
Variational Autoencoders



Recap: Story so far

• A classification MLP actually comprises two components
• A “feature extraction network” that converts the inputs into linearly 

separable features
• Or nearly linearly separable features

• A final linear classifier that operates on the linearly separable features

• Neural networks can be used to perform linear or non-linear PCA

• “Autoencoders”

• Can also be used to compose constructive dictionaries for data

• Which, in turn can be used to model data distributions



𝑦1 𝑦2

Recap: The penultimate layer

• The network up to the output layer may be viewed as a transformation that 
transforms data from non-linear classes to linearly separable features

• We can now attach any linear classifier above it for perfect classification

• Need not be a perceptron

• In fact, slapping on an SVM on top of the features may be more generalizable!
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Recap: The behavior of the layers



Recap: Auto-encoders and PCA
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Training: Learning 𝑊 by minimizing 
L2 divergence

ොx = 𝑤𝑇𝑤x
𝑑𝑖𝑣 ොx, x = x − ොx 2 = x − w𝑇𝑤x 2

෡𝑊 = argmin
𝑊

𝐸 x − w𝑇𝑤x 2

෡𝑊 = argmin
𝑊

𝐸 𝑑𝑖𝑣 ොx, x



Recap: Auto-encoders and PCA

• The autoencoder finds the direction of maximum energy

• Variance if the input is a zero-mean RV

• All input vectors are mapped onto a point on the principal 

axis
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Recap: Auto-encoders and PCA

• Varying the hidden layer value only generates data along 

the learned manifold

• May be poorly learned

• Any input will result in an output along the learned manifold



DECODER

Recap: Learning a data-manifold

• The decoder represents a source-specific generative 

dictionary

• Exciting it will produce typical data from the source! 
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Overview

• Just as autoencoders can be viewed as performing a non-linear PCA, 
variational autoencoders can be viewed as performing a non-linear 
Factor Analysis (FA)

• Variational autoencoders (VAEs) get their name from variational
inference, a technique that can be used for parameter estimation

• We will introduce Factor Analysis, variational inference and 
expectation maximization, and finally VAEs



Why Generative Models? Training data

• Unsupervised/Semi-supervised learning: More training data available

• E.g. all of the videos on YouTube



Why generative models? Many right answers

• Caption -> Image

A man in an orange jacket with 
sunglasses and a hat skis down a hill

• Outline -> Image

https://openreview.net/pdf?id=Hyvw0L9el

https://arxiv.org/abs/1611.07004



Why generative models? Intrinsic to task

Example: Super resolution

https://arxiv.org/abs/1609.04802



Why generative models? Insight

https://bmcbioinformatics.biomedcentral.c
om/articles/10.1186/1471-2105-12-327

• What kind of structure can we find in complex 
observations (MEG recording of brain activity 
above, gene-expression network to the left)?

• Is there a low dimensional manifold underlying
these complex observations?

• What can we learn about the brain, cellular 
function, etc. if we know more about these 
manifolds?



Factor Analysis

• Generative model: Assumes that data are generated from real valued 
latent variables
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Factor Analysis model

Factor analysis assumes a generative model 
• where the 𝑖𝑡ℎ observation, 𝒙𝒊 ∈ ℝ

𝐷 is conditioned on 

• a vector of real valued latent variables 𝒛𝒊 ∈ ℝ
𝐿. 

Here we assume the prior distribution is Gaussian:

𝑝 𝒛𝒊 = 𝒩(𝒛𝒊|𝝁𝟎, 𝚺𝟎)

We also will use a Gaussian for the data likelihood:
𝑝 𝒙𝒊 𝒛𝒊,𝑾, 𝝁,𝚿 = 𝒩(𝑾𝒛𝒊 + 𝝁,𝚿)

Where 𝑾 ∈ ℝ𝐷×𝐿 , 𝚿 ∈ ℝ𝐷×𝐷, 𝚿 is diagonal



Marginal distribution of observed 𝒙𝒊

𝑝 𝒙𝒊 𝑾,𝝁,𝚿 = න𝒩(𝑾𝒛𝒊 + 𝝁,𝚿)𝒩 𝒛𝒊 𝝁𝟎, 𝚺𝟎 𝐝𝒛𝒊

= 𝒩 𝒙𝒊 𝑾𝝁𝟎 + 𝝁,𝚿 +𝑾 𝚺𝟎𝑾
𝑇

Note that we can rewrite this as:
𝑝 𝒙𝒊 ෢𝑾, ෝ𝝁,𝚿 = 𝒩 𝒙𝒊 ෝ𝝁,𝚿 +෢𝑾෢𝑾𝑇

Where ෝ𝝁 = 𝑾𝝁𝟎 + 𝝁 and ෢𝑾 = 𝑾𝚺𝟎
−
1

2. 

