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Which open source project?



Related math.  What is it talking 
about?



And a Wikipedia page explaining it all



The unreasonable effectiveness of 
recurrent neural networks..

• All previous examples were generated blindly 
by a recurrent neural network..

• http://karpathy.github.io/2015/05/21/rnn-
effectiveness/



Story so far

• Iterated structures are good for analyzing time series 
data with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series 
data with long-term dependence on the past
– These are recurrent neural networks
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Story so far

• Iterated structures are good for analyzing time series data 
with short-time dependence on the past

– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series 
data with long-term dependence on the past

– These are recurrent neural networks
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Recap: Recurrent structures can do 
what static structures cannot

• The addition problem:  Add two N-bit numbers to produce a N+1-
bit number

– Input is binary

– Will require large number of training instances

• Output must be specified for every pair of inputs

• Weights that generalize will make errors

– Network trained for N-bit numbers will not work for N+1 bit numbers
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Recap: MLPs vs RNNs

• The addition problem:  Add two N-bit 

numbers to produce a N+1-bit number

• RNN solution:  Very simple, can add two 

numbers of any size
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Recap – MLP: The parity problem

• Is the number of “ones” even or odd
• Network must be complex to capture all patterns

– At least one hidden layer of size N plus an output neuron
– Fixed input size

1 0 0 0 1 1 0 0 1 0

MLP

1



Recap – RNN: The parity problem

• Trivial solution

• Generalizes to input of any size
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Story so far

• Recurrent structures can be trained by minimizing 
the divergence between the sequence of outputs 
and the sequence of desired outputs

– Through gradient descent and backpropagation
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Types of recursion

• Nothing special about a one step recursion
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The behavior of recurrence..

• Returning to an old model..
𝑌 𝑡 = 𝑓(𝑋 𝑡 − 𝑖 , 𝑖 = 1. . 𝐾)

• When will the output “blow up”?
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“BIBO” Stability

• Time-delay structures have bounded output if

– The function 𝑓() has bounded output for bounded input
• Which is true of almost every activation function

– 𝑋(𝑡) is bounded

• “Bounded Input Bounded Output” stability

– This is a highly desirable characteristic
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Is this BIBO?

• Will this necessarily be BIBO?
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Is this BIBO?

• Will this necessarily be BIBO?

– Guaranteed if output and hidden activations are bounded

• But will it saturate (and where)

– What if the activations are linear?

Time

X(t)

Y(t)

t=0

h-1



Analyzing recurrence

• Sufficient to analyze the behavior of the hidden 
layer ℎ𝑘 since it carries the relevant information

– Will assume only a single hidden layer for simplicity
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Analyzing Recursion



Streetlight effect

• Easier to analyze linear systems
– Will attempt to extrapolate to non-linear systems 

subsequently

• All activations are identity functions

– 𝑧𝑘 = 𝑊ℎℎ𝑘−1 +𝑊𝑥𝑥𝑘 , ℎ𝑘= 𝑧𝑘
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Linear systems

• ℎ𝑘 = 𝑊ℎℎ𝑘−1 +𝑊𝑥𝑥𝑘

– ℎ𝑘−1 = 𝑊ℎℎ𝑘−2 +𝑊𝑥𝑥𝑘−1

• ℎ𝑘 = 𝑊ℎ
2ℎ𝑘−2 +𝑊ℎ𝑊𝑥𝑥𝑘−1 +𝑊𝑥𝑥𝑘

• ℎ𝑘 = 𝑊ℎ
𝑘+1ℎ−1 +𝑊ℎ

𝑘𝑊𝑥𝑥0 +𝑊ℎ
𝑘−1𝑊𝑥𝑥1 +𝑊ℎ

𝑘−2𝑊𝑥𝑥2 +⋯

• ℎ𝑘 = 𝐻𝑘(ℎ−1) + 𝐻𝑘(𝑥0) + 𝐻𝑘(𝑥1) + 𝐻𝑘(𝑥2) + ⋯

– = ℎ−1𝐻𝑘(1−1) + 𝑥0𝐻𝑘(10) + 𝑥1𝐻𝑘(11) + 𝑥2𝐻𝑘(12) + ⋯

• Where 𝐻𝑘(1𝑡) is the hidden response at time k when the input is 
[0 0 0 …1 0 . . 0] (where the 1 occurs in the t-th position)



Streetlight effect

• Sufficient to analyze the response to a single input 
at 𝑡 = 0

– Principle of superposition in linear systems:

ℎ𝑘 = ℎ−1𝐻𝑘(1−1) + 𝑥0𝐻𝑘(10) + 𝑥1𝐻𝑘(11) + 𝑥2𝐻𝑘(12) + ⋯
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Linear recursions

• Consider simple, scalar, linear recursion (note 
change of notation)

– ℎ 𝑡 = 𝑤ℎ 𝑡 − 1 + 𝑐𝑥(𝑡)

