
Generative Adversarial 
Networks

Mostly adapted from Goodfellow’s 2016 NIPS tutorial:

https://arxiv.org/pdf/1701.00160.pdf



Story so far: Why generative models?

• Unsupervised learning means we have more training data

• Some problems have many right answers, and diversity is desirable
• Caption generation, image to image, super-resolution

• Some tasks intrinsically require generation
• Machine translation

• Some generative models allow us to investigate a lower dimensional 
manifold of high dimensional data. This manifold can provide insight 
into high dimensional observations
• Brain activity, gene expression



Recap: Factor Analysis

• Generative model: Assumes that data are generated from real valued 
latent variables

Bishop – Pattern Recognition and Machine Learning



Recap: Factor Analysis

• We can see from the marginal distribution: 
𝑝 𝒙𝒊 𝑾,𝝁,𝚿 = 𝒩 𝒙𝒊 𝝁,𝚿 +𝑾𝑾𝑇

that the covariance matrix of the data distribution is broken into 2 
terms

• A diagonal part 𝚿: variance not shared between variables

• A low rank matrix 𝑾𝑾𝑇: shared variance due to latent factors



Recap: Evidence Lower Bound (ELBO)

• From basic probability we have:
KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃 + log 𝑝 𝑥 𝜃

• We can rearrange the terms to get the following decomposition:
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 || 𝑝 𝑧|𝑥, 𝜃 − KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃

• We define the evidence lower bound (ELBO) as:
ℒ 𝑞, 𝜃 ≜ −KL 𝑞 𝑧 || 𝑝 𝑥, 𝑧 |𝜃

Then:
log 𝑝 𝑥 𝜃 = KL 𝑞 𝑧 ||𝑝 𝑧|𝑥, 𝜃 + ℒ 𝑞, 𝜃



Recap: The EM algorithm E step

• Maximize ℒ 𝑞, 𝜃(𝑡−1) with respect to 𝑞 by setting 𝒒 𝒕 𝒛 ←

𝒑 𝒛 𝒙, 𝜽 𝒕−𝟏

Bishop – Pattern Recognition and Machine Learning



Recap: The M step

• After applying the E step, we increase the likelihood of the data by finding better 
parameters according to: 𝜃(𝑡) ← 𝐚𝐫𝐠𝐦𝐚𝐱𝜽 𝔼𝒒 𝒕 (𝒛) 𝐥𝐨𝐠𝒑 𝒙, 𝒛 𝜽

Bishop – Pattern Recognition and Machine Learning



Recap: EM in practice

argmax𝑾,𝚿 𝔼𝑞 𝑡 (𝒛) log 𝑝 𝑿, 𝒁 𝑾,𝚿 =

= argmax𝑾,𝚿−
𝑁

2
log det(𝚿) −෍

𝑖=1

𝑁

ቆ
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𝒙𝑖
𝑇𝚿−1𝒙𝑖 − 𝒙𝒊

𝑇𝚿−1𝑾𝔼𝑞 𝑡 (𝒛𝒊)
𝒛𝑖

+
1

2
tr 𝑾𝑇𝚿−1𝑾𝔼𝑞 𝑡 𝒛𝒊

𝒛𝒊𝒛𝒊
𝑇

• By looking at what expectations the M step requires, we find out what 
we need to compute in the E step.

• For FA, we only need these 2 sufficient statistics to enable the M step. 

• In practice, sufficient statistics are often what we compute in the E step



Recap: From EM to Variational Inference

• In EM we alternately maximize the ELBO with respect to 𝜃 and 
probability distribution (functional) 𝑞

• In variational inference, we drop the distinction between hidden 
variables and parameters of a distribution

• I.e. we replace 𝑝(𝑥, 𝑧|𝜃) with 𝑝(𝑥, 𝑧). Effectively this puts a 
probability distribution on the parameters 𝜽, then absorbs them into 
𝑧

• Fully Bayesian treatment instead of a point estimate for the 
parameters 



Recap: Variational Autoencoder

• For 𝑡 = 1: 𝑏: 𝑇

• Estimate 
𝜕ℒ

𝜕𝜙
,
𝜕ℒ

𝜕𝜃
with either − ሚℒ𝐴 or − ሚℒ𝐵 as the 

loss

• Update 𝜙, 𝜃

• Training procedure uses standard back 
propagation with an MC procedure to 
approximately run EM on the ELBO

