Variational Autoencoders

Recap: Story so far

* A classification MLP actually comprises two components

* A “feature extraction network” that converts the inputs into linearly
separable features

* Or nearly linearly separable features
* A final linear classifier that operates on the linearly separable features

* Neural networks can be used to perform linear or non-linear PCA
e “Autoencoders”

* Can also be used to compose constructive dictionaries for data

 Which, in turn can be used to model data distributions

Recap: The penultimate layer

y2 L, «* " ‘e,

Y1

* The network up to the output layer may be viewed as a transformation that
transforms data from non-linear classes to linearly separable features

Recap: The behavior of the lavers

2-3-1 NN: Forward transformations

Mean Squared Error (epoch 0) % X
A5
0.4
0.3
0

0.2
0.1

0 -0.5

50 100 150 -0.5
Ai=X«W +b H, = tanh(A,)

5

0

5
-5 0
5
0 5 =5
Ay =H «Wy + b,

0.5

0 | ———
-0.5

Recap: Auto-encoders and PCA

Training: Learning W by minimizing

X L2 divergence
R =wlwx
div(%,x) = [Ix = R|I* = [Ix — w'wx]|?
W = argmin E[div(%, x)]

w
W = argmin E[||x — wTwx||?]
w

Recap: Auto-encoders and PCA

X

* The autoencoder finds the direction of maximum energy

e Variance if the input is a zero-mean RV

* All input vectors are mapped onto a point on the principal
axis

Recap: Auto-encoders and PCA

e

* Varying the hidden layer value only generates data along
the learned manifold

* May be poorly learned

* Any input will result in an output along the learned manifold

Recap: Learning a data-manifolc

Sax dictionary

* The decoder represents a source-specific generative
dictionary

* Exciting it will produce typical data from the source!

Overview

e Just as autoencoders can be viewed as performing a non-linear PCA,
variational autoencoders can be viewed as performing a non-linear
Factor Analysis (FA)

* Variational autoencoders (VAEs) get their name from variational
inference, a technique that can be used for parameter estimation

* We will introduce Factor Analysis, variational inference and
expectation maximization, and finally VAEs

Why Generative Models? Training data

* Unsupervised/Semi-supervised learning: More training data available
* E.g. all of the videos on YouTube

W ad

NI TLL

~
S+
,
.
HE -
.?»s
g
L

.

Why generative models? Many right answers

e Caption -> Image * QOutline -> Image

Input Ground truth

https://openreview.net/pdf?id=HyvwOL9el ‘
| ,} ; 2 \J

» e
-]
\ - 2 ']
= r
|
- r
& N
!
-
- "

A man in an orange jacket with
sunglasses and a hat skis down a hill

https://arxiv.org/abs/1611.07004

Why generative models? Intrinsic to task

Example: Super resolution

bicubic SRResNet SRGAN

(21.59dB/0.6423) (23.44dB/0.7777)
—

https://arxiv.org/abs/1609.04802

Why generative models? Insight

 What kind of structure can we find in complex
observations (MEG recording of brain activity
above, gene-expression network to the left)? y

* |s there a low dimensional manifold underlying -l .
these complex observations? e

* What can we learn about the brain, cellular

. . https://bmcbioinformatics.biomedcentral.c

fu nction, etc. if we know more about these om/articles/10.1186/1471-2105-12-327
manifolds?

Factor Analysis

* Generative model: Assumes that data are generated from real valued
latent variables

p(x)

-
1

Bishop — Pattern Recognition and Machine Learning

Factor Analysis model

Factor analysis assumes a generative model
 where the ith observation, is conditioned on
e a vector of real valued latent variables z; € R,

Here we assume the prior distribution is Gaussian:
p(z;) = N (zi|po,Zo)
We also will use a Gaussian for the data likelihood:

Where W € RP*L W € RP*P W js diagonal

Marginal distribution of observed x;

[
p(xilw;ﬂ; lp) — N(Wzi + i, lp) N(Ziluo;z())dzi

J
= N(x;|[Wpo + n, ¥ +WE,Wh)
Note that we can rewrite this as: N
p(x:|W, W) = N (x;|pn, W + WWT)
Where i = Wy + pand W = WZ(;E.
Thus without loss of generality (since g, X are absorbed into learnable

parameters) we let:
p(z;) = N(z;|0,1)

