
RNN Recitation

10/27/17

Recurrent nets are very deep nets

• The relation between and is one of a very deep network

– Gradients from errors at will vanish by the time they’re

propagated to

X(0)

hf(-1)

Y(T)

Recall: Vanishing stuff..

• Stuff gets forgotten in the forward pass too

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

The long-term dependency problem

• Any other pattern of any length can happen between pattern 1 and
pattern 2

– RNN will “forget” pattern 1 if intermediate stuff is too long

– “Jane”  the next pronoun referring to her will be “she”

• Must know to “remember” for extended periods of time and “recall”
when necessary

– Can be performed with a multi-tap recursion, but how many taps?

– Need an alternate way to “remember” stuff

PATTERN1 […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..

And now we enter the domain of..

Exploding/Vanishing gradients

• Can we replace this with something that doesn’t

fade or blow up?

• Can we have a network that just “remembers”

arbitrarily long, to be recalled on demand?

Enter – the constant error carousel

• History is carried through uncompressed

– No weights, no nonlinearities

– Only scaling is through the s “gating” term that captures other
triggers

– E.g. “Have I seen Pattern2”?

Time

× × × ×ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

t+1 t+2 t+3 t+4

× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other
portions of the network

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Time

× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other
portions of the network

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time

× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other
portions of the network

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time

× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other
portions of the network

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time

Enter the LSTM

• Long Short-Term Memory

• Explicitly latch information to prevent decay /
blowup

• Following notes borrow liberally from

• http://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as
inputs

• Processed through a tanh() activation function

– As mentioned earlier, tanh() is the generally used activation for the hidden
layer

• Current recurrent output passed to next higher layer and next time instant

Long Short-Term Memory

• The 𝜎() are multiplicative gates that decide if
something is important or not

• Remember, every line actually represents a vector

LSTM: Constant Error Carousel

• Key component: a remembered cell state

LSTM: CEC

• 𝐶𝑡 is the linear history carried by the constant-error
carousel

• Carries information through, only affected by a gate

– And addition of history, which too is gated..

LSTM: Gates

• Gates are simple sigmoidal units with outputs in
the range (0,1)

• Controls how much of the information is to be let
through

LSTM: Forget gate

• The first gate determines whether to carry over the history or to
forget it

– More precisely, how much of the history to carry over

– Also called the “forget” gate

– Note, we’re actually distinguishing between the cell memory 𝐶 and
the state ℎ that is coming over time! They’re related though

LSTM: Input gate

• The second gate has two parts

– A perceptron layer that determines if there’s something
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell

LSTM: Memory cell update

• The second gate has two parts

– A perceptron layer that determines if there’s something
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell

LSTM: Output and Output gate

• The output of the cell

– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory
forward

– While we’re at it, lets toss in an output gate

• To decide if the memory contents are worth reporting at this time

LSTM: The “Peephole” Connection

• Why not just let the cell directly influence the

gates while at it

– Party!!

The complete LSTM unit

• With input, output, and forget gates and the

peephole connection..

𝑥𝑡

ℎ𝑡−1 ℎ𝑡

𝐶𝑡−1 𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

Gated Recurrent Units: Lets simplify
the LSTM

• Simplified LSTM which addresses some of

your concerns of why

Gated Recurrent Units: Lets simplify
the LSTM

• Combine forget and input gates

– In new input is to be remembered, then this means
old memory is to be forgotten

• Why compute twice?

Gated Recurrent Units: Lets simplify
the LSTM

• Don’t bother to separately maintain compressed and regular
memories

– Pointless computation!

• But compress it before using it to decide on the usefulness of the
current input!

LSTM architectures example

• Each green box is now an entire LSTM or GRU

unit

• Also keep in mind each box is an array of units

Time
X(t)

Y(t)

Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units.

• Can have multiple layers of LSTM units in either direction

– Its also possible to have MLP feed-forward layers between the hidden layers..

• The output nodes (orange boxes) may be complete MLPs

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

Generating Language: The model

• The hidden units are (one or more layers of) LSTM units

• Trained via backpropagation from a lot of text

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊4

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑃

𝑊8

𝑃

𝑊9

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10𝑊2 𝑊3 𝑊4

Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑊4

Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊5𝑊4

Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃 𝑃 𝑃 𝑃 𝑃 𝑃

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10𝑊4

Speech recognition using Recurrent
Nets

• Recurrent neural networks (with LSTMs) can be
used to perform speech recognition

– Input: Sequences of audio feature vectors

– Output: Phonetic label of each vector

Time

𝑃1

X(t)

t=0

𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7

Speech recognition using Recurrent
Nets

• Alternative: Directly output phoneme, character or word sequence

• Challenge: How to define the loss function to optimize for training

– Future lecture

– Also homework

Time

𝑊1

X(t)

t=0

𝑊2

Problem: Ambiguous labels

• Speech data is continuous but the labels are
discrete.

• Forcing a one-to-one correspondence
between time steps and output labels is
artificial.

Enter: CTC
(Connectionist Temporal Classification)

A sophisticated loss layer that gives the network
sensible feedback on tasks like speech

recognition.

The idea

• Add “blanks” to the possible outputs of the
network.

• Effectively serve as a pass on assigning a new
label to the data meaning if a label has already
been outputted it “leaves it as is”

• Analogous to a transcriber pausing in writing.

The implementation: Cost

Define the Label Error Rate as the mean edit
distance.

Where S’ is the test set.

The implementation: Cost

This differs from errors used by other speech
models in being characterize rather than word
or wise.

This causes it to only indirectly learn a language
model but also makes it more suitable for use
with RNNs since they can Simply output the
character or a blank.

The implementation: Path

The formula for the probability of a path π is given by

For sequence x and outputs yt
πt at

time step t for the value in path π

The implementation: Probability of
Labeling

Where l is a labeling of x and Beta is the
set of possible labeling of length less
than or equal to the length of l

The implementation: Path

Great we have a closed for solution for the
probability of a labeling!

The implementation: Path

Great we have a closed for solution for the
probability of a labeling!

Problem: This is exponential in size.

It is on the order of the number of paths
through the labels.

The implementation: Efficiency

The Solution: Dynamic programming

The probability of each label in the labeling is
dependent on all other labels.

These can be computed with two variable Alpha
and Beta corresponding to the probabilities of a

valid prefix and suffix respectively.

The implementation: Efficiency

Alpha is the forward probability for s. It is
defined as the sum over the probabilities of all
possible prefixes for which s is a viable label in
position t.

The implementation: Efficiency

This can be implemented recursively as follows
on l’ the modified target label sequence with a

blank in-between every
symbol and at the
beginning and end.

The implementation: Efficiency

The backwards pass:

The implementation: Efficiency

The backwards pass:

Analogous to forward pass

The implementation: Efficiency

Recursive definition

The implementation: Efficiency

Recursive definition

The implementation: Efficiency
What this gets us and intuition

The implementation: Efficiency
What this gets us and intuition

Illustration of CTC

Implementation

Rescale to avoid underflow

By substituting Alpha for Alpha-hat and Beta for Beta-hat

Implementation

Returning to the task at hand the maximum
likelihood objective function is:

Implementation

Recall

Implementation

Recall

Consider

This is the product of the forward and backwards probabilities.

By
substitution

Implementation

Recall

Thus

This is a cost we can compute