Thus without loss of generality (since 𝝁𝟎, 𝚺𝟎 are absorbed into learnable 
parameters) we let:

𝑝 𝒛𝒊 = 𝒩 𝒛𝒊 𝟎, 𝑰

And find:
𝑝 𝒙𝒊 𝑾,𝝁,𝚿 = 𝒩 𝒙𝒊 𝝁,𝚿 +𝑾𝑾𝑇



Marginal distribution interpretation

• We can see from 𝑝 𝒙𝒊 𝑾,𝝁,𝚿 = 𝒩 𝒙𝒊 𝝁,𝚿 +𝑾𝑾𝑇 that the 
covariance matrix of the data distribution is broken into 2 terms

• A diagonal part 𝚿: variance not shared between variables

• A low rank matrix 𝑾𝑾𝑇: shared variance due to latent factors



Special Case: Probabilistic PCA (PPCA)

• Probabilistic PCA is a special case of Factor Analysis 

• We further restrict 𝚿 = 𝜎2𝑰 (assume isotropic independent variance)

• Possible to show that when the data are centered (𝝁 = 0), the limiting 
case where 𝜎 → 0 gives back the same solution for 𝑾 as PCA

• Factor analysis is a generalization of PCA that models non-shared 
variance (can think of this as noise in some situations, or individual 
variation in others)



Inference in FA

• To find the parameters of the FA model, we use the Expectation 
Maximization (EM) algorithm

• EM is very similar to variational inference 

• We’ll derive EM by first finding a lower bound on the log-likelihood 
we want to maximize, and then maximizing this lower bound



Evidence Lower Bound decomposition

• For any distributions 𝑞 𝑧 , 𝑝(𝑧) we have:

KL 𝑞 𝑧 || 𝑝 𝑧 ≜ න𝑞 𝑧 log
𝑞(𝑧)

𝑝(𝑧)
𝐝𝑧

• Consider the KL divergence of an arbitrary weighting distribution
𝑞 𝑧 from a conditional distribution 𝑝 𝑧|𝑥, 𝜃 :

KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 ≜ න𝑞 𝑧 log
𝑞(𝑧)

𝑝(𝑧|𝑥, 𝜃)
𝐝𝑧

= න𝑞 𝑧 [log 𝑞 𝑧 − log 𝑝(𝑧|𝑥, 𝜃)] 𝐝𝑧



Applying Bayes

log 𝑝 𝑧 𝑥, 𝜃 = log
𝑝 𝑥 𝑧, 𝜃 𝑝(𝑧|𝜃)

𝑝(𝑥|𝜃)
= log 𝑝 𝑥 𝑧, 𝜃 + log 𝑝 𝑧 𝜃 − log 𝑝 𝑥 𝜃

Then:

KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 = න𝑞 𝑧 [log 𝑞 𝑧 − log 𝑝(𝑧|𝑥, 𝜃)] 𝐝𝑧

= න𝑞 𝑧 log 𝑞 𝑧 − log 𝑝 𝑥 𝑧, 𝜃 − log 𝑝 𝑧 𝜃 + log 𝑝 𝑥 𝜃 𝐝𝑧



Rewriting the divergence

• Since the last term does not depend on z, and we know ׬𝑞 𝑧 d𝑧 = 1, we can pull it out of the 
integration:

න𝑞 𝑧 log 𝑞 𝑧 − log 𝑝 𝑥 𝑧, 𝜃 − log 𝑝 𝑧 𝜃 + log 𝑝 𝑥 𝜃 𝐝𝑧

= න𝑞 𝑧 log 𝑞 𝑧 − log𝑝 𝑥 𝑧, 𝜃 − log 𝑝 𝑧 𝜃 𝐝𝑧 + log𝑝 𝑥 𝜃

= න𝑞 𝑧 log
𝑞(𝑧)

𝑝 𝑥 𝑧, 𝜃 𝑝(𝑧, 𝜃)
𝐝𝑧 + log 𝑝 𝑥 𝜃

= න𝑞 𝑧 log
𝑞(𝑧)

𝑝(𝑥, 𝑧 |𝜃)
𝐝𝑧 + log 𝑝 𝑥 𝜃

Then we have:
KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃 + log 𝑝 𝑥 𝜃



Evidence Lower Bound

• From basic probability we have:
KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃 + log 𝑝 𝑥 𝜃

• We can rearrange the terms to get the following decomposition:
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 − KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃

• We define the evidence lower bound (ELBO) as:
ℒ 𝑞, 𝜃 ≜ −KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃

Then:
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 ||𝑝 𝑧|𝑥, 𝜃 + ℒ 𝑞, 𝜃



Why the name evidence lower bound?

• Rearranging the decomposition
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 ||𝑝 𝑧|𝑥, 𝜃 + ℒ 𝑞, 𝜃

• we have
ℒ 𝑞, 𝜃 = log 𝑝 𝑥 𝜃 − KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃

• Since KL 𝑞 𝑧 ||𝑝 𝑧|𝑥, 𝜃 ≥ 0, ℒ 𝑞, 𝜃 is a lower bound on the log-
likelihood we want to maximize

• 𝑝 𝑥 𝜃 is sometimes called the evidence

• When is this bound tight? When 𝑞 𝑧 = 𝑝 𝑧|𝑥, 𝜃

• The ELBO is also sometimes called the variational bound



Visualizing ELBO decomposition

• Note: all we have done so far is decompose the log 
probability of the data, we still have exact equality

• This holds for any distribution 𝑞
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Expectation Maximization

• Expectation Maximization alternately optimizes the ELBO, ℒ 𝑞, 𝜃 , 
with respect to 𝑞 (the E step) and 𝜃 (the M step)