And find:

Marginal distribution interpretation

 We can see from that the
covariance matrix of the data distribution is broken into 2 terms

* A diagonal part ¥: variance not shared between variables
e A low rank matrix : shared variance due to latent factors

Special Case: Probabilistic PCA (PPCA)

* Probabilistic PCA is a special case of Factor Analysis
 We further restrict ¥ = oI (assume isotropic independent variance)

* Possible to show that when the data are centered (u = 0), the limiting
case where o = 0 gives back the same solution for W as PCA

* Factor analysis is a generalization of PCA that models non-shared
variance (can think of this as noise in some situations, or individual
variation in others)

Inference in FA

* To find the parameters of the FA model, we use the Expectation
Maximization (EM) algorithm

* EM is very similar to variational inference

 We'll derive EM by first finding a lower bound on the log-likelihood
we want to maximize, and then maximizing this lower bound

Evidence Lower Bound decomposition

* For any distributions q(z), p(z) we have:

A q(2)
KL(a(@) 11p@) = [a@)logL > dz

* Consider the KL divergence of an arbitrary weighting distribution
q(z) from a conditional distribution p(z|x, 8):
q(z)

KL(a(2) 11 p(zl,0) & | () log L= dz

. f 1(D)[log 4(2) — logp(z|x,)] dz

Applying Bayes

~ p(x|z,0)p(z]0)
logp(z|x,0) = log > (x16)

= logp(x|z,0) +logp(z|0) — logp(x|0)

Then:
KL(q(2) || p(z]x,0)) = j q(z)[logq(z) —logp(z|x,0)] dz

= jq(z)[log q(z) —logp(x|z,6) —logp(z|8) +logp(x[6)]dz

Rewriting the divergence

* Since the last term does not depend on z, and we know [q(z)dz = 1, we can pull it out of the
integration:

f 1()logq(2) — logp(xlz,) — log p(z18) + log p (x|6)]dz
= fq(z)[logq(z) —logp(x|z,6) —logp(z|6)]dz + log p(x|6)

_ 2(2) log ' q(z)
p(x|z,0)p(z,0)

[q(2)
p(x,z|0)

dz + logp(x|8)

—

= rq(z) log dz + logp(x|8)

J

Then we have:
KL(q(2) || p(z|x,0)) = KL(q(2) || p(x, 2 6)) + logp(x|6)

Evidence Lower Bound

* From basic probability we have:

KL(q(2) || p(z|x,6)) = KL(q(2) || p(x, z |6)) + logp(x|6)
* We can rearrange the terms to get the following decomposition:

log p(x|6) = KL(q(2) || p(z|x,6)) = KL(q(2) || p(x, 2 |))
* We define the evidence lower bound (ELBO) as:

L(q,0) £ —KL(q(2) || p(x,26))
Then:
logp(x|6) = KL(q(2)||p(z|x,8)) + L(q,6)

Why the name evidence lower bound?

* Rearranging the decomposition

log p(x|6) = KL(q(2)||p(z|x,8)) + L(q,6)
* we have

L(q,0) =logp(x|6) —KL(q(2) || p(z|x,6))

* Since KL(q(z)||p(z|x, 0)) > 0, L(q,0) is a lower bound on the log-
likelihood we want to maximize

* p(x|6) is sometimes called the evidence
* When is this bound tight? When q(z) = p(z|x, 0)
* The ELBO is also sometimes called the variational bound

Visualizing ELBO decomposition

KL(q||p)

L(q,0) In p(X|0)

y y

Bishop — Pattern Recognition and Machine Learning

* Note: all we have done so far is decompose the log
probability of the data, we still have exact equality
* This holds for any distribution g

Expectation Maximization

* Expectation Maximization alternately optimizes the ELBO, £L(q, 6),
with respect to g (the E step) and 6 (the M step)

* Initialize 8(®

e At each iterationt =1, ...
« E step: Hold 8~ fixed, find ¢*) which maximizes £(q, 8¢~ D)
* M step: Hold ¢ fixed, find 8(©) which maximizes L(q®, 9)

