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Learning in the net

* Problem: Given a collection of input-output
pairs, learn the function



Learning for classification
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* When the net must learn to classify..



Learning for classification
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* |n reality

— In general not really cleanly separated
* So what is the function we learn?



In reality: Trivial linear example

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors



Non-linearly separable data: 1-D example

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0
— The data are not linearly separable

* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



Undesired Function
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* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0
— The data are not linearly separable

* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?
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* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0
— The data are not linearly separable

* In this 1-D example, a linear separator is a threshold
* No threshold will cleanly separate red and blue dots



What if?

y

ﬁ/ 90 instances
\‘J/ 10 instances
\/ ]

X

e What must the value of the function be at this
X?
— 1 because red dominates?

— 0.9 : The average?



What if?

y

ﬁ/ 90 instances
\‘J/ 10 instances
\/ ]

X

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dominate Potentially much more useful than
. , a simple 1/0 decision
0.9 : The average? Also, potentially more realistic
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What if?

Y
Should an infinitesimal nudge 90 instances
of the red dot change the function
estimate entirely? /
If not, how do we estimate P(1]X)? 10 instances
(since the positions of the red and blue X
Values are different) >
U/ X

e What must the value of the function be at this
X?

. Estimate: = P(1|X)
— 1 because red dominate Potentially much more useful than
a simple 1/0 decision

_ . ?
0.9 : The average: Also, potentially more realistic




The probability of y=1

* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of Y=1 at that point



The probability of y=1

* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The probability of y=1

* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1
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* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point
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The probability of y=1

* Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point



The logistic regression model

1
P =1X) =
y=1 (y 1‘ ) 1+ e—(Wo+W1X)

* Class 1 becomes increasingly probable going left to right
— Very typical in many problems
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The logistic perceptron
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* Asigmoid perceptron with a single input models
the a posteriori probability of the class given the
input



Non-linearly separable data

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors
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Logistic regression

Decision: y > 0.5?

Xq

1
When X is a 2-D variable P =1%) =77 exp(— (X, wix; + wp))

e This the perceptron with a sigmoid activation
— It actually computes the probability that the input belongs to class 1
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Estimating the model

y

1

P(y|x)=f(x)=
(y‘ ) ( ) 1+e—(W0+W1X)

* Given the training data (many (x, y) pairs
represented by the dots), estimate wy and wy
for the curve
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Estimating the model

y

* Easier to represent using ay =+1/-1 notation

1

P =1IX) =
(y 1‘) 1-|-e_(W0+W1X)

X

1

P = —1IX) =
(y 1‘ ) 1_|_e(Wo+W1X)

P(y‘x) - 1+ e—Y(W0+W1X)

1
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Estimating the model

* Given: Training data
(X1, 1), X2,¥2), ey (X, Vi)

* Xs are vectors, ys are binary (0/1) class values
* Total probability of data

P((Xll yl)' (XZJ yZ)» ey (XN;yN)) — HP(Xllyl)

1
= HP(YJXL' ) P(X;) = 1_[ L+ o—yiwotwTx) P(X;)
l

l
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Estimating the model

e Likelihood
P(Training data) = 1_[

l

P(X;
1+ evimarwixy | K0

* Log likelihood
log P(Training data) =

z log P(X;) —Z log (1 + e‘yi(w0+WTXi))
i i
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Maximum Likelihood Estimate

Wy, w; = argmaxlog P(Training data)
Wo,W1

Equals (note argmin rather than argmax)

VT/(); Wl — argminz log (1 4 e‘)’i(Wo+WTXi))
)

Wo,W

ldentical to minimizing the KL divergence

between the desired output y and actual output
1

1+e~ (W0+WTXi)

Cannot be solved directly, needs gradient descent




So what about this one?
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* Non-linear classifiers..



First consider the separable case..
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* When the net must learn to classify..



First consider the separable case..
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e For a “sufficient” net




First consider the separable case..
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* For a “sufficient” net
* This final perceptron is a linear classifier



First consider the separable case..
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e For a “sufficient” net

* This final perceptron is a linear classifier over
the output of the penultimate layer



First consider the separable case..
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* For perfect classification the
output of the penultimate layer must be
linearly separable



First consider the separable case..
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The rest of the network may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features




First consider the separable case..

* The rest of the network may be viewed as a transformation that transforms data
from non-linear classes to linearly separable features

— We can now attach any linear classifier above it for perfect classification
— Need not be a perceptron
— In fact, for binary classifiers an SVM on top of the features may be more generalizable!



First consider the separable case..

* This is true of any sufficient structure
— Not just the optimal one

— For insufficient structures, the network may attempt to transform the inputs to
linearly separable features

* But not be perfect
— Still, for binary problems, using an SVM with slack may be more effective than a final perceptron!



First consider the separable case..

* This is true of any sufficient structure
— Not just the optimal one
* Forinsufficient structures, the network may attempt to transform the inputs to
linearly separable features

—  Will fail to separate
— Still, for binary problems, using an SVM with slack may be more effective than a final perceptron!