• Initialize 𝜃(0)

• At each iteration 𝑡 = 1,…
• E step: Hold 𝜃(𝑡−1) fixed, find 𝑞(𝑡) which maximizes ℒ 𝑞, 𝜃(𝑡−1)

• M step: Hold 𝑞(𝑡) fixed, find 𝜃(𝑡) which maximizes ℒ 𝑞(𝑡), 𝜃



The E step

• Suppose we are at iteration 𝑡 of our algorithm. How do we maximize 
ℒ 𝑞, 𝜃(𝑡−1) with respect to 𝑞? We know that:

argmax𝑞 ℒ 𝑞, 𝜃(𝑡−1) = argmax𝑞 log 𝑝 𝑥|𝜃 𝑡−1 − KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃(𝑡−1)
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The E step

• Suppose we are at iteration 𝑡 of our algorithm. How do we maximize 
ℒ 𝑞, 𝜃(𝑡−1) with respect to 𝑞? We know that:

argmax𝑞 ℒ 𝑞, 𝜃(𝑡−1) = argmax𝑞 log 𝑝 𝑥|𝜃 𝑡−1 − KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃(𝑡−1)

• The first term does not involve 𝑞, and we know the KL 
divergence must be non-negative

• The best we can do is to make the KL divergence 0

• Thus the solution is to set 𝒒 𝒕 𝒛 ← 𝒑 𝒛 𝒙, 𝜽 𝒕−𝟏
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The E step

• Suppose we are at iteration 𝑡 of our algorithm. How do we maximize 
ℒ 𝑞, 𝜃(𝑡−1) with respect to 𝑞? 𝒒 𝒕 𝒛 ← 𝒑 𝒛 𝒙, 𝜽 𝒕−𝟏
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The M step
• Fixing 𝑞 𝑡 𝑧 we now solve:

argmax𝜃 ℒ 𝑞(𝑡), 𝜃 = argmax𝜃 −KL 𝑞(𝑡) 𝑧 || 𝑝 𝑥, 𝑧|𝜃

= argmax𝜃 −න𝑞(𝑡) 𝑧 log
𝑞(𝑡) 𝑧

𝑝 𝑥, 𝑧|𝜃
𝐝𝑧

= argmax𝜃න𝑞(𝑡) 𝑧 log 𝑝 𝑥, 𝑧 𝜃 − log 𝑞(𝑡) 𝑧 𝐝𝑧

= argmax𝜃න𝑞(𝑡) 𝑧 log 𝑝 𝑥, 𝑧 𝜃 − 𝑞(𝑡) 𝑧 log 𝑞(𝑡) 𝑧 𝐝𝑧

= argmax𝜃න𝑞(𝑡) 𝑧 log 𝑝 𝑥, 𝑧 𝜃 𝐝𝑧

= argmax𝜃 𝔼𝑞 𝑡 (𝑧) log 𝑝 𝑥, 𝑧 𝜃
Constant w.r.t. 𝜃



The M step

• After applying the E step, we increase the likelihood of the data by finding better 
parameters according to: 𝜃(𝑡) ← 𝐚𝐫𝐠𝐦𝐚𝐱𝜽 𝔼𝒒 𝒕 (𝒛) 𝐥𝐨𝐠𝒑 𝒙, 𝒛 𝜽
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EM algorithm

• Initialize 𝜃(0)

• At each iteration 𝑡 = 1,…
• E step: Update 𝑞 𝑡 𝑧 ← 𝑝 𝑧 𝑥, 𝜃 𝑡−1

• M step: Update 𝜃(𝑡) ← argmax𝜃 𝔼𝑞 𝑡 (𝑧) log 𝑝 𝑥, 𝑧 𝜃



Why does EM work?

• EM does coordinate ascent on the ELBO, ℒ 𝑞, 𝜃

• Each iteration increases the log-likelihood until 𝑞 𝑡 converges (i.e. we 
reach a local maximum)!

• Simple to prove

Notice after the E step:

ℒ 𝑞 𝑡 , 𝜃(𝑡−1)

= log𝑝(𝑥|𝜃(𝑡−1)) − KL 𝑝 𝑧|𝑥, 𝜃 𝑡−1 || 𝑝 𝑧|𝑥, 𝜃 𝑡−1

= log𝑝(𝑥|𝜃(𝑡−1))
The ELBO is tight!

By definition of argmax in the M step:

ℒ 𝑞 𝑡 , 𝜃(𝑡) ≥ ℒ 𝑞 𝑡 , 𝜃(𝑡−1)

By simple substitution:

ℒ 𝑞 𝑡 , 𝜃(𝑡) ≥ log 𝑝 𝑥 𝜃 𝑡−1

Rewriting the left hand side:

log 𝑝(𝑥|𝜃(𝑡)) − KL 𝑝 𝑧|𝑥, 𝜃 𝑡−1 || 𝑝 𝑧|𝑥, 𝜃 𝑡

≥ log𝑝 𝑥 𝜃 𝑡−1

Noting that KL is non-negative:

𝐥𝐨𝐠 𝒑 𝒙 𝜽 𝒕 ≥ 𝐥𝐨𝐠𝒑 𝒙 𝜽 𝒕−𝟏



Why does EM work?