The E step

X X
KL(q|p)
——
L(q,0) Inp(X[0)
y y

Bishop — Pattern Recognition and Machine Learning

» Suppose we are at iteration t of our algorithm. How do we maximize
L(q, H(t_l)) with respect to g? We know that:

argmax, L(q,0¢ V) = argmax, logp(x|6¢~V) — KL (q(z) | p(z|x, H(t‘l)))

The E step

[[
KL(ql[p)
* The first term does not involve g, and we know the KL
divergence must be non-negative

X The best we can do is to make the KL divergence 0

« Thus the solution is to set ¢V (z) « p(z|x, 81~D)
L(q,0) In p(X10)
 J

Bishop — Pattern Recognition and Machine Learning

» Suppose we are at iteration t of our algorithm. How do we maximize
L(q, Q(t_l)) with respect to g? We know that:

argmax, L(q,0¢Y) = argmax, logp(x|0 V) — KL (q(z) | p(z|x, H(t_l)))

The E step

¥ ¥ KL(q|lp) =0 'y x ¥
KL(q||p)
—'_l P
L(q,0) In p(X|6) L(q,0°) In p(X|0°)
y y y y

Bishop — Pattern Recognition and Machine Learning

» Suppose we are at iteration t of our algorithm. How do we maximize
L(q, H(t_l)) with respect to g? q\¥(z) « p(z|x, g(t—l))

The M step

e Fixing q(t) (z) we now solve:

argmaxg L(q(t), 9) = argmaxy —KL gq(t) (2) || p(x, Z|9))

)
q‘\(z)
— argmaxap — I dz
g v, fq () g _p(szlg)_

= argmaxg f g (2)|logp(x,z10) — logq'¥(2)|dz

= argmaxg j 7' (2) logp(x,z |0)|— ¢ (2) log g'" (2) dz

= argmaxg f g (2)logp(x,z|6)dz

= dIrgimnaxg Eq(t)(z) [log p(x,z |9)]

Constant w.r.t. 8

The M step KL(quI
__1
KL(gllp) = 0 — PP PPN [R
L(q, 0 In p(X|0°'Y) L(q,0™") In p(X[6™°")
y y y y

Bishop — Pattern Recognition and Machine Learning

* After applying the E step, we increase the likelihood of the data by finding better
parameters according to: 0(!) «— argmax, IEq(t)(z) llogp(x,z|0)]

EM algorithm

e Initialize (®
e At each iterationt =1, ...
* E step: Update ¢V (2) « p(z|x, 60 D)
M step: Update 8(Y) « argmaxy E, [logp(x,z |06)]

Why does EM work?

* EM does coordinate ascent on the ELBO, L(q, 6)

* Each iteration increases the log-likelihood until q(t) converges (i.e. we
reach a local maximum)!

¢ S|mple to prove By definition of argmax in the M step:
L(q(t)’g(t)) > L(q(t)’g(t—l))

Notice after the E step: By simple substitution:

L(q®,0¢V) £(q®,0®) = logp(x|6¢2)

=1 -1y — KL gt-D -1 Rewriting the left hand side:

] 1Z§5g:e<t—n; (P(zlx) 11 p(zlx)) log p(x]|6®) — KL (p(zlx, p=DY || p(le,Q(t)))
The ELBO is tight! > logp(x|6¢~)

Noting that KL is non-negative:
log p(x|0®) >log p(x|0~V)

Why does EM work?