• The reparameterization trick enables the 
gradient to flow through the network

𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝑝(𝑥𝑖|𝑧𝑖 , 𝜃)

𝑧𝑖 = 𝑔(𝜖𝑖 , 𝑥𝑖 , 𝜙)

𝜖𝑖 ~𝑝(𝜖)



Recap: Requirements of the VAE

• Note that the VAE requires 2 tractable distributions to be used:
• The prior distribution 𝑝(𝑧) must be easy to sample from

• The conditional likelihood 𝑝 𝑥|𝑧, 𝜃 must be computable

• In practice this means that the 2 distributions of interest are often 
simple, for example uniform, Gaussian, or even isotropic Gaussian



Recap: The VAE blurry image problem

https://blog.openai.com/generative-models/

• The samples from the VAE 
look blurry

• Three plausible 
explanations for this
• Maximizing the 

likelihood
• Restrictions on the 

family of distributions
• The lower bound 

approximation



Recap: The maximum likelihood explanation

https://arxiv.org/pdf/1701.00160.pdf

• Recent evidence 
suggests that this is 
not actually the 
problem

• GANs can be trained 
with maximum 
likelihood and still 
generate sharp 
examples



A taxonomy of generative models



Fully Visible Belief Net (FVBN), e.g. Wavenet

𝑝 𝒙 = ෑ

𝑡=1

𝑇

𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1)

• No latent variable (hence fully visible)
• Tractable log-likelihood
• Train with auto-regressive target

• Easier to optimize well
• Slower to run



GAN Advantages

• Sample in parallel (vs FVBN)

• Few restrictions on generator function

• No Markov Chain

• No variational bound

• Subjectively better samples



GAN Disadvantages

• Very difficult to train properly

• Difficult to evaluate

• Likelihood cannot be computed

• No encoder (in vanilla GAN)



GAN samples look sharp

Real Samples Generated Samples

https://arxiv.org/pdf/1703.10717.pdf



GAN samples look sharp

https://arxiv.org/pdf/1703.10717.pdf

Real Samples Generated Samples

Boundary Equilibrium GAN Energy Based GAN



Interpolation is impressive

https://arxiv.org/pdf/1703.10717.pdf



Generative Adversarial Networks: Basic idea

Generator
(Counterfeiter): 
Creates fake data 
from random 
input

Discriminator
(Detective): Distinguish 
real data from fake 
data

Looks Fake!

Looks Real!



The Generator

• Faking Data
• To create good fake data, the generator must understand 

what real data looks like

• Attempts to generate samples that are likely under the true 
data distribution

• Implicitly learns to model the true distribution

• Latent Code
• Since the sample is determined by the random noise input, 

the probability distribution is conditioned on this input

• The random noise is interpreted by the model as a latent 
code, i.e. a point on the manifold



Problem setup

Generator Trained 
to get better and 
better at fooling 
the discriminator 
(making fake data 
look real)

Discriminator Trained 
to get better and 
better at distinguishing 
real data from fake 
data



Formalizing the generator/discriminator

Generator: 𝐺 𝑧, 𝜃(𝐺)

A differentiable function, 
𝐺 (here having parameters 

𝜃(𝐺)), mapping from the 
latent space, ℝ𝐿, to the 
data space, ℝ𝑀

Discriminator: 𝐷 𝑥, 𝜃(𝐷)

A differentiable function, 𝐷 (here 

having parameters 𝜃(𝐷)), 
mapping from the data space, 
ℝ𝑀, to a scalar between 0 and 1 
representing the probability that 
the data is real



Simplifying notation

Generator: 𝐺 𝑧
For simplicity of notation, 

we write 𝐺 𝑧 without 𝜃(𝐺)

Typically 𝐺 is a neural 
network, but it doesn’t have 
to be

Note 𝑧 can go into any layer 
of the network, not just the 
first

Discriminator: 𝐷 𝑥 , 𝐷 𝐺(𝑧)
Note that the discriminator can 
also take the output of the 
generator as input.