Story so far

* A classification MLP actually comprises two
components

— A “feature extraction network” that converts the
inputs into linearly separable features

* Or nearly linearly separable features

— A final linear classifier that operates on the
linearly separable features



An SVM at the output?

* For binary problems, using an SVM with slack may be more effective than'a final
perceptron!

e How does that work??

— Option 1: First train the MLP with a perceptron at the output, then detach the feature extraction,
compute features, and train an SVM

— Option 2: Directly employ a max-margin rule at the output, and optimize the entire network
* Left as an exercise for the curious



How about the lower layers?

How do the lower layers respond?
— They too compute features
— But how do they look

Manifold hypothesis: For separable classes, the classes are linearly separable on a
non-linear manifold

Layers sequentially “straighten” the data manifold
— Until the final layer, which fully linearizes it



The behavior of the layers

2-3-1 NN: Forward transformations

Mean Squared Error (epoch 0) % X
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* Synthetic example: Feature space
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The behavior of the layers

NN: Ir = 0.001

Accuracy (epoch 0) PCA(X) PCA(H,)
100
80 20 500
10
60 0
40 o
-10 -500
20 10 1000
0
10 20 30 40 50 60 70 80 90 500 -1000
PCA(H:) PCA(H,)
107
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PCA(H;) PCA(H;) PCA(H;)




When the data are not separable and
boundaries are not linear..
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* More typical setting for classification
problems



Inseparable classes with an output

logistic perceptro/n@\
Y2

such that the posterior probability may now be
modelled by a logistic



Inseparable classes with an output
logistic perceptron

1

e—(W0+WT X)

P(y[x)=f(x) =
1

 The “feature extraction” layer transforms the data such that
the posterior probability may now be modelled by a logistic

— The output logistic computes the posterior probability of the class
given the input



When the data are not separable and
boundaries are not linear..
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* The output of the network is P(y|x)

— For multi-class networks, it will be the vector of a
posteriori class probabilities
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author of Jonathan Livingston Seagull and One




There’s no such thing as inseparable

L

X.

2

classes

* A sufficiently detailed architecture can separate any
arrangement of points

“Correctness” of the suggested intuitions subject to various
parameters, such as regularization, detail of network, training
paradigm, convergence etc..



Changing gears..




We've seen what the network learns here




Recall: The basic perceptron

1 lf Z WX =>T
Weights Yy = -

0 else

Threshold T

B {1ifxTw2T
y_
0 else

 What do the weights tell us?

— The neuron fires if the inner product between the
weights and the inputs exceeds a threshold



Recall: The weight as a “template”

X'w>T

Weights

cos O >—
| X|

T
0 < cos1|—
(|X|>

* The perceptron fires if the input is within a specified angle of the weight
— Represents a convex region on the surface of the sphere!
— The network is a Boolean function over these regions.

* The overall decision region can be arbitrarily nonconvex
* Neuron fires if the input vector is close enough to the weight vector.
— If the input pattern matches the weight pattern closely enough

59



Recall: The weight as a template

W X

Correlation = 0.57
1if Z wix; =T
y = :

Qelse

 |f the correlation between the weight pattern
and the inputs exceeds a threshold, fire

 The perceptron is a correlation filter!

60



Recall: MLP features

DIGIT OR NOT? ‘
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The lowest layers of a network detect significant features in the

signal

The signal could be (partially) reconstructed using these features
— Will retain all the significant components of the signal 61




Making it explicit
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* The signal could be (partially) reconstructed using these features

— Will retain all the significant components of the signal

—  Will this work?

* Simply recompose the detected features



Making it explicit
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* The signal could be (partially) reconstructed using these features
— Will retain all the significant components of the signal

* Simply recompose the detected features

—  Will this work?
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Making it explicit: an autoencoder

Hahb

x |2d

x |24

1

all

qn

* A neural network can be trained to predict the input itself

* This is an gutoencoder

* An encoder learns to detect all the most significant patterns in the signals

* A decoder recomposes the signal from the patterns



The Simplest Autencoder

* Asingle hidden unit
 Hidden unit has linear activation
e What will this learn?

65



The Simplest Autencoder

Training: Learning W by minimizing
X L2 divergence

g = wlwx

div(%,x) = ||x — &[I* = [|lx — w'wx]|?

w

argmin E[div(X,x)]
W

argmin E[||x — w!wx||?]
W

w

* This is just PCA!
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The Simplest Autencoder

e The autoencoder finds the direction of maximum
energy

— Variance if the input is a zero-mean RV

e All input vectors are mapped onto a point on the
principal axis
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The Simplest Autencoder

* Simply varying the hidden representation will
result in an output that lies along the major
axis
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The Simplest Autencoder

* Simply varying the hidden representation will result in
an output that lies along the major axis

* This will happen even if the learned output weight is
separate from the input weight

— The minimum-error direction is the principal eigen vector
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For more detailed AEs without a non-

linearity

Two dimensional subspace with noise

Y=WX| X=WTYy

* This is still just PCA

E =||X — W"WX]||? Find W to minimize Avg[E]