KL(QHP)I

)
KL(g|lp) = 0 SRV SN N A

£(g,6°) Inp(X|o") £(q,677) In p(X[67)

y y y y

Bishop — Pattern Recognition and Machine Learning

* This proof is saying the same thing we saw in pictures. Make the KL O,
then improve our parameter estimates to get a better likelihood

A different perspective

* Consider the log-likelihood of a marginal distribution of the data x in a generic
latent variable model wi;cvh latent variable ZNparameterlzed by 0:

£60) =) logp(x10) = Y log j p(x;, 2,10)dz;
i=1 =1

* Estimating 6 is difficult because we have a log outside of the integral, so it does
POt g:llc;c directly on the probability distribution (frequently in the exponential
amily

* If we observed z;, then our Iog-likelil?vood would be:

£:(0) £) logp(x;, z10)
=1

This is called the complete log-likelihoo_d

Expected Complete Log-Likelihood

* We can take the expectation of this likelihood over a distribution of the
latent variable q(z):

N
Baol£c@] =). [a(z)logp(xi,z160) dz
=1

* This looks similar to marginalizing, but now the log is inside the integral, so
it’s easier to deal with

* We can treat the latent variables as observed and solve this more easily
than directly solving the log-likelihood

* Finding the g that maximizes this is the E step of EM
* Finding the 8 that maximizes this is the M step of EM

Back to Factor Analysis

* For simplicity, assume data is centered. We want'

argmaxy y logp(X|W, W) = argmaxwwz log p(x;|W, W)
=1
= argmaxy y Z log NV (x;|0, W + WWT)
i=1

* No closed form solution in general (PPCA can be solved in closed
form)

* Y, W get coupled together in the derivative and we can’t solve for
them analytically

EM for Factor Analysis

argmaXy y]Eq(t)(z) [logp(X Z |W lp)] - argmaXW‘Pz Eq(t)(z)[logp(xllzu w, qj)] + Eq(t)(z)[logp(zl)]
i=1

= argmaxpy g z IEq(t)(z)[logp(xllzu w,¥)]

il
= argmaqu,z E, 0,)[log NWz;,P)]

i=1
= argmaxyy y const — Elog det(¥) — Z IEq(t)(z) [(x; —Wz,))T®P 1(x; — Wz;)]

N

N 1
= argmaxyy,y — - log det(¥) — z (E x] W lx; — xi WIWE o, \[zi] + Pk (WTW_lW[Eq(t)(Zi) [ZiZiT])>

* We only need these 2 sufficient statistics to enable the M step.
* In practice, sufficient statistics are often what we compute in the E step

Factor Analysis E step

E 0221 | = G+ E 0, [ZE 0, [2i]"
Where
-1
G = (I1+ WD gD)

This is derived via the Bayes rule for Gaussians

Factor Analysis M step

-y 1T N
W(t) — Z X Eq(t)(zi) [Zi]T z Eq(t)(zi) [ZiZ'lT]
i=1 (=1

N

1
W) « diag (N 2 - W _Z Eq© |2)

=1

From EM to Variational Inference

* In EM we alternately maximize the ELBO with respect to 68 and
probability distribution (functional) g

* In variational inference, we drop the distinction between hidden
variables and parameters of a distribution

* l.e. we replace p(x, z|0) with p(x, z). Effectively this puts a
probability distribution on the parameters 0, then absorbs them into
Z

* Fully Bayesian treatment instead of a point estimate for the
parameters

Variational Inference

* Now the ELBO is just a function of our weighting distribution L(q)
* We assume a form for g that we can optimize
* For example mean field theory assumes g factorizes:

M
1@ = | |a@)
=1

* Then we optimize L(q) with respect to one of the terms while
holding the others constant, and repeat for all terms

* By assuming a form for g we approximate a (typically) intractable true
posterior

Mean Field update derivation

L(q) = fq(Z) log[

[o {mgp(x, z) - log qk(zk)} az
[k

[o zlogmx, 7) -) loga (zg} dzi} z;
k

(

(

(

[

q;(Zj) 5

q;(Z;) 5

q;(Z;) S

q;(Z;)

(

J
-

J
-

J
%

—

\

(

(

(

[

q(Z)

i#]j

p(X,Z)

]dZ =fq(Z)logp(X,Z) —q(Z)logq(2) dz

logp(X,Z)

@z - [[| Dl azooganzo dzi az
i) i+j K

logp(X,Z)

q;(Z;)dZ; —logqj(Zj)jl_[qi(Zi) dZi} dZ; + const

i#] i)

logp(X,Z)

“qi(Zi)dZi} dZ; — jqj(Zj)logqj(Zj)de + const

L#]

rqj(Zj)IEi;tj[logp(X,Z)] dZ; — qu(Zj) logqj(Zj)de + const

Mean Field update

(t)
q;(Z;)

— argmaxqj(zj)Jqj(Zj)IEiij[logp(X,Z)] dZ;

- f q;(Z;) log q;(Z;)dZ;

* The point of this is not the update equations themselves, but the
general idea:
* freeze some of the variables, compute expectations over those
* update the rest using these expectations

Why does Variational Inference work?