Typically 𝐷 is a neural network, 
but it doesn’t have to be



An artist’s rendition

𝑧

𝐺 𝑧 or 𝑥

𝐷 𝐺(𝑧) or 𝐷 𝑥



The game (theory)

• The generator and discriminator are adversaries in a game
• The generator controls only its parameters
• The discriminator controls only its parameters
• Each seeks to maximize its own success and minimize the 

success of the other: related to minimax theory



Nash equilibrium

• In game theory, a local optimum in this system is called a Nash 
equilibrium:

• Generator loss, 𝐽(𝐺), is at a local minimum with respect to 𝜃 𝐺

• Discriminator loss, 𝐽(𝐷), is at a local minimum with respect to 𝜃 𝐷



Basic training procedure

• Initialize 𝜃(𝐺), 𝜃(𝐷)

• For 𝑡 = 1: 𝑏: 𝑇

• Initialize Δ𝜃(𝐷) = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑖 ~ 𝑝(𝑧𝑖)

• Compute 𝐷 𝐺 𝑧𝑖 , 𝐷(𝑥𝑖)

• Δ𝜃𝑖
(𝐷)

← Compute gradient of Discriminator loss, 𝐽 𝐷 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐷) ← Δ𝜃(𝐷) + Δ𝜃𝑖
𝐷

• Update 𝜃(𝐷)

• Initialize Δ𝜃(𝐺) = 0

• For 𝑗 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑗 ~ 𝑝(𝑧𝑗)

• Compute 𝐷 𝐺 𝑧𝑗 , 𝐷(𝑥𝑗)

• Δ𝜃𝑗
(𝐺)

← Compute gradient of Generator loss, 𝐽 𝐺 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐺) ← Δ𝜃(𝐺) + Δ𝜃𝑗
𝐺

• Update 𝜃(𝐺)

Can also run 𝑘 minibatches 
of the discriminator update 
before updating the 
generator, but Goodfellow
finds 𝑘 = 1 tends to work 
best 



Basic training procedure

• Initialize 𝜃(𝐺), 𝜃(𝐷)

• For 𝑡 = 1: 𝑏: 𝑇

• Initialize Δ𝜃(𝐷) = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑖 ~ 𝑝(𝑧𝑖)

• Compute 𝐷 𝐺 𝑧𝑖 , 𝐷(𝑥𝑖)

• Δ𝜃𝑖
(𝐷)

← Compute gradient of Discriminator loss, 𝐽 𝐷 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐷) ← Δ𝜃(𝐷) + Δ𝜃𝑖
𝐷

• Update 𝜃(𝐷)

• Initialize Δ𝜃(𝐺) = 0

• For 𝑗 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑗 ~ 𝑝(𝑧𝑗)

• Compute 𝐷 𝐺 𝑧𝑗 , 𝐷(𝑥𝑗)

• Δ𝜃𝑗
(𝐺)

← Compute gradient of Generator loss, 𝐽 𝐺 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐺) ← Δ𝜃(𝐺) + Δ𝜃𝑗
𝐺

• Update 𝜃(𝐺)

Notice: the only explicit 
probability distribution we 
have is the random noise 
distribution, the prior

The loss causes the data 
distribution to be learned 
implicitly



Simplified training procedure

• Initialize 𝜃(𝐺), 𝜃(𝐷)

• For 𝑡 = 1: 𝑏: 𝑇

• Initialize Δ𝜃(𝐺) = Δ𝜃(𝐷) = 0

• For 𝑖 = 𝑡: 𝑡 + 𝑏 − 1

• Sample 𝑧𝑖 ~ 𝑝(𝑧𝑖)

• Compute 𝐷 𝐺 𝑧𝑖 , 𝐷(𝑥𝑖)

• Δ𝜃𝑖
(𝐷)

← Compute 𝜕𝜃(𝐷)𝐽
𝐷 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃𝑗
(𝐺)

← Compute 𝜕𝜃(𝐺)𝐽
𝐺 𝜃 𝐺 , 𝜃(𝐷)

• Δ𝜃(𝐷) ← Δ𝜃(𝐷) + Δ𝜃𝑖
𝐷

• Δ𝜃(𝐺) ← Δ𝜃(𝐺) + Δ𝜃𝑗
𝐺

• Update 𝜃(𝐷), 𝜃(𝐺)

Update the discriminator 
and generator from the 
same pair of mini-batches



Discriminator (D)’s loss function

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺

= −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log𝐷 𝑥 −

1

2
𝔼𝑧∼𝑝𝑧 log 1 − 𝐷 𝐺 𝑧

• Binary cross-entropy (almost)

• The first term is for real data (positive classification)

