide if 
something is important or not

• Remember,  every line actually represents a vector



LSTM: Constant Error Carousel

• Key component: a remembered cell state



LSTM: CEC

• 𝐶𝑡 is the linear history carried by the constant-error 
carousel

• Carries information through, only affected by a gate

– And addition of history, which too is gated..



LSTM: Gates

• Gates are simple sigmoidal units with outputs in 
the range (0,1)

• Controls how much of the information is to be let 
through



LSTM: Forget gate

• The first gate determines whether to carry over the history or to 
forget it

– More precisely, how much of the history to carry over

– Also called the “forget” gate 

– Note, we’re actually distinguishing between the cell memory 𝐶 and 
the state ℎ that is coming over time!  They’re related though



LSTM: Input gate

• The second gate has two parts

– A perceptron layer that determines if there’s something 
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell



LSTM: Memory cell update

• The second gate has two parts

– A perceptron layer that determines if there’s something 
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell



LSTM: Output and Output gate

• The output of the cell

– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory 
forward

– While we’re at it, lets toss in an output gate

• To decide if the memory contents are worth reporting at this time



LSTM: The “Peephole” Connection

• Why not just let the cell directly influence the 

gates while at it

– Party!!



The complete LSTM unit

• With input, output, and forget gates and the 

peephole connection..
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Gated Recurrent Units: Lets simplify 
the LSTM

• Simplified LSTM which addresses some of 

your concerns of why



Gated Recurrent Units: Lets simplify 
the LSTM

• Combine forget and input gates

– In new input is to be remembered, then this means 
old memory is to be forgotten

• Why compute twice?



Gated Recurrent Units: Lets simplify 
the LSTM

• Don’t bother to separately maintain compressed and regular 
memories

– Pointless computation!

• But compress it before using it to decide on the usefulness of the 
current input!



LSTM architectures example

• Each green box is now an entire LSTM or GRU 

unit

• Also keep in mind each box is an array of units

Time
X(t)
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Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units. 

• Can have multiple layers of LSTM units in either direction

– Its also possible to have MLP feed-forward layers between the hidden layers..

• The output nodes (orange boxes) may be complete MLPs
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Generating Language: The model

• The hidden units are (one or more layers of) LSTM units

• Trained via backpropagation from a lot of text
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Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3



Generating Language: Synthesis
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination
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Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination
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Speech recognition using Recurrent 
Nets

• Recurrent neural networks (with LSTMs) can be 
used to perform speech recognition

– Input: Sequences of audio feature vectors

– Output: Phonetic label of each vector

Time
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Speech recognition using Recurrent 
Nets

• Alternative: Directly output phoneme, character or word sequence

• Challenge: How to define the loss function to optimize for training

– Future lecture

– Also homework
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Problem: Ambiguous labels

• Speech data is continuous but the labels are 
discrete.

• Forcing a one-to-one correspondence 
between time steps and output labels is 
artificial.



Enter: CTC 
(Connectionist Temporal Classification)

A sophisticated loss layer that gives the network 
sensible feedback on tasks like speech 

recognition.



The idea

• Add “blanks” to the possible outputs of the 
network.

• Effectively serve as a pass on assigning a new 
label to the data meaning if a label has already 
been outputted it “leaves it as is”

• Analogous to a transcriber pausing in writing.



The implementation: Cost

Define the Label Error Rate as the mean edit 
distance. 

Where S’ is the test set.



The implementation: Cost

This differs from errors used by other speech 
models in being characterize rather than word 
or wise.

This causes it to only indirectly learn a language 
model but also makes it more suitable for use 
with RNNs since they can Simply output the 
character or a blank.



The implementation: Path

The formula for the probability of a path π  is given by

For sequence x and outputs yt
πt at 

time step t for the value in path π



The implementation: Probability of 
Labeling

Where l is a labeling of x and Beta is the 
set of possible labeling of length less 
than or equal to the length of l



The implementation: Path

Great we have a closed for solution for the 
probability of a labeling!



The implementation: Path

Great we have a closed for solution for the 
probability of a labeling!

Problem: This is exponential in size.

It is on the order of the number of paths 
through the labels.



The implementation: Efficiency

The Solution: Dynamic programming

The probability of each label in the labeling is 
dependent on all other labels. 

These can be computed with two variable Alpha 
and Beta corresponding to the probabilities of a 

valid prefix and suffix respectively.



The implementation: Efficiency

Alpha is the forward probability for s. It is 
defined as the sum over the probabilities of all 
possible prefixes for which s is a viable label in 
position t.



The implementation: Efficiency

This can be implemented recursively as follows 
on l’ the modified target label sequence with a 

blank in-between every 
symbol and at the
beginning and end.



The implementation: Efficiency

The backwards pass:



The implementation: Efficiency

The backwards pass:

Analogous to forward pass



The implementation: Efficiency

Recursive definition



The implementation: Efficiency

Recursive definition



The implementation: Efficiency
What this gets us and intuition



The implementation: Efficiency
What this gets us and intuition

Illustration of CTC



Implementation 

Rescale to avoid underflow

By substituting Alpha for Alpha-hat and Beta for Beta-hat



Implementation 

Returning to the task at hand the maximum 
likelihood objective function is:



Implementation

Recall 



Implementation

Recall 

Consider

This is the product of the forward and backwards probabilities.

By 
substitution



Implementation

Recall

Thus

This is a cost we can compute