* The argument is similar to the argument for EM

* When expectations are computed using the current values for the
variables not being updated, we implicitly set the KL divergence
between the weighting distributions and the posterior distributions to
0

* The update then pushes up the data likelihood KL(Q””I T [

KL(q|[p) =0 7 —_—— e —

L(q,0°) In p(X|6°'9) L(q,0™™) In p(X]0™)

Bishop — Pattern Recognition and Machine Learning y h

Variational Autoencoder

* Kingma & Welling: Auto-Encoding Variational Bayes proposes
maximizing the ELBO with a trick to make it differentiable

* Discusses both the variational autoencoder model using parametric
distributions and fully Bayesian variational inference, but we will only
discuss the variational autoencoder

https://arxiv.org/abs/1312.6114

Problem Setup

zi~q(zi|x;, @)

* Assume a generative model with a
latent variable distributed according
to some distribution p(z;)

* The observed variable is distributed
according to a conditional distribution

p(xi|z;, 0)
* Note the similarity to the Factor
Analysis (FA) setup so far

Problem Setup

* We also create a weighting
distribution g (z;|x;, @)

* This will play the same roleas g(z;) in
the EM algorithm, as we will see.

e * Note that when we discussed EM, this
i~q(zi|x;, @)

weighting distribution could be
arbitrary: we choose to condition on
x; here. This is a choice.

* Why does this make sense?

Using a conditional weighting distribution

* There are many values of the latent variables that don’t matter in
practice — by conditioning on the observed variables, we emphasize
the latent variable values we actually care about: the ones most likely
given the observations

* We would like to be able to encode our data into the latent variable
space. This conditional weighting distribution enables that encoding

Problem setup

zi~q(zi|x;, @)

* Implement p(x;|z;,0) as a neural
network, this can also be seen as a
probabilistic decoder

* Implement q(z;|x;, @) as a neural
network, we also can see this as a
probabilistic encoder

e Sample z; from q(z;|x;, @) in the
middle

Unpacking the encoder

U = u(xi) Wl) L= diag(S(xi, WZ))

* We choose a family of distributions for our conditional distribution g. For example
Gaussian with diagonal covariance:

q(zi|x;, @) = N(z;|u = ulx;, W), Z = diag(s(x;, W;)))

Unpacking the encoder

Y = diag(s(x;, W,))

u(xi) Wl)

”:

* We create neural networks to predict the parameters of g from our data

* In this case, the outputs of our networks are u and X

Unpacking the encoder

U = u(xi) Wl) L= diag(S(xi, WZ))

* We refer to the parameters of our networks, W, and W, collectively as ¢

* Together, networks u and s parameterize a distribution, q(z;|x;, @), of the latent
variable z; that depends in a complicated, non-linear way on x;

Unpacking the decoder

p=1uy(z;,Ws) X = diag(sq(z;, W4))

z;~q(zi|x;, p)

* The decoder follows the same logic, just swapping x; and z;
* We refer to the parameters of our networks, W3 and W, collectively as 6

* Together, networks u; and s; parameterize a distribution, p(x;|z;, 8), of the
latent variable x; that depends in a complicated, non-linear way on z;

Understanding the setup

zi~q(zi|x;, @)

* Note that p and g do not have to use
the same distribution family, this was
just an example

* This basically looks like an
autoencoder, but the outputs of both
the encoder and decoder are
parameters of the distributions of the
latent and observed variables
respectively

* We also have a sampling step in the
middle

Using EM for training

* Initialize 8(®

At each iterationt =1, ..., T
* E step: Hold 8~V fixed, find q¢‘®) which maximizes £(gq, 8(¢~D)
* M step: Hold ¢ fixed, find 8(©) which maximizes L(q®, 9)

 We will use a modified EM to train the model, but we will transform it
SO we can use standard back propagation!