• The second term is for fake data (negative classification)

• Differs from cross-entropy only in what we take the expectation over

• Supervised loss on data with no labels



Generator (G)’s loss function

• Take the negative of the discriminator’s loss:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺

• With this loss, we have a value function describing a zero-sum game:
min
𝑮

max
𝑫

−𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺

• Attractive to analyze with game theory

• There is a problem with this loss for gradient descent (we’ll come 
back to this)



Rewriting 𝐽 𝐷

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

= −
1

2
න
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log𝐷 𝑥 𝑑𝑥 + න
𝑧

𝑝𝑧 𝑧 log 1 − 𝐷 𝐺 𝑧 𝑑𝑧

= −
1

2
න
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log𝐷 𝑥 + 𝑝𝐺 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥



Optimal discriminator

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
න
𝑥

𝑝𝑑𝑎𝑡𝑎 𝑥 log𝐷 𝑥 + 𝑝𝐺 𝑥 log 1 − 𝐷 𝑥 𝑑𝑥

Take the functional derivative w.r.t. 𝐷 𝑥 and set to 0, analogous to:
𝜕

𝜕𝑦
𝑝𝑑𝑎𝑡𝑎 𝑥 log 𝑦 + 𝑝𝐺 𝑥 log 1 − 𝑦 = 0

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑦
−
𝑝𝐺 𝑥

1 − 𝑦
= 0

𝑦 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)
→ 𝐷∗ 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 + 𝑝𝐺(𝑥)

• We are assuming that 𝑝𝑑𝑎𝑡𝑎 𝑥 , 𝑝𝐺 𝑥 are non-zero everywhere



Optimal discriminator

• The best strategy for the discriminator is to learn the ratio of the 
probabilities of 𝑥 under the data distribution and the generator 

distribution: 𝐷∗ 𝑥 =
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑝𝐺(𝑥)
= 𝑝(𝑑𝑎𝑡𝑎|𝑥)

𝐷 𝑥

𝑝𝐺(𝑥)

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝐷∗ 𝑥

𝐷∗ 𝑥

𝐷 𝑥



Discriminator intuition

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

• With this loss, the discriminator approximates the ratio of 
𝒑𝒅𝒂𝒕𝒂(𝒙)

𝒑𝑮(𝒙)
via 

supervised learning



Optimal generator

• With a few more steps, we can show that 
the global optimum for this game is 
achieved if and only if 𝑝𝐺 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥

• We are, in theory, minimizing the Jensen-
Shannon divergence between the generator 
distribution and the true data distribution!



Getting to the optimum

• For models that have enough capacity, if we use 𝐽 𝐺 = −𝐽 𝐷 , and if 
𝐷 is set to its global optimum given 𝐺 at every iteration and 𝐺
improves the criterion at every iteration, then alternating 
optimization will get us to the global optimum

• In practice:
• 𝐷, 𝐺 may not have enough capacity

• We do not get to find the global optimum for 𝐷 at each iteration

• Theory tells us we want the discriminator to always be strong (in 
practice, there may be reasons to weaken it)



More gaps between theory and practice

• The theory assumes we can reach a global optimum
• We have functions which are non-convex in the parameters we are 

optimizing: 𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 , 𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺

• The theory assumes that 𝑝𝐺 𝑥 , 𝑝𝑑𝑎𝑡𝑎(𝑥) are non-zero everywhere. 
This may not hold – especially if we have data lying on a manifold. 
Even when it holds the ratio can be numerically unstable

• The theory assumes that the optimal discriminator is unique. In 
practice other discriminators can do nearly as good a job: i.e. the 
discriminator can overfit the data



Theory summary

• The theory gives us some insight into what GANs are doing

• Many of the assumptions in the theory do not hold

• We cannot get to the global optimum

• It can be difficult to even get to a local optimum

• Optimizing GANs is an active area of research (and the subject of 
much of today)



A problem with 𝐽 𝐺 = −𝐽(𝐷)

• Setting 𝐽 𝐺 = −𝐽(𝐷), we have: 

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 =
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 +

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

• What happens to the second term when the discriminator is much 
better than the generator?