– ℎ0 𝑡 = 𝑤𝑡𝑐𝑥 0

• Response to a single input at 0



Linear recursions: Vector version

• Vector linear recursion (note change of notation)

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑊𝑡𝑐𝑥 0
• Length of response ( ℎ ) to a single input at 0

• We can write 𝑊 = 𝑈Λ𝑈−1

– 𝑊𝑢𝑖 = 𝜆𝑖𝑢𝑖
– For any vector ℎ we can write

• ℎ = 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑛𝑢𝑛
• 𝑊ℎ = 𝑎1𝜆1𝑢1 + 𝑎2𝜆2𝑢2 +⋯+ 𝑎𝑛𝜆𝑛𝑢𝑛

• 𝑊𝑡ℎ = 𝑎1𝜆1
𝑡𝑢1 + 𝑎2𝜆2

𝑡𝑢2 +⋯+ 𝑎𝑛𝜆𝑛
𝑡 𝑢𝑛

– lim
𝑡→∞

𝑊𝑡ℎ = 𝑎𝑚𝜆𝑚
𝑡 𝑢𝑚 where 𝑚 = argmax

𝑗
𝜆𝑗



Linear recursions: Vector version

• Vector linear recursion (note change of notation)

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑊𝑡𝑐𝑥 0
• Length of response ( ℎ ) to a single input at 0

• We can write 𝑊 = 𝑈Λ𝑈−1

– 𝑊𝑢𝑖 = 𝜆𝑖𝑢𝑖
– For any vector ℎ we can write

• ℎ = 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑛𝑢𝑛
• 𝑊ℎ = 𝑎1𝜆1𝑢1 + 𝑎2𝜆2𝑢2 +⋯+ 𝑎𝑛𝜆𝑛𝑢𝑛

• 𝑊𝑡ℎ = 𝑎1𝜆1
𝑡𝑢1 + 𝑎2𝜆2

𝑡𝑢2 +⋯+ 𝑎𝑛𝜆𝑛
𝑡 𝑢𝑛

– lim
𝑡→∞

𝑊𝑡ℎ = 𝑎𝑚𝜆𝑚
𝑡 𝑢𝑚 where 𝑚 = argmax

𝑗
𝜆𝑗

For any input, for large 𝑡 the length of the hidden vector 
will expand or contract according to the 𝑡 th power of the
largest eigen value of the hidden-layer weight matrix



Linear recursions: Vector version

• Vector linear recursion (note change of notation)

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑊𝑡𝑐𝑥 0
• Length of response ( ℎ ) to a single input at 0

• We can write 𝑊 = 𝑈Λ𝑈−1

– 𝑊𝑢𝑖 = 𝜆𝑖𝑢𝑖
– For any vector ℎ we can write

• ℎ = 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑛𝑢𝑛
• 𝑊ℎ = 𝑎1𝜆1𝑢1 + 𝑎2𝜆2𝑢2 +⋯+ 𝑎𝑛𝜆𝑛𝑢𝑛

• 𝑊𝑡ℎ = 𝑎1𝜆1
𝑡𝑢1 + 𝑎2𝜆2
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𝑡→∞

𝑊𝑡ℎ = 𝑎𝑚𝜆𝑚
𝑡 𝑢𝑚 where 𝑚 = argmax

𝑗
𝜆𝑗

For any input, for large 𝑡 the length of the hidden vector 
will expand or contract according to the 𝑡 th power of the
largest eigen value of the hidden-layer weight matrix

Unless it has no component along the eigen vector
corresponding to the largest eigen value. In that case it
will grow according to the second largest Eigen value..

And so on..



Linear recursions: Vector version

• Vector linear recursion (note change of notation)

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑊𝑡𝑐𝑥 0
• Length of response ( ℎ ) to a single input at 0

• We can write 𝑊 = 𝑈Λ𝑈−1

– 𝑊𝑢𝑖 = 𝜆𝑖𝑢𝑖
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For any input, for large 𝑡 the length of the hidden vector 
will expand or contract according to the 𝑡 th power of the
largest eigen value of the hidden-layer weight matrix

Unless it has no component along the eigen vector
corresponding to the largest eigen value. In that case it
will grow according to the second largest Eigen value..

And so on..

If 𝑅𝑒(𝜆𝑚𝑎𝑥) > 1 it will blow up, otherwise it will contract
and shrink to 0 rapidly



Linear recursions: Vector version

• Consider simple, scalar, linear recursion (note change 
of notation)

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑊𝑡𝑐𝑥 0
• Length of response ( ℎ ) to a single input at 0