— The output of the hidden layer will be in the principal subspace

* Even if the recomposition weights are different from the “analysis”

weights
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Terminology

DECODER

ENCODER

 Terminology:

— Encoder: The “Analysis” net which computes the hidden

representation

— Decoder: The “Synthesis” which recomposes the data from the

hidden representation
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Introducing nonlinearity

DECODER

ENCODER

*  When the hidden layer has a linear activation the decoder represents the best linear manifold to fit
the data

— Varying the hidden value will move along this linear manifold
*  When the hidden layer has non-linear activation, the net performs nonlinear PCA
— The decoder represents the best non-linear manifold to fit the data
— Varying the hidden value will move along this non-linear manifold 72
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* With non-linearity
— “Non linear” PCA

— Deeper networks can capture more complicated manifolds

 “Deep” autoencoders



Some examples

3.0 A

2.0 4

=
CgLX N
0 0ue 0 .

—0.5

9

¢

—1.0 -

T T T T T T
-1.0 —-0.5 0.0 0.5 1.0 15

2-D input

Encoder and decoder have 2 hidden layers of 100 neurons, but
hidden representation is unidimensional

Extending the hidden “z” value beyond the values seen in training
extends the helix linearly



Some examples

)

T T T T T T T T T T T T T T T T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 0 1 2 3 4 5 6 7

* The model is discriminative..

— Varying the hidden layer value only generates data along the
learned manifold
* May be poorly learned

— Any input will result in an output along the learned manifold



* When the hidden representation is of lower dimensionality
than the input, often called a “bottleneck” network
— Nonlinear PCA

— Learns the manifold for the data
 |f properly trained



* The decoder can only generate data on the
manifold that the training data lie on

* This also makes it an excellent “generator” of the
distribution of the training data

— Any values applied to the (hidden) input to the
decoder will produce data similar to the training data



The Decoder:

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!



Sax dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!
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The Decoder:

Clarinet dictionary

 The decoder represents a source-specific generative
dictionary

e Exciting it will produce typical data from the source!



A cute application..

* Signal separation...

* Given a mixed sound from multiple sources,
separate out the sources



Dictionary-based techniques

Compose

e Basicidea: Learn a dictionary of “building blocks” for
each sound source

e All signals by the source are composed from entries
from the dictionary for the source
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Dictionary-based techniques

Compose

INUNEE

Cymbal Hi-Hat Hi-Hat Cymbal Rack Rack Drum  Tom Drum  Ped:

e Learn a similar dictionary for all sources
expected in the signal
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Dictionary-based techniques
A

Guitar Drum
music music

Compose Compose

()
()
S22
T = * o CT
H [0 - 9-9
Crash  Closed ©Open  Ride Left Right Snare  Floor Bass  Hi-H N
Tom Tom

* A mixed signal is the linear combination of
signals from the individual sources

— Which are in turn composed of entries from its
dictionary

84



e Separation: Identify the combination of
entries from both dictionaries that compose
the mixed signal
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music

Compose

e Separation: Identify the combination of entries from
both dictionaries that compose the mixed signal

The composition from the identified dictionary entries gives you

the separated signals

music

Compose

T
T
Crash  Close:
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Learning Dictionaries

D,(0,t) -+ Dy(F,t) D,(0,t) D,(F,t)

N1t/ ’\ 7
foeE1 () \ / foE20)
fen10 / \ fen20
ST N §'T TN

D,(0,t) = Dy(F,t) D,(0,t) = Dp(F,t)

e Autoencoder dictionaries for each source

— Operating on (magnitude) spectrograms

* For a well-trained network, the “decoder” dictionary is
highly specialized to creating sounds for that source
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Model for mixed signal

testset Cost function
X(f,t) 5

Yo Yo . vED ] =) X0 = V(O

fDElO\_/ \;/fDEZO
71K 71N

L,(0,¢t) - I,(H,?) I(0,t) - I(H,t)

Estimate I;() and I, () to minimize cost function J()

 The sum of the outputs of both neural
dictionaries

— For some unknown input
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Separation

Test Process testset S TR s Cost function
X(ho > B i
YO0 YWy . YEO ] =) X0 = V(O

fDElO\_/ \;/fDEZO
71K 71N

(0, t) - I,(H, 1) 1,(0,t) - I,(H,t) H : Hidden layer size

Estimate I;() and I, () to minimize cost function J()

* Given mixed signal and source dictionaries, find
excitation that best recreates mixed signal

— Simple backpropagation
* |ntermediate results are separated signals
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Example Results

Mixture Separated Separated

Original Original

5-layer dictionary, 600 units wide

* Separating music
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Story for the day

* Classification networks learn to predict the a posteriori
probabilities of classes

— The network until the final layer is a feature extractor that
converts the input data to be (almost) linearly separable

— The final layer is a classifier/predictor that operates on linearly
separable data

* Neural networks can be used to perform linear or non-
linear PCA

— “Autoencoders”

— Can also be used to compose constructive dictionaries for data

* Which, in turn can be used to model data distributions



