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Recap: Hopfield network

yi= 0 (2 wj;yj + bi)

J#Fi

+1ifz>0
G(Z)Z{—lifZSO

Symmetric loopy network

* Each neuron is a perceptron with +1/-1 output

* Every neuron receives input from every other neuron
* Every neuron outputs signals to every other neuron

2



Recap: Hopfield network
yi= 0 (Z wjiy; + bi)
. j#i

+1ifz>0
G)(Z)z{—lifZSO

. . oe: ”
At each time each neuron receives a “field” 2. ;.; w;;y; + b;

If the sign of the field matches its own sign, it does not
respond

If the sign of the field opposes its own sign, it “flips” to
match the sign of the field



Recap: Energy of a Hopfield Network

+1ifz>0
6(2) z{—lifzSO

Not assuming node bias

* The system will evolve until the energy hits a local minimum

* In vector form, including a bias term (not used in Hopfield nets)

1
E=—2y Wy



Recap: Evolution

PE
%

state

* The network will evolve until it arrives at a
local minimum in the energy contour



Recap: Content-addressable memory

2™\

PE

state
* Each of the minima is a “stored” pattern

— If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

* This is a content addressable memory

— Recall memory content from partial or corrupt values

* Also called associative memory



Recap — Analogy: Spin Glasses

__h_.-‘

n

Magnetic diploes

Each dipole tries to align itself to the local field
— In doing so it may flip

This will change fields at other dipoles
— Which may flip

Which changes the field at the current dipole...



Recap — Analogy: Spin Glasses

- "".-'___"",_-:—_' = Total field at current dipole:
o T e rX;
—_ e e f(Pi)Zz — + b;

Rl = |Ipi = o)l
'--r-— -:- —a - = J#L L J

-q..._' .—-—- _-"" _....__. -:- !
™M - T Response of current diplose
et P o
B e x = 1% if sign(x; f(py)) = 1
] - O —Xx; otherwise
st

 The total potential energy of the system

E<s>—c——z ufp)=C-p > f”’” - ) b,

L Jj>i |pl

* The system evolves to minimize the PE
— Dipoles stop flipping if any flips result in increase of PE



Recap : Spin Glasses
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state

The system stops at one of its stable configurations
— Where PE is a local minimum

Any small jitter from this stable configuration returns it to the stable
configuration

— l.e. the system remembers its stable state and returns to it



Recap: Hopfield net computation

1.

2.

Initialize network with initial pattern

yi(O):Xi, 0<i<N-1

Iterate until convergence

yi(t+1) =6 <z Wji)’j>,

J#I

0<i<N-1

Very simple
Updates can be done sequentially, or all at once

Convergence

E=- z z WjiVjYi

TS

does not change significantly any more
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Examples: Content addressable
memory

Hoptield network reconstructing degraded images
from nedsy (top) o partial (hottom) cues.

* http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/



“Training” the network

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach
— Optimization

e Secondary question

— How many patterns can we store?



Recap: Hebbian Learning to Store a
Specific Pattern

HEBBIAN LEARNING:
Wji = YjYi

W=y,y, —1I

* For asingle stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

13



Hebbian learning: Storing a 4-bit pattern

-1,-1 -1.1 1.1 1.-1 -1.,-1 -1.1 1.1 1.-1

» Left: Pattern stored. Right: Energy map
* Stored pattern has lowest energy

e Gradation of energy ensures stored pattern (or its ghost) is recalled
from everywhere 14



Recap: Hebbian Learning to Store
Multiple Patterns

Wji = Z Vi ¥j W= Z(ypy$ —1) =YY" - NI
p

* {p}is the set of patterns to store
— Superscript p represents the specific pattern

* N, is the number of patterns to store
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How many patterns can we store?

& B W

* Hopfield: For a network of N neurons can
store up to 0.14N patterns
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Recap: Hebbian Learning to Store a
Specific Pattern

Consider that the network is in any stored state y?’
At any node k the field we obtain is

hy = Z AR z Zy,f yPyP = (N - Dy + z zy,? yPy?
J p#p! p#p! j
If the second “crosstalk” term sums to less than N — 1, the symbol will not

flip
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Recap: Hebbian Learning to Store a
Specific Pattern

Wji = z )’lp}’}j

PE{p}

hy, = z e ¥iy; + z z vy y; =N =Dy + z Z WYy
j

p#p! pED! j
! I . oy e I .
e |f y,f Zp;tp/ Z] y,?y]py]p IS positive, then Zp:tpl Z] ysy]p y]p is the same
sign as y,f', and it will not flip

* |f we choose P patterns at random, what is the probability that
y,f' DpEpr Zj y,fy]py]p' will be positive for all symbols for all P of them?
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How many patterns can we store?

& B W

* Hopfield: For a network of N neurons can
store up to 0.14N patterns

 What does this really mean?

— Lets look at some examples
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Hebbian learning: One 4-bit pattern

1 pattern of 4 bits

-1,-1

-11

1.1

1,-1

-1,-1 -1.1 1.1 1,1 -1,-1 1.1 1.1 1,1

e Left: Pattern stored. Right: Energy map

* Note: Pattern is an energy well, but there are other local minima
— Where?

— Also note “shadow” pattern
20



Storing multiple patterns:
Orthogonality

* The maximum Hamming distance between two N-bit
patternsis N /2

— Because any pattern Y = —Y for our purpose

* Two patterns y;and y, that differ in N /2 bits are
orthogonal

— Because yiy, =0

e For N = 2M[, where L is an odd number, there are at most
2M orthogonal binary patterns

— Others may be almost orthogonal



Two orthogonal 4-bit patterns

2 orthogonal patterns

-1,-1 -1.1 1.1 1,1 -1,-1 1.1 1.1 1,1

Patterns are local minima (stationary and stable)
— No other local minima exist
— But patterns perfectly confusable for recall
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Two non-orthogonal 4-bit patterns

2 nonorthogonal patterns

-1,-1

-11

1.1

1,-1

-1,-1 -1.1 1.1 1,-1 -1,-1 1.1 1.1 1,1

* Patterns are local minima (stationary and stable)
— No other local minima exist

— Actual wells for patterns
» Patterns may be perfectly recalled!

— NoteK>0.14 N
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Three orthogonal 4-bit patterns

3 orthogonal patterns

111

1.1 ¢

1171

i J

-1,-1 -1.1 1.1 1,1 -1,-1 1.1 1.1 1,1

* All patterns are local minima (stationary and
stable)

— But recall from perturbed patterns is random
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Three non-orthogonal 4-bit patterns

3 nonorthogonal patterns

-1,-1

-1.1

1.1

1,-1

-1,-1 1.1 1.1 1,-1 -1,-1 1.1 1.1 1,1

e All patterns are local minima and recalled
— NoteK>0.14 N
— Note some “ghosts” ended up in the “well” of other patterns

* So one of the patterns has stronger recall than the other two
25



Four orthogonal 4-bit patterns

4 orthogonal patterns

1,1

-11

1.1

1,-1

-1,-1 -1.1 1.1 1,1 -1,-1 1.1 1.1 1,1

* All patterns are stationary, but none are stable

— Total wipe out
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Four nonorthogonal 4-bit patterns

4 nonorthogonal patterns

-1,-1

-11

1.1

1,-1

-1,-1 -1.1 1.1 1,1 -1,-1 1.1 1.1 1,1

* Believe it or not, all patterns are stored for K = N!

— Only “collisions” when the ghost of one pattern occurs
next to another

 [1111]andits ghost are strong attractors (why)
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How many patterns can we store?

Hopfield: For a network of N neurons can store up to
0.14N patterns

* Apparently a fuzzy statement
— What does it really mean to say “stores” 0.14N patterns?

e Stationary? Stable? No other local minima?

 N=4 may not be a good case (N too small)
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A 6-bit pattern

1 pattern of 6 bits

000 000

001 001
01 011
010 010

110 110

111 111

101 101

100 100

oo o001 o011 o010 110 111 101 100 oo 001 oO11 o010 110 111 101 100

Perfectly stationary and stable

But many spurious local minima..