𝐷 𝐺 𝑧 → 0
1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧 → 0

• There is no gradient signal to help the generator improve



Generator (G)’s loss function

• Instead of negating 𝐽 𝐷 , swap classes:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 1 − 𝐷 𝑥 −

1

2
𝔼𝑧 log 𝐷 𝐺 𝑧

• The first term can be dropped, since 𝜃 𝐺 does not influence it

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑧 log 𝐷 𝐺 𝑧

• Now when 𝐷 𝐺 𝑧 → 0, −
1

2
𝔼𝑧 log 𝐷 𝐺 𝑧 → ∞

• Gradient gets bigger when the discriminator gets better



Making GANs approximate maximum 
likelihood

• Using a different choice of 𝐽 𝐺 , we can make GANs do maximum 
likelihood estimation

• Not typically used, but of theoretical interest

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑧 exp 𝜎−1 𝐷 𝐺 𝑧

• Where 𝜎 is the sigmoid function

• Can be shown this is equivalent to minimizing KL divergence between 
the data distribution and the model distribution under certain 
assumptions



Comparing G’s loss functions



Generator (G)’s loss function

• Because of the gradient, the original paper uses:

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑧 log 𝐷 𝐺 𝑧

• This function was later shown to give the same stationary point (under 
some assumptions) as 𝐽 𝐺 = −𝐽 𝐷



Other options in the loss 

• Energy-based GAN (EBGAN) uses an “energy-based” discriminator function 
with a hinge loss (for example L2 loss of an autoencoder on real vs. fake 
examples):

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = 𝐷 𝑥 + max(𝑚 − 𝐷 𝐺 𝑧 , 0)
𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = 𝐷(𝐺 𝑧 )

• Prove that this and many other choices mean that at a Nash equilibrium, 
𝑝𝐺 𝑥 = 𝑝𝑑𝑎𝑡𝑎 𝑥 almost everywhere

• The paper suggests several advantages, including more efficient training

• 𝐽 𝐺 , 𝐽 𝐷 can both be modified (not arbitrarily): the game is what guides 
the learning

https://arxiv.org/pdf/1609.03126.pdf


Different losses

• Choices of the loss function are further explored in Nowozin and 
colleagues f-GAN paper. They show a family of loss functions and how 
each corresponds to an 𝑓-divergence on the probability distributions 
we are trying to learn

• Arjovsky and colleages’ Wasserstein GAN (WGAN) discusses the 
choice of divergence (and proposes using an approximation to the 
Earth Mover’s distance)

https://arxiv.org/pdf/1606.00709.pdf
https://arxiv.org/pdf/1701.07875.pdf


WGAN

• If our data are on a low-dimensional manifold of a high dimensional 
space the model’s manifold and the true data manifold can have a 
negligible intersection in practice

• KL divergence is undefined or infinite

• The loss function and gradients may not be continuous and well 
behaved

• The Earth Mover’s Distance is well defined:
• Minimum transportation cost for making one pile

of dirt (pdf/pmf) look like the other



WGAN

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = − 𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎𝐷 𝑥 − 𝔼𝑧𝐷 𝐺 𝑧

𝐽 𝐺 𝜃 𝐷 , 𝜃 𝐺 = −𝔼𝑧𝐷 𝐺 𝑧

• Importantly, the discriminator is trained for many steps before the 
generator is updated

• Gradient-clipping is used in the discriminator to ensure 𝐷 𝑥 has the 
Lipschitz continuity required by the theory

• The authors argue that this solves many training issues, including 
mode collapse



WGAN behavior



Loss function summary

• There are many choices of loss function

• Some choices have much better behavior during training

• Some choices will modify the latent space



An optimization issue: Mode collapse

• What prevents the generator from just picking the same example all the time?

• The top row finds all the modes, the bottom finds just one mode

https://arxiv.org/pdf/1611.02163.pdf



Mode collapse

• Thought experiment: optimize the generator without changing the 
discriminator. What will happen?

https://arxiv.org/pdf/1611.02163.pdf



Mode collapse mitigation 1: minibatch features 
(Salimans and colleagues, Improved Techniques for Training GANs)

• Let the discriminator make a decision by comparing an example to a whole 
minibatch of fake/real examples

• Discriminator can now consider diversity

https://arxiv.org/pdf/1611.02163.pdf

https://arxiv.org/pdf/1606.03498.pdf


Mode collapse mitigation 2: unrolling (Metz and 

colleagues, Unrolled Generative Adversarial Networks)

• Similar to Back-propagation through time, but now we back propagate through 
optimization steps

• We let the generator see where the discriminator would be after k steps before 
making its update

• The discriminator will react to the generator putting more mass somewhere by 
the putting less mass there: discourages the generator from concentrating mass

https://arxiv.org/pdf/1611.02163.pdf

https://arxiv.org/pdf/1611.02163.pdf


Does gradient descent make sense?