• This proof is saying the same thing we saw in pictures. Make the KL 0, 
then improve our parameter estimates to get a better likelihood

Bishop – Pattern Recognition and Machine Learning



A different perspective

• Consider the log-likelihood of a marginal distribution of the data 𝑥 in a generic 
latent variable model with latent variable 𝑧 parameterized by 𝜃:

ℓ 𝜃 ≜ ෍

𝑖=1

𝑁

log 𝑝 𝑥𝑖 𝜃 =෍

𝑖=1

𝑁

logන𝑝 𝑥𝑖 , 𝑧𝑖 𝜃 𝐝𝑧𝑖

• Estimating 𝜃 is difficult because we have a log outside of the integral, so it does 
not act directly on the probability distribution (frequently in the exponential 
family)

• If we observed 𝑧𝑖, then our log-likelihood would be:

ℓ𝑐 𝜃 ≜෍

𝑖=1

𝑁

log 𝑝(𝑥𝑖 , 𝑧𝑖|𝜃)

This is called the complete log-likelihood



Expected Complete Log-Likelihood

• We can take the expectation of this likelihood over a distribution of the 
latent variable 𝑞 𝑧 :

𝔼𝑞 𝑧 ℓ𝑐 𝜃 = ෍

𝑖=1

𝑁

න𝑞 𝑧𝑖 log 𝑝 𝑥𝑖 , 𝑧𝑖 𝜃 d𝑧𝑖

• This looks similar to marginalizing, but now the log is inside the integral, so 
it’s easier to deal with

• We can treat the latent variables as observed and solve this more easily 
than directly solving the log-likelihood

• Finding the 𝑞 that maximizes this is the E step of EM

• Finding the 𝜃 that maximizes this is the M step of EM



Back to Factor Analysis

• For simplicity, assume data is centered. We want:

argmax𝑾,𝚿 log 𝑝 𝑿 𝑾,𝚿 = argmax𝑾,𝚿෍

𝑖=1

𝑁

log 𝑝 𝒙𝒊 𝑾,𝚿

= argmax𝑾,𝚿෍

𝑖=1

𝑁

log𝒩 𝒙𝒊 𝟎,𝚿 +𝑾𝑾𝑇

• No closed form solution in general (PPCA can be solved in closed 
form)

• 𝚿, 𝑾 get coupled together in the derivative and we can’t solve for 
them analytically



EM for Factor Analysis

argmax𝑾,𝚿 𝔼𝑞 𝑡 (𝒛) log 𝑝 𝑿, 𝒁 𝑾,𝚿 = argmax𝑾,𝚿෍

𝑖=1

𝑁

𝔼𝑞 𝑡 (𝒛𝒊)
log 𝑝 𝒙𝒊 𝒛𝒊,𝑾,𝚿 + 𝔼𝑞 𝑡 (𝒛𝒊)

log 𝑝(𝒛𝒊)

= argmax𝑾,𝚿෍

𝑖=1

𝑁

𝔼𝑞 𝑡 (𝒛𝒊)
log 𝑝 𝒙𝒊 𝒛𝒊,𝑾,𝚿

= argmax𝑾,𝚿෍

𝑖=1

𝑁

𝔼𝑞 𝑡 (𝒛𝒊)
log𝒩(𝑾𝒛𝒊, 𝚿)

= argmax𝑾,𝚿 const −
𝑁

2
log det(𝚿) −෍

𝑖=1

𝑁

𝔼𝑞 𝑡 (𝒛𝒊)

1

2
𝒙𝒊 −𝑾𝒛𝒊

𝑇𝚿−1 𝒙𝒊 −𝑾𝒛𝒊

= argmax𝑾,𝚿−
𝑁

2
log det(𝚿) −෍

𝑖=1

𝑁
1

2
𝒙𝑖
𝑇𝚿−1𝒙𝑖 − 𝒙𝒊

𝑇𝚿−1𝑾𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝑖 +

1

2
tr 𝑾𝑇𝚿−1𝑾𝔼𝑞 𝑡 𝒛𝒊

𝒛𝒊𝒛𝒊
𝑇

• We only need these 2 sufficient statistics to enable the M step. 

• In practice, sufficient statistics are often what we compute in the E step



Factor Analysis E step

𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝒊 = 𝑮𝑾(𝒕−𝟏)𝑇𝚿(𝑡−1)−1𝒙𝑖

𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝒊𝒛𝒊

𝑇 = 𝑮 + 𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝒊 𝔼𝑞 𝑡 (𝒛𝒊)

𝒛𝒊
𝑇

Where

𝑮 = 𝑰 +𝑾 𝑡−1 𝑇
𝚿 𝑡−1 −1

𝑾 𝑡−1
−1

This is derived via the Bayes rule for Gaussians



Factor Analysis M step

𝑾(𝑡) ← ෍

𝑖=1

𝑁

𝒙𝑖 𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝒊

𝑇 ෍

𝑖=1

𝑁

𝔼𝑞 𝑡 𝒛𝒊
𝒛𝒊𝒛𝒊

𝑇

−1

𝚿(𝑡) ← diag
1

𝑁
෍

𝑖=1

𝑁

𝒙𝒊𝒙𝒊
𝑇 −𝑾(𝑡)