• We can write 𝑊 = 𝑈Λ𝑈−1

– 𝑊𝑢𝑖 = 𝜆𝑖𝑢𝑖
– For any vector ℎ we can write

• ℎ = 𝑎1𝑢1 + 𝑎2𝑢2 +⋯+ 𝑎𝑛𝑢𝑛
• 𝑊ℎ = 𝑎1𝜆1𝑢1 + 𝑎2𝜆2𝑢2 +⋯+ 𝑎𝑛𝜆𝑛𝑢𝑛
• 𝑊𝑡ℎ = 𝑎1𝜆1

𝑡𝑢1 + 𝑎2𝜆2
𝑡𝑢2 +⋯+ 𝑎𝑛𝜆𝑛

𝑡 𝑢𝑛

– lim
𝑡→∞

𝑊𝑡ℎ = 𝑎𝑚𝜆𝑚
𝑡 𝑢𝑚 where 𝑚 = argmax

𝑗
𝜆𝑗

For any input, for large 𝑡 the length of the hidden vector 
will expand or contract according to the 𝑡-th power of the
largest eigen value of the hidden-layer weight matrix

Unless it has no component along the eigen vector
corresponding to the largest eigen value. In that case it
will grow according to the second largest Eigen value..

And so on..

If 𝑅𝑒(𝜆𝑚𝑎𝑥) > 1 it will blow up, otherwise it will contract
and shrink to 0 rapidly

What about at middling values of 𝑡? It will depend on the
other eigen values



Linear recursions

• Vector linear recursion

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑤𝑡𝑐𝑥 0

• Response to a single input [1 1 1 1] at 0

𝜆𝑚𝑎𝑥 = 0.9

𝜆𝑚𝑎𝑥 = 1

𝜆𝑚𝑎𝑥 = 1.1

𝜆𝑚𝑎𝑥 = 1

𝜆𝑚𝑎𝑥 = 1.1



Linear recursions

• Vector linear recursion

– ℎ 𝑡 = 𝑊ℎ 𝑡 − 1 + 𝐶𝑥(𝑡)

– ℎ0 𝑡 = 𝑤𝑡𝑐𝑥 0

• Response to a single input [1 1 1 1] at 0

𝜆𝑚𝑎𝑥 = 0.9

𝜆𝑚𝑎𝑥 = 1

𝜆𝑚𝑎𝑥 = 1.1

𝜆𝑚𝑎𝑥 = 1

𝜆𝑚𝑎𝑥 = 1.1

Complex Eigenvalues

𝜆2𝑛𝑑 = 0.5

𝜆2𝑛𝑑 = 0.1



Lesson..

• In linear systems, long-term behavior depends 
entirely on the eigenvalues of the hidden-layer 
weights matrix

– If the largest Eigen value is greater than 1, the system 
will “blow up”

– If it is lesser than 1, the response will “vanish” very 
quickly

– Complex Eigen values cause oscillatory response

• Which we may or may not want

• Force matrix to have real eigen values for smooth behavior

– Symmetric weight matrix



How about non-linearities

• The behavior of scalar non-linearities

• Left: Sigmoid, Middle: Tanh, Right: Relu

– Sigmoid: Saturates in a limited number of steps, regardless of 𝑤

– Tanh: Sensitive to 𝑤,  but eventually saturates

• “Prefers” weights close to 1.0

– Relu: Sensitive to 𝑤, can blow up

ℎ 𝑡 = 𝑓(𝑤ℎ 𝑡 − 1 + 𝑐𝑥 𝑡 )



How about non-linearities

• With a negative start (equivalent to –ve wt)

• Left: Sigmoid, Middle: Tanh, Right: Relu

– Sigmoid: Saturates in a limited number of steps, regardless of 𝑤

– Tanh: Sensitive to 𝑤,  but eventually saturates

– Relu: For negative starts, has no response

ℎ 𝑡 = 𝑓(𝑤ℎ 𝑡 − 1 + 𝑐𝑥 𝑡 )



Vector Process

• Assuming a uniform unit vector initialization

– 1,1,1, … / 𝑁

– Behavior similar to scalar recursion

– Interestingly, RELU is more prone to blowing up (why?)

• Eigenvalues less than 1.0 retain the most “memory”

ℎ 𝑡 = 𝑓(𝑊ℎ 𝑡 − 1 + 𝐶𝑥 𝑡 )

sigmoid tanh relu



Vector Process

• Assuming a uniform unit vector initialization

– −1,−1,−1,… / 𝑁

– Behavior similar to scalar recursion

– Interestingly, RELU is more prone to blowing up (why?)

ℎ 𝑡 = 𝑓(𝑊ℎ 𝑡 − 1 + 𝐶𝑥 𝑡 )

sigmoid tanh relu



Stability Analysis
• Formal stability analysis considers convergence of “Lyapunov” 

functions

– Alternately, Routh’s criterion and/or pole-zero analysis

– Positive definite functions evaluated at ℎ

– Conclusions are similar: only the tanh activation gives us any 
reasonable behavior

• And still has very short “memory”

• Lessons:

– Bipolar activations (e.g. tanh) have the best behavior

– Still sensitive to Eigenvalues of 𝑊

– Best case memory is short

– Exponential memory behavior

• “Forgets” in exponential manner



How about deeper recursion

• Consider simple, scalar, linear recursion

– Adding more “taps” adds more “modes” to 
memory in somewhat non-obvious ways

ℎ 𝑡 = 0.5ℎ 𝑡 − 1 + 0.25ℎ 𝑡 − 5 + 𝑥(𝑡)

ℎ 𝑡 = 0.5ℎ 𝑡 − 1 + 0.25ℎ 𝑡 − 5 + 0.1ℎ 𝑡 − 8 + 𝑥(𝑡)



Stability Analysis

• Similar analysis of vector functions with non-

linear activations is relatively straightforward

– Linear systems: Routh’s criterion

• And pole-zero analysis (involves tensors)

– On board?