• Does using gradient descent to find a 
Nash equilibrium make sense?

• This is not what gradient descent was 
designed for

• Each player moving down means the 
other moves up: can get stuck

• Classic example V(x, y) = -xy

• Mescheder and colleages, The 
numerics of GANs: Consensus 
optimization

http://www.inference.vc/my-notes-on-the-numerics-of-gans/

https://arxiv.org/pdf/1705.10461.pdf


Story so far

• GANs provide a flexible framework for implicitly minimizing the divergence 
between the model and true probability distributions

• There are many choices of divergence
• Some of these divergences are ill-defined for realistic settings
• They can be poorly behaved

• Even when the divergence is well behaved, algorithms for finding a Nash 
equilibrium are not that good
• Gradient descent is used, but the dynamics can prevent convergence
• One interesting study: Li and colleagues, Towards Understanding the Dynamics of 

Generative Adversarial Networks

• Active research in training GANs: Lots of papers with “Towards” in the title

https://arxiv.org/pdf/1706.09884.pdf


Evaluation

• Another issue with GANs is quantitative comparison

• There is no explicit likelihood to calculate

• Post hoc density estimation can be used, but is inaccurate

• Subjective evaluation by humans is currently the best method



Practical advice: DCGAN

• All-convolutional network: no pooling layers, strided transpose 
convolution

• ADAM optimization
• Batch normalization

• Not in last layer of 𝐺, not in first layer of 𝐷: learn mean/scale of data
• The two minibatches for the discriminator are normalized separately

https://arxiv.org/abs/1511.06434


Practical advice: DCGAN

• Why does this work? Purely empirical. They tried a bunch of 
architectures

• This architecture seems to somehow constrain the model 
distribution so that many of the training problems are 
mitigated

https://arxiv.org/abs/1511.06434


Practical advice: One-sided label smoothing

• If using the original

𝐽 𝐷 𝜃 𝐷 , 𝜃 𝐺 = −
1

2
𝔼𝑥∼𝑝𝑑𝑎𝑡𝑎 log 𝐷 𝑥 −

1

2
𝔼𝑧 log 1 − 𝐷 𝐺 𝑧

• It can be helpful to decrease the confidence of the discriminator by 
setting the target of the real examples to 0.9 e.g. instead of 1 (but 
keep the target of the model at exactly 0)

• Keeps the logits at smaller values and mitigates “extrapolation” to 
new data (overfitting)



Practical advice: add noise

• For a similar reason, it can be useful to add noise to the data

• This helps prevent discriminator overfitting, and also helps with the 
problem of non-overlapping support between the model and data 
distributions



Practical advice: virtual batch normalization

https://arxiv.org/pdf/1701.00160.pdf

• Batch normalization causes generated samples to become correlated
• Use a reference batch to do batch normalization (use the statistics from the reference)
• Or use a reference batch combined with the current batch (compute statistics from the combined 

batch)
• Batch renormalization is another option



Practical advice: use labels if available

• GANs can be used in a supervised or semi-supervised setting

• One way to do this is to give both the discriminator and the generator 
the label, making them class conditional

• Another way to do this is to change the discriminator to predict n + 1 
classes, where a class is added for fake data

• Using labels dramatically improves the sample quality



Relationship to Reinforcement Learning

• We’ll see reinforcement learning later in the course

• Similar to GANs in the sense that the actions taken by a player are 
rewarded, and the reward function governs learning

• Squinting our eyes, there are similarities

• But in GANs:
• The reward function changes in response to changes in the generator (there 

are two players responding to each other)

• The generator gets to observe gradients of the reward, not just the reward

• GANs can be formally related to inverse reinforcement learning



Summary

• The GAN framework is a powerful way to do unsupervised learning

• The samples from the GAN model are state of the art (FVBN models 
are competitive though)

• Training GANs is very difficult for fundamental reasons, and this is an 
area of active research

• Very popular with many variants. Some add encoders (BiGAN), make 
the latent code more interpretable (InfoGAN), and there are many 
others
• https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo

