
Sequence-to-sequence
Models and Attention

Graham Neubig

Preliminaries: 
Language Models

Language Models
• Language models are generative models of text

s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

“The Malfoys!” said Hermione.

Harry was watching him. He looked like Madame Maxime. When she strode
up the wrong staircase to visit himself.  

“I’m afraid I’ve definitely been suspended from power, no chance — indeed?”
said Snape. He put his head back behind them and read groups as they crossed
a corner and fluttered down onto their ink lamp, and picked up his spoon. The
doorbell rang. It was a lot cleaner down in London.

Calculating the Probability of
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

Language Modeling w/
Neural Networks

RNN RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

predict

</s>

RNN

<s>

predict

I

• At each time step, input the previous word, and
predict the probability of the next word

Conditional Language
Models

Conditioned Language Models
• Not just generate text, generate text according to

some specification

Input X Output Y (Text)

English Japanese

Task

Translation
Structured Data NL Description NL Generation

Document Short Description Summarization
Utterance Response Response Generation

Image Text Image Captioning
Speech Transcript Speech Recognition

Conditional Language
Models

P (Y |X) =
JY

j=1

P (yj | X, y1, . . . , yj�1)

Added Context!

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax argmax

</s>
argmax

(One Type of) Conditional Language Model
(Sutskever et al. 2014)

I hate this movie

kono eiga ga kirai

I hate this movie

Encoder

Decoder

How to Pass Hidden State?
• Initialize decoder w/ encoder (Sutskever et al. 2014)

encoder decoder

• Transform (can be different dimensions)

encoder decodertransform

• Input at every time step (Kalchbrenner & Blunsom 2013)

encoder

decoder decoder decoder

Methods of Generation

The Generation Problem
• We have a model of P(Y|X), how do we use it to

generate a sentence?

• Two methods:

• Sampling: Try to generate a random sentence
according to the probability distribution.

• Argmax: Try to generate the sentence with the
highest probability.

Ancestral Sampling

• Randomly generate words one-by-one.  
 
 
 

• An exact method for sampling from P(X), no further
work needed.

while yj-1 != “</s>”:
 yj ~ P(yj | X, y1, …, yj-1)

Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

• Will often generate the “easy” words first

• Will prefer multiple common words to one rare word

while yj-1 != “</s>”:
 yj = argmax P(yj | X, y1, …, yj-1)

Beam Search
• Instead of picking one high-probability word,

maintain several paths

• Some in reading materials, more in a later class

Attention

Sentence Representations

• But what if we could use multiple vectors, based on
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”

— Ray Mooney

Problem!

Basic Idea
(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of
these vectors, weighted by “attention weights”

• Use this combination in picking the next word

Calculating Attention (1)
• Use “query” vector (decoder state) and “key” vectors (all encoder states)
• For each query-key pair, calculate weight
• Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

Query Vector

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value
Vectors

α1=0.76 α2=0.08 α3=0.13 α4=0.03
* * * *

• Use this in any part of the model you like

A Graphical Example

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015) 
 

• Flexible, often very good with large data

• Bilinear (Luong et al. 2015)

a(q,k) = w|
2 tanh(W1[q;k])

a(q,k) = q|Wk

Attention Score Functions (2)
• Dot Product (Luong et al. 2015) 
 

• No parameters! But requires sizes to be the same.

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

a(q,k) = q|k

a(q,k) =
q|kp
|k|

What do we Attend To?

Input Sentence
• Like the previous explanation
• But also, more directly

• Copying mechanism (Gu et al. 2016) 
 
 
 
 
 
 
 
 

• Lexicon bias (Arthur et al. 2016)

Previously Generated Things
• In language modeling, attend to the previous words (Merity

et al. 2016) 
 
 
 
 
 
 
 

• In translation, attend to either input or previous output
(Vaswani et al. 2017)

Various Modalities
• Images (Xu et al. 2015)  
 
 
 
 
 

• Speech (Chan et al. 2015)

Hierarchical Structures
(Yang et al. 2016)

• Encode with
attention over each
sentence, then
attention over each
sentence in the
document

Multiple Sources
• Attend to multiple sentences (Zoph et al. 2015)  
 
 
 

• Libovicky and Helcl (2017) compare multiple strategies

• Attend to a sentence and an image (Huang et al. 2016)

Intra-Attention / Self Attention
(Cheng et al. 2016)

• Each element in the sentence attends to other
elements → context sensitive encodings!

this is an example
this
is
an

example

How do we Evaluate?

Basic Evaluation Paradigm

• Use parallel test set

• Use system to generate translations

• Compare target translations w/ reference

Human Evaluation
• Ask a human to do evaluation

• Final goal, but slow, expensive, and sometimes inconsistent

BLEU
• Works by comparing n-gram overlap w/ reference

• Pros: Easy to use, good for measuring system improvement

• Cons: Often doesn’t match human eval, bad for comparing
very different systems

METEOR
• Like BLEU in overall principle, with many other

tricks: consider paraphrases, reordering, and
function word/content word difference

• Pros: Generally significantly better than BLEU,
esp. for high-resource languages

• Cons: Requires extra resources for new languages
(although these can be made automatically), and
more complicated

Perplexity
• Calculate the perplexity of the words in the held-out

set without doing generation

• Pros: Naturally solves multiple-reference problem!

• Cons: Doesn’t consider decoding or actually
generating output.

• May be reasonable for problems with lots of
ambiguity.

Questions?