Using EM for training

e Initialize (®

e At each iterationt =1, ..., T
« E step: Hold 8¢~ fixed, find ¢(©) which maximizes L(qb, H(t_l),x)
« M step: Hold ¢ fixed, find 81 which maximizes £(¢(t), H,x)

* First we modify the notation to account for our choice of using a
parametric, conditional distribution g

Using EM for training

e Initialize 0(%)
e At each iterationt =1, ..., T
. : (t-1) f; d 2L i (t-1)
E step: Hold 6 fixed, find 9% to increase L(gb, 6 ,x)

* M step: Hold ¢ fixed, find g—g to increase L(qb(t), H,x)

* Instead of fully maximizing at each iteration, we just take a step in the
direction that increases L

Computing the loss

* We need to compute the gradient for each mini-batch with B data samples using the ELBO/variational
bound L(¢, 8, x;) as the loss

ZL(¢8xl)_z ~KLLaCalxe #) 117 16)) = Z ozl ¢) [l" [qii";??”

* Notice that this involves an intractable integral over all values of z
* We can use Monte Carlo sampling to approximate the expectation using L samples from q(z;|x;, ¢):

Eq(zix,) L f (2i)] = Zf (2)

L(p,0,x;) =LAp,0,x;) = ZZlogP(Xi»Zi,jW) — logq(z; jl|xi, &)
=1

A lower variance estimator of the loss

e \We can rewrite

L(p,0,x) =—KL(q(z|x,p) || p(x,2]6))

0 1)
=— | q(z|x,¢)log [p(x|z,9)P(Z)] &

o a(z1x, $) .
=—| q(z|x,®) llog[()]—logp(x|z,9)]dz—

= —KL(q(z|x,¢) || p(2)) + E,(zx, ¢)[108P(X|Z» 6)]

* The first term can be computed analytically for some families of distributions (e.g.
Gaussian); only the second term must be estimated

L(Qb, 8' xi)

L
- 1
~ [P (¢,0,x) = =KL(q(z|x:, §) || p(2)) + 22 log p(x;12;;,6)
=

Full EM training procedure (not really used)

e Fort = 1:b:T

0L

* Update ¢

. oL
Estimate 39

* Estimate % (How do we do this? We’ll get to it shortly)

* Initialize A@ =0

e Fori=t:it+b—1

zi~q(zi|x;, P)]

 Update 6

Compute the outputs of the encoder (parameters of q) for x;
For{=1,..L

Sample z; ~ q(z;|x;, §)
AB; , < Run forward/backward pass on the decoder

(standard back propagation) using either £“ or L? as
the loss

AO < AO + AGL{;

Full EM training procedure (not really used)

e Fort = 1:b:T
* Estimate g—; (How do we do this? We’ll get to it shortly)
* Update ¢
. L
Estimate 39
* Initialize A8 =0

e Fori=t:it+b—1

* Compute the outputs of the encoder (parameters of q) for x;

First simplification:
Let L = 1. We just want a
stochastic estimate of the / sample % ~ 4 i ¢)

* AB; < Run forward/backward pass on the decoder (standard

gradient- With a Iarge enOUgh B: back propagation) using either £* or L as the loss
we get enough samples from .« 7B < AO + A6,

q(lexl' ¢) ° Updateg

The E step

 We can use standard back

: : 0L
propagation to estimate Y

. oL
e How do we estimate ﬁ?

* The sampling step blocks the gradient

OO O D GO D zi~q(zi|x;, @)

flow

* Computing the derivatives through g
via the chain rule gives a very high
variance estimate of the gradient

Reparameterization

* Instead of drawing z; ~ q(z;|x;, P),
let z; = g(€;,x;,¢), and draw €; ~ p(€)

* z; is still a random variable but depends on ¢ deterministically
* Replace Egz,x, ¢ [f (2] with E, oy [f (8(€s x1,)]
* Example — univariate normal:

a ~ N (u,a?) is equivalent to

a=g(e),e~N(0,1),g(b) = u+ob

Reparameterization

z; = g(€;,x;, P)