– Non-linear systems:  Lyapunov functions

• Conclusions do not change



RNNs..

• Excellent models for time-series analysis tasks
– Time-series prediction

– Time-series classification

– Sequence prediction..

– They can even simplify problems that are difficult 
for MLPs

• But the memory isn’t all that great..
– Also..



The vanishing gradient problem

• A particular problem with training deep 
networks..

– The gradient of the error with respect to weights 
is unstable..



Some useful preliminary math: The 
problem with training deep networks

• A multilayer perceptron is a nested function

𝑌 = 𝑓𝑁 𝑊𝑁−1𝑓𝑁−1 𝑊𝑁−2𝑓𝑁−2 …𝑊0𝑋

• 𝑊𝑘 is the weights matrix at the kth layer

• The error for 𝑋 can be written as

𝐷𝑖𝑣(𝑋) = 𝐷 𝑓𝑁 𝑊𝑁−1𝑓𝑁−1 𝑊𝑁−2𝑓𝑁−2 …𝑊0𝑋

W0 W1 W2



Training deep networks

• Vector derivative chain rule: for any 𝑓 𝑊𝑔 𝑋 :

𝑑𝑓 𝑊𝑔 𝑋

𝑑𝑋
=
𝑑𝑓 𝑊𝑔 𝑋

𝑑𝑊𝑔 𝑋

𝑑𝑊𝑔 𝑋

𝑑𝑔 𝑋

𝑑𝑔 𝑋

𝑑𝑋

𝛻𝑋𝑓 = 𝛻𝑍𝑓.𝑊. 𝛻𝑋𝑔

• Where

– 𝑍 = 𝑊𝑔 𝑋

– 𝛻𝑍𝑓 is the jacobian matrix of 𝑓(𝑍)w.r.t 𝑍

• Using the notation 𝛻𝑍𝑓 instead of 𝐽𝑓(𝑧) for consistency

Poor notation



Training deep networks

• For 

𝐷𝑖𝑣(𝑋) = 𝐷 𝑓𝑁 𝑊𝑁−1𝑓𝑁−1 𝑊𝑁−2𝑓𝑁−2 …𝑊0𝑋

• We get:

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• Where

– 𝛻𝑓𝑘𝐷𝑖𝑣 is the gradient 𝐷𝑖𝑣(𝑋) of the error w.r.t the output of the 

kth layer of the network

• Needed to compute the gradient of the error w.r.t 𝑊𝑘−1

– 𝛻𝑓𝑛 is jacobian of 𝑓𝑁() w.r.t. to its current input

– All blue terms are matrices



The Jacobian of the hidden layers

• 𝛻𝑓𝑡() is the derivative of the output of the (layer of) 
hidden recurrent neurons with respect to their input

– A matrix where the diagonal entries are the derivatives of the 
activation of the recurrent hidden layer

ℎ𝑖
1
(𝑡) = 𝑓1 𝑧𝑖

1
𝑡𝑋

ℎ1

𝑌

𝛻𝑓𝑡 𝑧𝑖 =

𝑓𝑡,1
′ (𝑧1) 0 ⋯ 0

0 𝑓𝑡,2
′ (𝑧2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓𝑡,𝑁

′ (𝑧𝑁)



The Jacobian

• The derivative (or subgradient) of the activation function is 
always bounded

– The diagonals of the Jacobian are bounded

• There is a limit on how much multiplying a vector by the 
Jacobian will scale it

ℎ𝑖
1
(𝑡) = 𝑓1 𝑧𝑖

1
𝑡

𝑋

ℎ1

𝑌

𝛻𝑓𝑡 𝑧𝑖 =

𝑓𝑡,1
′ (𝑧1) 0 ⋯ 0

0 𝑓𝑡,2
′ (𝑧2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓𝑡,𝑁

′ (𝑧𝑁)



The derivative of the hidden state 
activation

• Most common activation functions, such as sigmoid, tanh() and RELU 
have derivatives that are always less than 1

• The most common activation for the hidden units in an RNN is the tanh() 

– The derivative of tanh()is always less than 1

• Multiplication by the Jacobian is always a shrinking operation

𝛻𝑓𝑡 𝑧𝑖 =

𝑓𝑡,1
′ (𝑧1) 0 ⋯ 0

0 𝑓𝑡,2
′ (𝑧2) ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑓𝑡,𝑁

′ (𝑧𝑁)