1

𝑁
෍

𝑖=1

𝑁

𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝒊 𝒙𝑖

𝑇



From EM to Variational Inference

• In EM we alternately maximize the ELBO with respect to 𝜃 and 
probability distribution (functional) 𝑞

• In variational inference, we drop the distinction between hidden 
variables and parameters of a distribution

• I.e. we replace 𝑝(𝑥, 𝑧|𝜃) with 𝑝(𝑥, 𝑧). Effectively this puts a 
probability distribution on the parameters 𝜽, then absorbs them into 
𝑧

• Fully Bayesian treatment instead of a point estimate for the 
parameters 



Variational Inference

• Now the ELBO is just a function of our weighting distribution ℒ(𝑞)

• We assume a form for 𝑞 that we can optimize

• For example mean field theory assumes 𝑞 factorizes:

𝑞 𝑍 = ෑ

𝑖=1

𝑀

𝑞𝑖(𝑍𝑖)

• Then we optimize ℒ(𝑞) with respect to one of the terms while 
holding the others constant, and repeat for all terms

• By assuming a form for 𝑞 we approximate a (typically) intractable true 
posterior



Mean Field update derivation
ℒ 𝑞 = න𝑞 𝑍 log

𝑝(𝑋, 𝑍)

𝑞(𝑍)
𝑑𝑍 = න𝑞 𝑍 log 𝑝(𝑋, 𝑍) − 𝑞 𝑍 log 𝑞(𝑍) 𝑑𝑍

= නෑ

𝑖

𝑞𝑖(𝑍𝑖) log 𝑝(𝑋, 𝑍) − ෍

𝑘

log 𝑞𝑘(𝑍𝑘) 𝑑𝑍

= න𝑞𝑗(𝑍𝑗) නෑ

𝑖≠𝑗

𝑞𝑖(𝑍𝑖) log 𝑝(𝑋, 𝑍) − ෍

𝑘

log 𝑞𝑘(𝑍𝑘) 𝑑𝑍𝑖 𝑑𝑍𝑗

= න𝑞𝑗(𝑍𝑗) න log 𝑝(𝑋, 𝑍)ෑ

𝑖≠𝑗

𝑞𝑖 𝑍𝑖 𝑑𝑍𝑖 −නෑ

𝑖≠𝑗

෍

𝑘

𝑞𝑖(𝑍𝑖) log 𝑞𝑘(𝑍𝑘) 𝑑𝑍𝑖 𝑑𝑍𝑗

= න𝑞𝑗(𝑍𝑗) න log 𝑝(𝑋, 𝑍)ෑ

𝑖≠𝑗

𝑞𝑖 𝑍𝑖 𝑑𝑍𝑖 − log 𝑞𝑗(𝑍𝑗)නෑ

𝑖≠𝑗

𝑞𝑖(𝑍𝑖) 𝑑𝑍𝑖 𝑑𝑍𝑗 + const

= න𝑞𝑗(𝑍𝑗) න log 𝑝(𝑋, 𝑍)ෑ

𝑖≠𝑗

𝑞𝑖 𝑍𝑖 𝑑𝑍𝑖 𝑑𝑍𝑗 − න𝑞𝑗 𝑍𝑗 log 𝑞𝑗 𝑍𝑗 𝑑𝑍𝑗 + const

= න𝑞𝑗 𝑍𝑗 𝔼𝑖≠𝑗[log 𝑝(𝑋, 𝑍)] 𝑑𝑍𝑗 − න𝑞𝑗(𝑍𝑗) log 𝑞𝑗 𝑍𝑗 𝑑𝑍𝑗 + const



Mean Field update

𝑞𝑗 𝑍𝑗
(𝑡)

← argmax𝑞𝑗(𝑍𝑗)න𝑞𝑗 𝑍𝑗 𝔼𝑖≠𝑗[log 𝑝(𝑋, 𝑍)] 𝑑𝑍𝑗

− න𝑞𝑗(𝑍𝑗) log 𝑞𝑗 𝑍𝑗 𝑑𝑍𝑗

• The point of this is not the update equations themselves, but the 
general idea: 
• freeze some of the variables, compute expectations over those

• update the rest using these expectations



Why does Variational Inference work?

• The argument is similar to the argument for EM

• When expectations are computed using the current values for the 
variables not being updated, we implicitly set the KL divergence 
between the weighting distributions and the posterior distributions to 
0

• The update then pushes up the data likelihood

Bishop – Pattern Recognition and Machine Learning



Variational Autoencoder

• Kingma & Welling: Auto-Encoding Variational Bayes proposes 
maximizing the ELBO with a trick to make it differentiable

• Discusses both the variational autoencoder model using parametric 
distributions and fully Bayesian variational inference, but we will only 
discuss the variational autoencoder

https://arxiv.org/abs/1312.6114


Problem Setup

• Assume a generative model with a 
latent variable distributed according 
to some distribution 𝑝(𝑧𝑖)

• The observed variable is distributed 
according to a conditional distribution 
𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

• Note the similarity to the Factor 
Analysis (FA) setup so far

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



Problem Setup

• We also create a weighting 
distribution 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

• This will play the same role as 𝑞(𝑧𝑖) in 
the EM algorithm, as we will see. 

• Note that when we discussed EM, this 
weighting distribution could be 
arbitrary: we choose to condition on 
𝑥𝑖 here. This is a choice.

• Why does this make sense?𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



Using a conditional weighting distribution

• There are many values of the latent variables that don’t matter in 
practice – by conditioning on the observed variables, we emphasize 
the latent variable values we actually care about: the ones most likely 
given the observations

• We would like to be able to encode our data into the latent variable 
space. This conditional weighting distribution enables that encoding 



Problem setup

• Implement 𝑝(𝑥𝑖|𝑧𝑖 , 𝜃) as a neural 
network, this can also be seen as a 
probabilistic decoder

• Implement 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙) as a neural 
network, we also can see this as a 
probabilistic encoder

• Sample 𝑧𝑖 from 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙) in the 
middle

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



Unpacking the encoder

• We choose a family of distributions for our conditional distribution 𝑞. For example 
Gaussian with diagonal covariance:

𝑞 𝑧𝑖 𝑥𝑖 , 𝜙 = 𝒩 𝑧𝑖 𝜇 = 𝑢 𝑥𝑖 ,𝑊1 , Σ = diag(𝑠 𝑥𝑖 ,𝑊2 )

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝒙𝒊

𝝁 = 𝒖 𝒙𝒊,𝑾𝟏 𝚺 = 𝐝𝐢𝐚𝐠(𝒔 𝒙𝒊,𝑾𝟐 )



Unpacking the encoder

• We create neural networks to predict the parameters of 𝑞 from our data

• In this case, the outputs of our networks are 𝜇 and Σ

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝒙𝒊

𝝁 = 𝒖 𝒙𝒊,𝑾𝟏 𝚺 = 𝐝𝐢𝐚𝐠(𝒔 𝒙𝒊,𝑾𝟐 )



Unpacking the encoder

• We refer to the parameters of our networks, 𝑾𝟏 and 𝑾𝟐 collectively as 𝜙

• Together, networks 𝒖 and 𝒔 parameterize a distribution, 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙), of the latent 
variable 𝒛𝒊 that depends in a complicated, non-linear way on 𝒙𝒊

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝒙𝒊

𝝁 = 𝒖 𝒙𝒊,𝑾𝟏 𝚺 = 𝐝𝐢𝐚𝐠(𝒔 𝒙𝒊,𝑾𝟐 )



Unpacking the decoder

• The decoder follows the same logic, just swapping 𝒙𝒊 and 𝒛𝒊
• We refer to the parameters of our networks, 𝑾𝟑 and 𝑾𝟒 collectively as 𝜃

• Together, networks 𝒖𝒅 and 𝒔𝒅 parameterize a distribution, 𝑝(𝑥𝑖|𝑧𝑖 , 𝜃), of the 
latent variable 𝒙𝒊 that depends in a complicated, non-linear way on 𝒛𝒊

𝝁 = 𝒖𝒅 𝒛𝒊,𝑾𝟑 𝚺 = 𝐝𝐢𝐚𝐠(𝒔𝒅 𝒛𝒊,𝑾𝟒 )

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝒛𝒊~𝒒(𝒛𝒊|𝒙𝒊, 𝝓)



Understanding the setup

• Note that 𝑝 and 𝑞 do not have to use 
the same distribution family, this was 
just an example

• This basically looks like an 
autoencoder, but the outputs of both 
the encoder and decoder are 
parameters of the distributions of the 
latent and observed variables 
respectively

• We also have a sampling step in the 
middle 

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



Using EM for training

• Initialize 𝜃(0)

• At each iteration 𝑡 = 1,… , 𝑇
• E step: Hold 𝜃(𝑡−1) fixed, find 𝑞(𝑡) which maximizes ℒ 𝑞, 𝜃(𝑡−1)

• M step: Hold 𝑞(𝑡) fixed, find 𝜃(𝑡) which maximizes ℒ 𝑞(𝑡), 𝜃

• We will use a modified EM to train the model, but we will transform it 
so we can use standard back propagation!



Using EM for training

• Initialize 𝜃(0)

• At each iteration 𝑡 = 1,… , 𝑇
• E step: Hold 𝜃(𝑡−1) fixed, find 𝜙(𝑡) which maximizes ℒ 𝜙, 𝜃 𝑡−1 , 𝑥

• M step: Hold 𝜙(𝑡) fixed, find 𝜃(𝑡) which maximizes ℒ 𝜙(𝑡), 𝜃, 𝑥

• First we modify the notation to account for our choice of using a 
parametric, conditional distribution 𝑞



Using EM for training

• Initialize 𝜃(0)

• At each iteration 𝑡 = 1,… , 𝑇

• E step: Hold 𝜃(𝑡−1) fixed, find 
𝜕ℒ

𝜕𝜙
to increase ℒ 𝜙, 𝜃 𝑡−1 , 𝑥

• M step: Hold 𝜙(𝑡) fixed, find 
𝜕ℒ

𝜕𝜃
to increase ℒ 𝜙(𝑡), 𝜃, 𝑥

• Instead of fully maximizing at each iteration, we just take a step in the 
direction that increases ℒ



Computing the loss

• We need to compute the gradient for each mini-batch with 𝐵 data samples using the ELBO/variational
bound ℒ 𝜙, 𝜃, 𝑥𝑖 as the loss

෍

𝑖=1

𝐵

ℒ 𝜙, 𝜃, 𝑥𝑖 =෍

𝑖=1

𝐵

−KL 𝑞 𝑧𝑖|𝑥𝑖 , 𝜙 || 𝑝 𝑥𝑖 , 𝑧𝑖|𝜃 =෍

𝑖=1

𝐵

−𝔼𝑞 𝑧𝑖 𝑥𝑖 , 𝜙
log

𝑞 𝑧𝑖 𝑥𝑖 , 𝜙

𝑝 𝑥𝑖 , 𝑧𝑖|𝜃

• Notice that this involves an intractable integral over all values of 𝑧

• We can use Monte Carlo sampling to approximate the expectation using 𝐿 samples from 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙):

𝔼𝑞(𝑧𝑖|𝑥𝑖,𝜙) 𝑓 𝑧𝑖 ≃
1

𝐿
෍

𝑗=1

𝐿

𝑓(𝑧𝑖,𝑗)

ℒ 𝜙, 𝜃, 𝑥𝑖 ≃ ሚℒ𝐴 𝜙, 𝜃, 𝑥𝑖 =
1

𝐿
෍

𝑗=1

𝐿

log 𝑝 𝑥𝑖 , 𝑧𝑖,𝑗|𝜃 − log 𝑞(𝑧𝑖,𝑗|𝑥𝑖 , 𝜙)



A lower variance estimator of the loss

• We can rewrite
ℒ 𝜙, 𝜃, 𝑥 = −KL 𝑞 𝑧 𝑥, 𝜙 || 𝑝 𝑥, 𝑧|𝜃

= −න𝑞 𝑧 𝑥, 𝜙 log
𝑞 𝑧 𝑥, 𝜙

𝑝 𝑥|𝑧, 𝜃 𝑝(𝑧)
𝐝𝑧

= −න𝑞 𝑧 𝑥, 𝜙 log
𝑞 𝑧 𝑥, 𝜙

𝑝(𝑧)
− log 𝑝 𝑥|𝑧, 𝜃 𝐝𝑧 =

= −KL 𝑞 𝑧 𝑥, 𝜙 || 𝑝 𝑧 + 𝔼𝑞 𝑧 𝑥, 𝜙 log 𝑝 𝑥|𝑧, 𝜃

• The first term can be computed analytically for some families of distributions (e.g. 
Gaussian); only the second term must be estimated

ℒ 𝜙, 𝜃, 𝑥𝑖

≃ ሚℒ𝐵 𝜙, 𝜃, 𝑥𝑖 = −KL 𝑞 𝑧𝑖|𝑥𝑖 , 𝜙 || 𝑝 𝑧𝑖 +
1

𝐿
෍

𝑗=1

𝐿

log 𝑝 𝑥𝑖|𝑧𝑖,𝑗 , 𝜃



Full EM training procedure (not really used)

• For 𝑡 = 1: 𝑏: 𝑇

• Estimate 
𝜕ℒ

𝜕𝜙
(How do we do this? We’ll get to it shortly)

• Update 𝜙

• Estimate 
𝜕ℒ

𝜕𝜃
:

• Initialize Δ𝜃 = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Compute the outputs of the encoder (parameters of 𝑞) for 𝑥𝑖

• For ℓ = 1,… 𝐿

• Sample 𝑧𝑖 ~ 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

• Δ𝜃𝑖,ℓ ← Run forward/backward pass on the decoder 

(standard back propagation) using either ሚℒ𝐴 or ሚℒ𝐵 as 
the loss

• Δ𝜃 ← Δ𝜃 + Δ𝜃𝑖,ℓ

• Update 𝜃

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



Full EM training procedure (not really used)

• For 𝑡 = 1: 𝑏: 𝑇

• Estimate 
𝜕ℒ

𝜕𝜙
(How do we do this? We’ll get to it shortly)

• Update 𝜙

• Estimate 
𝜕ℒ

𝜕𝜃
:

• Initialize Δ𝜃 = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Compute the outputs of the encoder (parameters of 𝑞) for 𝑥𝑖

• Sample 𝑧𝑖 ~ 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

• Δ𝜃𝑖 ← Run forward/backward pass on the decoder (standard 
back propagation) using either ሚℒ𝐴 or ሚℒ𝐵 as the loss

• Δ𝜃 ← Δ𝜃 + Δ𝜃𝑖

• Update 𝜃𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)First simplification:
Let 𝐿 = 1. We just want a 
stochastic estimate of the 

gradient. With a large enough 𝐵, 
we get enough samples from 

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



The E step

• We can use standard back 

propagation to estimate 
𝜕ℒ

𝜕𝜃

• How do we estimate 
𝜕ℒ

𝜕𝜙
?

• The sampling step blocks the gradient 
flow

• Computing the derivatives through 𝑞
via the chain rule gives a very high 
variance estimate of the gradient

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

?