OO O D GO D zi~q(zi|x;, @)

)

Full EM training procedure (not really used)

eFort = 1:b:T
* E Step

e Estimate g—i using standard back

propagation with either £4 or £? as the loss
z; = g(€;,x;,) * Update ¢
* M Step

: oL .
* Estimate 5g USing standard back

propagation with either £4 or L? as the loss
 Update 6

Full training procedure

e Fort = 1:b:T

. oL L .. . < <
 Estimate 30 30 with either L4 or L? as the loss

* Update ¢, 0

* Final simplification: update all of the
parameters at the same time instead of
using separate E, M steps

z; = g(€;, Xi, P)

* This is standard back propagation. Just use
— L4 or —LF as the loss, and run your
favorite SGD variant

Running the model on new data

* To get a MAP estimate of the latent variables, just use the mean
output by the encoder (for a Gaussian distribution)

* No need to take a sample
* Give the mean to the decoder
At test time, this is used just as an auto-encoder

* You can optionally take multiple samples of the latent variables to
estimate the uncertainty

Relationship to Factor Analysis

* VAE performs probabilistic, non-linear
dimensionality reduction

* It uses a generative model with a latent
variable distributed according to some
prior distribution p(z;)

 The observed variable is distributed
according to a conditional distribution

p(xi|z;, 0)

* Training is approximately running
expectation maximization to maximize
the data likelihood

* This can be seen as a non-linear version
of Factor Analysis

zi~q(zi|x;, @)

Regularization by a prior

» Looking at the form of £ we used to justify L” gives us additional
insight

L(¢' H,X) — —KL(C[(Zl.X', (:b) || p(Z)) + [Eq(Z|X, ¢) [lng(XlZ, 9)]

* We are making the latent distribution as close as possible to a prior
on Z

* While maximizing the conditional likelihood of the data under our
model

* In other words this is an approximation to Maximum Likelihood
Estimation regularized by a prior on the latent space

Practical advantages of a VAE vs. an AE

* The prior on the latent space:
* Allows you to inject domain knowledge
* Can make the latent space more interpretable

* The VAE also makes it possible to estimate the variance/uncertainty in
the predictions

Interpreting the latent space

_____________________>

QQQQ
\nnnn

add
smiling
vector

subtract
smiling
vector

add
sunglass
vector

add
sunglass
vector

subtract
sunglass
vector

https://arxiv.org/pdf/1610.00291.pdf

Requirements of the VAE

* Note that the VAE requires 2 tractable distributions to be used:

* The prior distribution p(z) must be easy to sample from
* The conditional likelihood p(x|z,) must be computable

* In practice this means that the 2 distributions of interest are often
simple, for example uniform, Gaussian, or even isotropic Gaussian

The blurry image problem

* The samples from the VAE
look blurry

* Three plausible
explanations for this

-!EIEIE..E F Lo AMB * Maximizing the
="-=E=ﬁ.g= Ly B oy N likelihood
” il SENN "% * Restrictions on the
Fosu=aH_<» £ t e . o
family of distributions
https://blog.openai.com/generative-models/ e The lower bound

approximation

The maximum likelihood explanation

o

q" = argmin Dx1(pl|q) q" = argmin, Dk (q||p)

o

— p(x) N —

() * Recent evidence
_— . q* (ZE) *

(:B) suggests that this is
not actually the
problem

* GANs can be trained
with maximum
likelihood and still
generate sharp
examples

Probability Density
Probability Density

Maximum likelihood Reverse KL

https://arxiv.org/pdf/1701.00160.pdf

Investigations of blurriness

* Recent investigations suggest that both the simple probability
distributions and the variational approximation lead to blurry images

* Kingma & colleages: Improving Variational Inference with Inverse
Autoregressive Flow

e Zhao & colleagues: Towards a Deeper Understanding of Variational
Autoencoding Models

* Nowozin & colleagues: f-gan: Training generative neural samplers
using variational divergence minimization

https://arxiv.org/abs/1606.04934
https://arxiv.org/pdf/1702.08658.pdf
https://arxiv.org/abs/1606.00709