Training deep networks

• As we go back in layers, the Jacobians of the 

activations constantly shrink the derivative

– After a few instants the derivative of the divergence at 

any time is totally “forgotten”

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁.𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘



What about the weights

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• In a single-layer RNN, the weight matrices are 
identical

• The chain product for 𝛻𝑓𝑘𝐷𝑖𝑣 will 

– Expand 𝛻𝐷 along directions in which the singular values 
of the weight matrices are greater than 1

– Shrink 𝛻𝐷 in directions where the singular values ae less 
than 1 

– Exploding or vanishing gradients



Exploding/Vanishing gradients

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• Every blue term is a matrix

• 𝛻𝐷 is proportional to the actual error

– Particularly for L2 and KL divergence

• The chain product for 𝛻𝑓𝑘𝐷𝑖𝑣 will 

– Expand 𝛻𝐷 in directions where each stage has singular 

values greater than 1

– Shrink 𝛻𝐷 in directions where each stage has singular 

values less than 1 



Gradient problems in deep networks

• The gradients in the lower/earlier layers can explode or 
vanish

– Resulting in insignificant or unstable gradient descent updates

– Problem gets worse as network depth increases

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁.𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

ELU  activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

RELU  activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Sigmoid  activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Tanh activation,  Batch gradients

Output layer

Input layer



Vanishing gradient examples..

• 19 layer MNIST model

– Different activations:  Exponential linear units, RELU, sigmoid, than

– Each layer is 1024 layers wide

– Gradients shown at initialization

• Will actually decrease with additional training

• Figure shows log 𝛻𝑊𝑛𝑒𝑢𝑟𝑜𝑛
𝐸 where 𝑊𝑛𝑒𝑢𝑟𝑜𝑛 is the vector of incoming weights to each neuron

– I.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

ELU  activation,  Individual instances



Vanishing gradients

• ELU activations maintain gradients longest

• But in all cases gradients effectively vanish 
after about 10 layers!

– Your results may vary

• Both batch gradients and gradients for 
individual instances disappear

– In reality a tiny number may actually blow up.



Recurrent nets are very deep nets

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• The relation between 𝑋(0) and 𝑌(𝑇) is one of a very deep 
network

– Gradients from errors at t = 𝑇 will vanish by the time they’re 
propagated to 𝑡 = 0

X(0)

hf(-1)

Y(T)



Recall: Vanishing stuff..

• Stuff gets forgotten in the forward pass too

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)



The long-term dependency problem

• Any other pattern of any length can happen between pattern 1 and 
pattern 2

– RNN will “forget” pattern 1 if intermediate stuff is too long

– “Jane”  the next pronoun referring to her will be “she”

• Must know to “remember” for extended periods of time and “recall” 
when necessary

– Can be performed with a multi-tap recursion, but how many taps?

– Need an alternate way to “remember” stuff

PATTERN1  […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..



And now we enter the domain of..



Exploding/Vanishing gradients

𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷. 𝛻𝑓𝑁 .𝑊𝑁−1. 𝛻𝑓𝑁−1.𝑊𝑁−2…𝛻𝑓𝑘+1𝑊𝑘

• Can we replace this with something that doesn’t 

fade or blow up?

• 𝛻𝑓𝑘𝐷𝑖𝑣 = 𝛻𝐷𝐶𝜎𝑁𝐶𝜎𝑁−1𝐶 …𝜎𝑘

• Can we have a network that just “remembers” 

arbitrarily long, to be recalled on demand?



Enter – the constant error carousel

• History is carried through uncompressed

– No weights, no nonlinearities

– Only scaling is through the s “gating” term that captures other 
triggers 

– E.g. “Have I seen Pattern2”? 

Time

× × × ×ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

t+1 t+2 t+3 t+4



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Time



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time



× × × ×

Enter – the constant error carousel

• Actual non-linear work is done by other 
portions of the network 

ℎ(𝑡)
ℎ(𝑡 + 1) ℎ(𝑡 + 2) ℎ(𝑡 + 3)

ℎ(𝑡 + 4)

𝜎(𝑡 + 1) 𝜎(𝑡 + 2) 𝜎(𝑡 + 3) 𝜎(𝑡 + 4)

𝑋(𝑡 + 1) 𝑋(𝑡 + 2) 𝑋(𝑡 + 3) 𝑋(𝑡 + 4)

Other
stuff

Time



Enter the LSTM

• Long Short-Term Memory

• Explicitly latch information to prevent decay / 
blowup

• Following notes borrow liberally from 

• http://colah.github.io/posts/2015-08-
Understanding-LSTMs/



Standard RNN

• Recurrent neurons receive past recurrent outputs and current input as 
inputs

• Processed through a tanh() activation function

– As mentioned earlier, tanh() is the generally used activation for the hidden 
layer

• Current recurrent output passed to next higher layer and next time instant



Long Short-Term Memory

• The 𝜎() are multiplicative gates that decide if 
something is important or not

• Remember,  every line actually represents a vector



LSTM: Constant Error Carousel

• Key component: a remembered cell state



LSTM: CEC

• 𝐶𝑡 is the linear history carried by the constant-error 
carousel

• Carries information through, only affected by a gate

– And addition of history, which too is gated..