Reparameterization

• Instead of drawing 𝑧𝑖 ~ 𝑞(𝑧𝑖|𝑥𝑖 , 𝜙), 
let 𝑧𝑖 = g(𝜖𝑖 , 𝑥𝑖 , 𝜙), and draw 𝜖𝑖 ~ 𝑝(𝜖)

• 𝑧𝑖 is still a random variable but depends on 𝜙 deterministically

• Replace 𝔼𝑞(𝑧𝑖|𝑥𝑖,𝜙) 𝑓 𝑧𝑖 with 𝔼𝑝(𝜖)[𝑓 g 𝜖𝑖 , 𝑥𝑖 , 𝜙 ]

• Example – univariate normal:

𝑎 ~𝒩 𝜇, 𝜎2 is equivalent to 

𝑎 = g 𝜖 , 𝜖 ~𝒩 0, 1 , g 𝑏 ≜ 𝜇 + 𝜎𝑏



Reparameterization

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

?
𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖 = 𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝜖𝑖 ~ 𝑝(𝜖)



Full EM training procedure (not really used)

• For 𝑡 = 1: 𝑏: 𝑇

• E Step

• Estimate 
𝜕ℒ

𝜕𝜙
using standard back 

propagation with either ሚℒ𝐴 or ሚℒ𝐵 as the loss

• Update 𝜙

• M Step

• Estimate 
𝜕ℒ

𝜕𝜃
using standard back

propagation with either ሚℒ𝐴 or ሚℒ𝐵 as the loss

• Update 𝜃

𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖 = 𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝜖𝑖 ~𝑝(𝜖)



Full training procedure

• For 𝑡 = 1: 𝑏: 𝑇

• Estimate 
𝜕ℒ

𝜕𝜙
,
𝜕ℒ

𝜕𝜃
with either ሚℒ𝐴 or ሚℒ𝐵 as the loss

• Update 𝜙, 𝜃

• Final simplification: update all of the 
parameters at the same time instead of 
using separate E, M steps

• This is standard back propagation. Just use 
− ሚℒ𝐴 or − ሚℒ𝐵 as the loss, and run your 
favorite SGD variant

𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖 = 𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝜖𝑖 ~𝑝(𝜖)



Running the model on new data

• To get a MAP estimate of the latent variables, just use the mean 
output by the encoder (for a Gaussian distribution)

• No need to take a sample

• Give the mean to the decoder

• At test time, this is used just as an auto-encoder

• You can optionally take multiple samples of the latent variables to 
estimate the uncertainty



Relationship to Factor Analysis

• VAE performs probabilistic, non-linear 
dimensionality reduction

• It uses a generative model with a latent 
variable distributed according to some 
prior distribution 𝑝(𝑧𝑖)

• The observed variable is distributed 
according to a conditional distribution 
𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

• Training is approximately running 
expectation maximization to maximize 
the data likelihood

• This can be seen as a non-linear version 
of Factor Analysis

𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖~𝑞(𝑧𝑖|𝑥𝑖 , 𝜙)



Regularization by a prior

• Looking at the form of ℒ we used to justify ሚℒ𝐵 gives us additional 
insight
ℒ 𝜙, 𝜃, 𝑥 = −KL 𝑞 𝑧 𝑥, 𝜙 || 𝑝 𝑧 + 𝔼𝑞 𝑧 𝑥, 𝜙 log 𝑝 𝑥|𝑧, 𝜃

• We are making the latent distribution as close as possible to a prior 
on 𝑧

• While maximizing the conditional likelihood of the data under our 
model

• In other words this is an approximation to Maximum Likelihood 
Estimation regularized by a prior on the latent space



Practical advantages of a VAE vs. an AE

• The prior on the latent space:
• Allows you to inject domain knowledge

• Can make the latent space more interpretable

• The VAE also makes it possible to estimate the variance/uncertainty in 
the predictions



Interpreting the latent space

https://arxiv.org/pdf/1610.00291.pdf



Requirements of the VAE

• Note that the VAE requires 2 tractable distributions to be used:
• The prior distribution 𝑝(𝑧) must be easy to sample from

• The conditional likelihood 𝑝 𝑥|𝑧, 𝜃 must be computable

• In practice this means that the 2 distributions of interest are often 
simple, for example uniform, Gaussian, or even isotropic Gaussian



The blurry image problem

https://blog.openai.com/generative-models/

• The samples from the VAE 
look blurry

• Three plausible 
explanations for this
• Maximizing the 

likelihood
• Restrictions on the 

family of distributions
• The lower bound 

approximation



The maximum likelihood explanation

https://arxiv.org/pdf/1701.00160.pdf

• Recent evidence 
suggests that this is 
not actually the 
problem

• GANs can be trained
with maximum
likelihood and still 
generate sharp 
examples



Investigations of blurriness

• Recent investigations suggest that both the simple probability 
distributions and the variational approximation lead to blurry images

• Kingma & colleages: Improving Variational Inference with Inverse 
Autoregressive Flow

• Zhao & colleagues: Towards a Deeper Understanding of Variational
Autoencoding Models

• Nowozin & colleagues: f-gan: Training generative neural samplers 
using variational divergence minimization

https://arxiv.org/abs/1606.04934
https://arxiv.org/pdf/1702.08658.pdf
https://arxiv.org/abs/1606.00709