LSTM: Gates

• Gates are simple sigmoidal units with outputs in 
the range (0,1)

• Controls how much of the information is to be let 
through



LSTM: Forget gate

• The first gate determines whether to carry over the history or to 
forget it

– More precisely, how much of the history to carry over

– Also called the “forget” gate 

– Note, we’re actually distinguishing between the cell memory 𝐶 and 
the state ℎ that is coming over time!  They’re related though



LSTM: Input gate

• The second gate has two parts

– A perceptron layer that determines if there’s something 
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell



LSTM: Memory cell update

• The second gate has two parts

– A perceptron layer that determines if there’s something 
interesting in the input

– A gate that decides if its worth remembering

– If so its added to the current memory cell



LSTM: Output and Output gate

• The output of the cell

– Simply compress it with tanh to make it lie between 1 and -1

• Note that this compression no longer affects our ability to carry memory 
forward

– While we’re at it, lets toss in an output gate

• To decide if the memory contents are worth reporting at this time



LSTM: The “Peephole” Connection

• Why not just let the cell directly influence the 

gates while at it

– Party!!



The complete LSTM unit

• With input, output, and forget gates and the 

peephole connection..

𝑥𝑡

ℎ𝑡−1 ℎ𝑡

𝐶𝑡−1 𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh



Backpropagation rules: Forward

• Forward rules:

𝑥𝑡

ℎ𝑡−1 ℎ𝑡

𝐶𝑡−1 𝐶𝑡

𝑓𝑡
𝑖𝑡 𝑜𝑡

ሚ𝐶𝑡
s() s() s()tanh

tanh

Gates

Variables



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

𝑥𝑡+1

𝐶𝑡+1

ሚ𝐶𝑡+1
s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 =

ℎ𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡 𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ

ℎ𝑡+1

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡 𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ
′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜

ℎ𝑡+1

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡 𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 +

ℎ𝑡+1

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑓𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

𝑓𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎′ . 𝑊𝐶𝑓

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡

𝑥𝑡+1

ሚ𝐶𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡
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ℎ𝑡
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𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh
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′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
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′ . 𝑊ℎ𝑖 +

𝛻𝐶𝑡+1𝐷𝑖𝑣 ∘ 𝑖𝑡+1 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊ℎ𝑖

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖 +

𝛻𝐶𝑡+1𝐷𝑖𝑣 ∘ 𝑜𝑡+1 ∘ 𝑡𝑎𝑛ℎ
′ . 𝑊ℎ𝑖 + 𝛻ℎ𝑡+1𝐷𝑖𝑣 ∘ 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊ℎ𝑜

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1



Backpropagation rules: Backward

𝑥𝑡

ℎ𝑡−1
ℎ𝑡

𝐶𝑡−1
𝐶𝑡

𝑓𝑡 𝑖𝑡 𝑜𝑡
ሚ𝐶𝑡

s() s() s()tanh

tanh

𝑧𝑡

𝐶𝑡

ℎ𝑡+1

𝐶𝑡+1

s() s() s()tanh

tanh

𝛻𝐶𝑡𝐷𝑖𝑣 = 𝛻ℎ𝑡𝐷𝑖𝑣 ∘ 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ′ . 𝑊𝐶ℎ + 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊𝐶𝑜 +

𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝑓𝑡+1 + 𝐶𝑡 ∘ 𝜎
′ . 𝑊𝐶𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊𝐶𝑖

𝛻ℎ𝑡𝐷𝑖𝑣 = 𝛻𝑧𝑡𝐷𝑖𝑣𝛻ℎ𝑡𝑧𝑡 + 𝛻ℎ𝑡𝐶𝑡+1 ∘ 𝐶𝑡 ∘ 𝜎
′ . 𝑊ℎ𝑓 + ሚ𝐶𝑡+1 ∘ 𝜎

′ . 𝑊ℎ𝑖 +

𝛻𝐶𝑡+1𝐷𝑖𝑣 ∘ 𝑜𝑡+1 ∘ 𝑡𝑎𝑛ℎ
′ . 𝑊ℎ𝑖 + 𝛻ℎ𝑡+1𝐷𝑖𝑣 ∘ 𝑡𝑎𝑛ℎ . ∘ 𝜎′ . 𝑊ℎ𝑜

𝑥𝑡+1

ሚ𝐶𝑡+1

𝑖𝑡+1 𝑜𝑡+1

Not explicitly deriving the derivatives w.r.t weights;
Left as an exercise



Gated Recurrent Units: Lets simplify 
the LSTM

• Simplified LSTM which addresses some of 

your concerns of why



Gated Recurrent Units: Lets simplify 
the LSTM

• Combine forget and input gates

– In new input is to be remembered, then this means 
old memory is to be forgotten

• Why compute twice?



Gated Recurrent Units: Lets simplify 
the LSTM

• Don’t bother to separately maintain compressed and regular 
memories

– Pointless computation!

• But compress it before using it to decide on the usefulness of the 
current input!



LSTM Equations

95

• 𝑖 = 𝜎 𝑥𝑡𝑈
𝑖 + 𝑠𝑡−1𝑊

𝑖

• 𝑓 = 𝜎 𝑥𝑡𝑈
𝑓 + 𝑠𝑡−1𝑊

𝑓

• 𝑜 = 𝜎 𝑥𝑡𝑈
𝑜 + 𝑠𝑡−1𝑊

𝑜

• 𝑔 = tanh 𝑥𝑡𝑈
𝑔 + 𝑠𝑡−1𝑊

𝑔

• 𝑐𝑡 = 𝑐𝑡−1 ∘ 𝑓 + 𝑔 ∘ 𝑖

• 𝑠𝑡 = tanh 𝑐𝑡 ∘ 𝑜

• 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑉𝑠𝑡

• 𝒊: input gate, how much of the new 

information will be let through the memory 

cell. 

• 𝒇: forget gate, responsible for information 

should be thrown away from memory cell. 

• 𝒐: output gate, how much of the information 

will be passed to expose to the next time 

step.

• 𝒈: self-recurrent which is equal to standard 

RNN

• 𝒄𝒕: internal memory of the memory cell 

• 𝒔𝒕: hidden state 

• 𝐲: final output

LSTM Memory Cell



LSTM architectures example

• Each green box is now an entire LSTM or GRU 

unit

• Also keep in mind each box is an array of units

Time
X(t)

Y(t)



Bidirectional LSTM

• Like the BRNN, but now the hidden nodes are LSTM units. 

• Can have multiple layers of LSTM units in either direction

– Its also possible to have MLP feed-forward layers between the hidden layers..

• The output nodes (orange boxes) may be complete MLPs

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)



Significant issue left out

• The Divergence



Story so far

• Outputs may not be defined at all times

– Often no clear synchrony between input and desired output

• Unclear how to specify alignment

• Unclear how to compute a divergence

– Obvious choices for divergence may not be differentiable (e.g. edit distance)

• In later lectures..

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)



Some typical problem settings

• Lets consider a few typical problems

• Issues:

– How to define the divergence()

– How to compute the gradient

– How to backpropagate

– Specific problem: The constant error carousel..



Time series prediction using NARX nets

• NARX networks are commonly used for scalar time series prediction

– All boxes are scalar

– Sigmoid activations are commonly used in the hidden layer(s)

• Linear activation in output layer

• The network is trained to minimize the L2 divergence between desired and actual output

– NARX networks are less susceptible to vanishing gradients than conventional RNNs

– Training often uses methods other than backprop/gradient descent, e.g. simulated annealing or genetic 
algorithms



Example of Narx Network

• “Solar and wind forecasting by NARX neural networks,”  Piazza, Piazza and Vitale, 
2016

• Data: hourly global solar irradiation (MJ/m2 ), hourly wind speed (m/s) measured 
at two meters above ground level and the mean hourly temperature recorded 
during seven years, from 2002 to 2008 

• Target: Predict solar irradiation and wind speed from temperature readings

Inputs may use either past 
predicted output values, or 
past true values or the past 
error in prediction



Example of NARX Network: Results

• Used GA to train the net.

• NARX nets are generally the structure of choice 
for time series prediction problems



Which open source project?



Language modelling using RNNs

• Problem:  Given a sequence of words (or 
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??



Language modelling: Representing 
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) 

order
• E.g.  [ A  AARDVARD AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 
zeros and a single 1 (in the position of the word in the 
ordered list of words)

• Characters can be similarly represented
– English will require about 100 characters, to include both 

cases, special characters such as commas, hyphens, 
apostrophes, etc., and the space character



Predicting words

• Given one-hot representations of 𝑊1…𝑊𝑛−1, predict 𝑊𝑛

• Dimensionality problem: All inputs 𝑊1…𝑊𝑛−1 are both 
very high-dimensional and very sparse

𝑊𝑛 = 𝑓 W_1,𝑊1, … ,𝑊𝑛−1

Four score and seven years ???

Nx1 one-hot vectors

𝑓()

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

⋮

0
1
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑊𝑛



Predicting words

• Given one-hot representations of 𝑊1…𝑊𝑛−1, predict 𝑊𝑛

• Dimensionality problem: All inputs 𝑊1…𝑊𝑛−1 are both 
very high-dimensional and very sparse

𝑊𝑛 = 𝑓 W_1,𝑊1, … ,𝑊𝑛−1

Four score and seven years ???

Nx1 one-hot vectors

𝑓()

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

⋮

0
1
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑊𝑛



The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit 
cube

– Actual volume of space used = 0
• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: 𝒪
𝑁

2𝑁

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)



Why one-hot representation

• The one-hot representation makes no assumptions about the relative 
importance of words

– All word vectors are the same length

• It makes no assumptions about the relationships between words

– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)



Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace

– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪
𝑁

2𝑀

– If properly learned, the distances between projected points will capture semantic 
relations between the words

(1,0,0)

(0,1,0)

(0,0,1)



Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪
𝑁

2𝑀

– If properly learned, the distances between projected points will capture semantic relations 
between the words

• This will also require linear transformation (stretching/shrinking/rotation) of the subspace

(1,0,0)

(0,1,0)

(0,0,1)



The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊𝑖 by 𝑃𝑊𝑖

– 𝑃 is an 𝑀 × 𝑁 matrix

– 𝑃𝑊𝑖 is now an 𝑀-dimensional vector

– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

𝑊𝑛 = 𝑓 𝑃𝑊1, 𝑃𝑊2, … , 𝑃𝑊𝑛−1

Four score and seven years ???

𝑓()

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

⋮

0
1
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑊𝑛

𝑃

𝑃

𝑃

(1,0,0)

(0,1,0)

(0,0,1)



“Projection”

• P is a simple linear transform

• A single transform can be implemented as a layer of M neurons with linear activation

• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with 
tied weights

𝑊𝑛 = 𝑓 𝑃𝑊1, 𝑃𝑊2, … , 𝑃𝑊𝑛−1

(1,0,0)

(0,1,0)

(0,0,1)

⋮ ⋮

⋮ ⋮

𝑓()

0
1
⋮
0
0

𝑊𝑛
⋮ ⋮

⋮

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

𝑊1

𝑊2

𝑊𝑛−1

𝑁
𝑀



Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003

– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional 
representations 𝑃𝑊 of words

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊4

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑃

𝑊8

𝑃

𝑊9

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10



Alternative models to learn 
projections

• Soft bag of words: Predict word based on words in 
immediate context

– Without considering specific position

• Skip-grams:  Predict adjacent words based on current 
word

• More on these in a future lecture 

𝑃

Mean pooling

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑊4

𝑃

𝑊7

𝑊5 𝑊6 𝑊8 𝑊9 𝑊10𝑊4

Color indicates
shared parameters



Generating Language: The model

• The hidden units are (one or more layers of) LSTM units

• Trained via backpropagation from a lot of text

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊4

𝑃

𝑊5

𝑃

𝑊6

𝑃

𝑊7

𝑃

𝑊8

𝑃

𝑊9

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10𝑊2 𝑊3 𝑊4



Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3



Generating Language: Synthesis

• On trained model : Provide the first few words

– One-hot vectors

• After the last input word, the network generates a probability distribution over words

– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution

– And set it as the next word in the series

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑊4



Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃

𝑊5𝑊4



Generating Language: Synthesis

• Feed the drawn word as the next word in the series

– And draw the next word from the output probability distribution

• Continue this process until we terminate generation

– In some cases, e.g. generating programs, there may be a natural termination

𝑃

𝑊1

𝑃

𝑊2

𝑃

𝑊3

𝑃 𝑃 𝑃 𝑃 𝑃 𝑃

𝑊5 𝑊6 𝑊7 𝑊8 𝑊9 𝑊10𝑊4



Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)



Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/



Speech recognition using Recurrent 
Nets

• Recurrent neural networks (with LSTMs) can be 
used to perform speech recognition

– Input: Sequences of audio feature vectors

– Output: Phonetic label of each vector

Time

𝑃1

X(t)

t=0

𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7



Speech recognition using Recurrent 
Nets

• Alternative: Directly output phoneme, character or word sequence

• Challenge: How to define the loss function to optimize for training

– Future lecture

– Also homework

Time

𝑊1

X(t)

t=0

𝑊2



CNN-LSTM-DNN for speech recognition

• Ensembles of RNN/LSTM, DNN, & Conv
Nets (CNN) :

• T. Sainath,  O. Vinyals, A. Senior, H. Sak. 
“Convolutional, Long Short-Term Memory, 
Fully Connected Deep Neural Networks,” 
ICASSP 2015.



Translating Videos to Natural Language Using Deep 
Recurrent Neural Networks 

Translating Videos to Natural Language Using Deep Recurrent Neural Networks 
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015. 





Summary

• Recurrent neural networks are more powerful than MLPs
– Can use causal (one-direction) or non-causal (bidirectional) context to make 

predictions
– Potentially Turing complete

• LSTM structures are more powerful than vanilla RNNs
– Can “hold” memory for arbitrary durations

• Many applications
– Language modelling

• And generation

– Machine translation
– Speech recognition
– Time-series prediction
– Stock prediction
– Many others..



Not explained

• Can be combined with CNNs

– Lower-layer CNNs to extract features for RNN

• Can be used in tracking

– Incremental prediction