— Which are “fake” memories
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Two orthogonal 6-bit patterns

2 orthogonal patterns

000 000

001 001
011 01
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 000 o001 011 o010 110 111 101 100

* Perfectly stationary and stable

e Several spurious “fake-memory” local minima..

— Figure over-states the problem: actually a 3-D Kmap



Two non-orthogonal 6-bit patterns

2 nonorthogonal patterns

000 000

001 001
011 01
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 000 o001 011 o010 110 111 101 100

* Perfectly stationary and stable

 Some spurious “fake-memory” local minima..
— But every stored pattern has “bowl”
— Fewer spurious minima than for the orthogonal case "



Three non-orthogonal 6-bit patterns

3 nonorthogonal patterns

000 000

001 001
011 01
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 000 o001 011 o010 110 111 101 100

* Note: Cannot have 3 or more orthogonal 6-bit patterns..
* Patterns are perfectly stationary and stable (K > 0.14N)
* Some spurious “fake-memory” local minima..

— But every stored pattern has “bowl”

— Fewer spurious minima than for the orthogonal 2-pattern case .



Four non-orthogonal 6-bit patterns

4 nonorthogonal patterns

000 000

001 001
011 01
010 010

110 110

111 111

101 101

100 100

oo o001 o011 010 110 111 101 100 000 o001 011 o010 110 111 101 100

* Patterns are perfectly stationary and stable for K > 0.14N
* Fewer spurious minima than for the orthogonal 2-pattern
case

— Most fake-looking memories are in fact ghosts..
33



Six non-orthogonal 6-bit patterns

6 nonorthogonal patterns

(alele] (alele]

001 001

o111 o111
o110 o110

110 110

111 111

101 101

100 100

o00001011010110111 101 100 o00001011010110111 101 100

 Breakdown largely due to interference from “ghosts”

* But patterns are stationary, and often stable
— For K>>0.14N
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More visualization..

* Lets inspect a few 8-bit patterns

— Keeping in mind that the Karnaugh map is now a
4-dimensional tesseract



One 8-bit pattern

1 pattern of 8 bits

0000 0000
0001 0001
0011 0011
0010 0010
0110 0110
0111 0111
0101 0101
0100 0100
1100 1100
1101 1101
1111 1111
1110 1110
1010 1010
1011 1011
1001 1001
1000 1000

0000000010010110116100100100101111110010011001000 0000000010010110110108100100101111110@010011001000

Its actually cleanly stored, but there are a few
spurious minima
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Two orthogonal 8-bit patterns

2 orthogonal patterns

0000 0000
0001 0001
0011 0011
0010 0010
0110 0110
0111 0111
0101 0101
0100 0100
1100 1100
1101 1101
1111 1111
1110 1110
1010 1010
1011 1011

1001
1000

1001
1000

0000000010010110116100100100101111110010011001000 00000000160101101101086100100101111110010011001000

Both have regions of attraction

Some spurious minima
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Two non-orthogonal 8-bit patterns

2 nonorthogonal patterns

0000 0000
0001 0001
0011 0011
0010 0010 ¢
0110 0110 ¢
0111 0111
0101 0101
0100 0100 ¢
1100 1100
1101 1101
1111 1111
1110 1110
1010 1010
1011 1011

1001
1000

1001
1000

0000000010010110116100100100101111110010011001000 0000000010010110110106100100101111110010011001000

* Actually have fewer spurious minima

— Not obvious from visualization..
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Four orthogonal 8-bit patterns

4 orthogonal patterns

0000 0000
0001 0001
0011 0011
0010 0010
0110 0110
0111 0111
0101 0101
0100 0100
1100 1100
1101 1101
1111 1111

1110
1010
1011
1001
1000

1110
1010
1011
1001
1000

0000000010010110116100100100101111110010011001000 0000000010010110110108100100101111110@010011001000

Successfully stored
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Four non-orthogonal 8-bit patterns

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

0000000010010110110100100100101111110010011001000

4 nonorthogonal patterns

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

0000000010010110110100100100101111110010011001000

e Stored with interference from ghosts..

40



Eight orthogonal 8-bit patterns

0000
0001
0011
0010
o110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

9]

* Wipeout

COEROMODIOD “DHEDTHDTIA0T - HHNCEOENCIODI0 O

8 orthogonal patterns

0000
0001
0011
0010
o110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

OOMBHEDODIODTH O - 1O THD T - HHNCEoEnCIoD0 O
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Eight non-orthogonal 8-bit patterns

8 nonorthogonal patterns

o000 0000
0001 0001
o011 0011
o010 0010
o110 0110
o111 o111
O101 0101
O100 0100
1100 1100
1101 1101
1111 1111
1110 1110
1010 1010
1011 1011
1001 1001
1000 1000
8] “THOMGENOTID0 O OOIBHEOTAOETH OO THD T - HHONCENOIODN0 O

* Nothing stored

— Neither stationary nor stable

42



Making sense of the behavior

Seems possible to store K> 0.14N patterns

— i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

— Possible to make more than 0.14N patterns at-least 1-bit stable
* So what was Hopfield talking about?

Patterns that are non-orthogonal easier to remember

— |.e. patterns that are closer are easier to remember than
patterns that are farther!!

Can we attempt to get greater control on the process than
Hebbian learning gives us?



Bold Claim

* | can always store (upto) N orthogonal
patterns such that they are stationary!

— Although not necessarily stable

e Why?



“Training” the network

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning

— Geometric approach

— Optimization

e Secondary question

— How many patterns can we store?



A minor adjustment

Note behavior of E(y) = y' Wy with

W = YY! — N I / Energy landscape
only differs by

Is identical to behavior with

an additive constant

\\

W = YYT . Gradients and location

Since

JTOYYT Nyt )y = yTYYTy — NN,

But W = YY7 is easier to analyze. Hence in the
following slides we will use W = YYT

" of minima remain sany/
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A minor adjustment

* Note behavior of E(y) = y' Wy with

T Energy landscape
W =YY N I / only differs by \\

- — -

- / Both have the
same Eigen vectors
A

behavior with an additive constant

\\\

B W = YYT | Gradients and location

&f minima remain sany/
* Since

y" (YY" - N, 1 )y =yTYYTy — NN,

» But W =YY is easier to analyze. Hence in the
following slides we will use W = YYT
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A minor adjustment

* Note behavior of E(y) = y' Wy with

T Ener'gy landscape
W =YY N I only differs by \\

an additive constant

Ve ) Both have the

< same Eigen vectors >ehavior with

/

ye NOTE: This N \ /
e S IS a positive
AN semldefml’re matrix T T s

e But W =YY/ is easier to anslyze. Hence in the
following slides we will use W = YYT
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Consider the energy function

1
E = —EyTWy — bly

* Reinstating the bias term for completeness sake

— Remember that we don’t actually use it in a Hopfield

net

49



Consider the energy function

This is a quadratic!

For Hebbian learning
W is positive semidefinite

\ E is convex

1
E=--y'Wy-bly

* Reinstating the bias term for completeness sake

— Remember that we don’t actually use it in a Hopfield

net

50



E

The energy function

1
= -y Wy—b'y

* E is a convex quadratic

51



The energy function

1
— _ =T _ W
E = 2yWy b'y @

©

e E is aconvex quadratic

— Shown from above (assuming O bias)

52



The energy function

1
E=—sy Wy-—bly

B

/
a5y

e E is aconvex quadratic

— Shown from above (assuming O bias)

* But components of y can only take values +1
— l.e y lies on the corners of the unit hypercube
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The energy function

Stored patterns

1
E=—-y"Wy-Db" @
>y WY y )
=
* The stored values of y are the ones where all
adjacent corners are higher on the quadratic

— Hebbian learning attempts to make the quadratic
steep in the vicinity of stored patterns
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Patterns you can store

e

Ghosts (negations)

Stored patterns

* |deally must be maximally separated on the hypercube

— The number of patterns we can store depends on the

actual distance between the patterns

55



Storing patterns

* A patternyp is stored if:
— sign(Wy,) =y, for all target patterns

* Note: for binary vectors sign(y)is a projection
— Projects y onto the nearest corner of the hypercube
— It “guantizes” the space into orthants

A

A
v

56



Storing patterns

A pattern yp is stored if:
— Sign(Wyp) =y, for all target patterns

Training: Design W such that this holds

Simple solution: y,, is an Eigenvector of W
— And the corresponding Eigenvalue is positive

Wy, = Ayp
— More generally orthant(Wyp) = orthant(yp)

How many such y, can we have?



Only N patterns?

(1,1)

(11_1)

* Patterns that differ in N /2 bits are orthogonal

* You can have no more than N orthogonal vectors
in an N-dimensional space
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Another random fact that should
interest you

* The Eigenvectors of any symmetric matrix W
are orthogonal

* The Eigenvalues may be positive or negative



Storing more than one pattern

* Requirement: Giveny4, ¥, ..., Vp
— Design W such that
. Sign(Wyp) =y, for all target patterns

* There are no other binary vectors for which this holds

 What is the largest number of patterns that
can be stored?



Storing K orthogonal patterns

* Simple solution: Design W such that y,,
Vo, ..., Vi are the Eigen vectors of W

—LetY =y ¥, ... ¥kl

W =YAY?
— A4, ..., Ag are positive

— ForA; = A, = Ax = 1 this is exactly the Hebbian

rule

* The patterns are provably stationary
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Hebbian rule

* |n reality

— LetY = [y, ¥, - Yk Tk+1 k42 - T

W =YAY"
— Tg4q P4 ...y are orthogonaltoy; v, ... Vx
— A=A = =1
— sty Ay =0
* All patterns orthogonal toy; v, ... yrare also
stationary

— Although not stable

63



Storing N orthogonal patterns

* When we have N orthogonal (or near
orthogonal) patterns y4, ¥, ..., Yy

-Y =|y1y; ..yn]

W =YAYT
—/11 — Az — /1N —_ 1
* The Eigen vectors of IV span the space

* Also, for any y;
Wy = ¥k

64



Storing N orthogonal patterns

* The N orthogonal patterns yy, v, ..., Yy span the
space

* Any pattern y can be written as
y=a,y1 +azyz + -+ ayyn
Wy = a;Wy; + a, Wy, + -+ ayWyy
= a1y1 +azy; +--+ayyn =Y

* All patterns are stable
— Remembers everything
— Completely useless network
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Storing K orthogonal patterns

Even if we store fewer than N patterns

— LetY = [y1 ¥ ... ¥k Tk41 Tk42 - In]

W =YAYT
— Tyg41 k42 ...Ty are orthogonaltoy; y, ...V
— L= =2 =1
— Ag41,- Ay =0
All patterns orthogonal to y; vy, ... yx are stationary

Any pattern that is entirely in the subspace spanned by y; vy, ... yxis also
stable (same logic as earlier)

Only patterns that are partially in the subspace spanned by y; y, ... yx are
unstable

— Get projected onto subspace spanned by y; v, ... Vx
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Problem with Hebbian Rule

* Even if we store fewer than N patterns

— LetY = [y, ¥2 - Yk Tk+1 k42 - I

W =YAY!

— Tg4q P4 ...y are orthogonaltoy; v, ... Vx

Ch=4==D

* Problems arise because Eigen values are all 1.0

— Ensures stationarity of vectors in the subspace
— What if we get rid of this requirement?

67



Hebbian rule and general (non-
orthogonal) vectors

_ p.p
Wji = Z Yi Vj
pe{p}
What happens when the patterns are not orthogonal
What happens when the patterns are presented more than
once

— Different patterns presented different numbers of times
— Equivalent to having unequal Eigen values..

Can we predict the evolution of any vectory

— Hint: Lanczos iterations
* Can write Yp = Yortho B; > W= Yortho BABTYgrtho



The bottom line

With an network of N units (i.e. N-bit patterns)

The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stable

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* For large N, the upper bound on K is actually N/4logN
— McElice et. Al. 87’

— But this may come with many “parasitic” memories
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The bottom line

With an network of N units (i.e. N-bit patterns)
The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the
patterns, all patterns are stabie

How do we find this

network? 15€

For a specific set of K patterns, we can always build a
network for which all K patterns are stable provided K < N

— Mostafa and St. Jacques 85’

* For large N, the upper bound on K is actually N/4logN
— McElice et. Al. 87’

— But this may come with many “parasitic” memories
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The bottom line

With an network of N units (i.e. N-bit patterns)
The maximum number of stable patterns is actually
exponential in N

— McElice and Posner, 84’

— E.g. when we had the
patterns, all patterns are stabie

How do we find this

1se
network?

For a specific set of K patterns, we can always build a

network for which all K patterns are stable nrovided K < N

Can we do something
about this?

— Mostafa and St. Jacques 85’

* Forlarge N, the upper bound on K is ac
— McElice et. Al. 87’

— But this may come with many “parasitic” memories
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A different tack

* How do we make the network store a specific
pattern or set of patterns?

— Hebbian learning
— Geometric approach

— Optimization

e Secondary question

— How many patterns can we store?



Consider the energy function

1
E=—-y'Wy-bly

* This must be maximally low for target patterns

 Must be maximally high for all other patterns

— So that they are unstable and evolve into one of
the target patterns
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Alternate Approach to Estimating the
Network

1
E(y) =— EyTWy —b'y

Estimate W (and b) such that

— £ is minimized for y;1, Y5, ..., ¥p

— E is maximized for all othery

* Caveat: Unrealistic to expect to store more than
N patterns, but can we make those N patterns
memorable .



Optimizing W (and b)

1 -
E(y) = —EyTWy W = argmin E E(y)
w

YEYp
The bias can be captured by
another fixed-value component

 Minimize total energy of target patterns

— Problem with this?
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Optimizing W

1 T
E(y)=—zy Wy

2
W = argmin Z E(y) — z E(y)
Y ye yEVp

 Minimize total energy of target patterns

 Maximize the total energy of all non-target
patterns
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Optimizing W

1 A .
E(y) = —gyTWy W = argmin 2 E(y) — z E(y)
W
YEYp YEYp

e Simple gradient descent:

W=W+n<2 yy' — Eny)

yEYp ngp
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Optimizing W

W=W+n(z yy' — z ny)

yEYp Y€Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis
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Optimizing W

W=W+n<z yy' — z ny)

yEYp Y€Yp

* Can “emphasize” the importance of a pattern
by repeating
— More repetitions = greater emphasis
* How many of these?
— Do we need to include all of them?
— Are all equally important?



The training again..

W=W+n(z yy' — z ny)

yEYp yé€Yp

* Note the energy contour of a Hopfield
network for any weight W

Energy

state 80



The training again

W=W+n ZYYT—ZYYT

YEYp y&Yp

* The first term tries to minimize the energy at target patterns
— Make them local minima

— Emphasize more “important” memories by repeating them more
frequently

A Target patterns

Energy

v

state
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The negative class

W=W+n(z yy' - Z ny)

YEYp y&Yp
 The second term tries to “raise” all non-target

patterns
— Do we need to raise everything?

Energy

state 82



Option 1: Focus on the valleys

W=W+r7 ZYYT— Z yy'

yeEYp yZYp&y=valley

* Focus on raising the valleys

— If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

Energy | ‘

state
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Identifying the valleys..

w=w+n<z yy” — z ny)

yeEYp yZYp&y=valley

* Problem: How do you identify the valleys for
the current W?

Energy | ‘

state
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Identifying the valleys..

* |nitialize the network randomly and let it evolve

— |t will settle in a valley

Energy

v

state



Training the Hopfield network

w=w+n<z yy” — z ny)

yeEYp yZYp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Randomly initialize the network several times and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights
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Training the Hopfield network: SGD

version
W=W+r7 ZYYT— z yy'
yeEYp yZYp&y=valley

* |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
* Sampling frequency of pattern must reflect importance of pattern

— Randomly initialize the network and let it evolve
* And settle at a valley y,

— Update weights
* W=W+n(y,y5 — yoy7)
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Training the Hopfield network

W =W+ ZYYT— z yy'

yeEYp yZYp&y=valley

* |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
. Samphngfrequency of pattern must reflect importance of pattern

~ Randomly |n|t|aI|ze/the network and let it evolve
* And settle at a valley 2

— Update weights
* W=W+n(y,y5 — yoy7)
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Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

Energy | I

state



Which valleys?

* Should we randomly sample valleys?

— Are all valleys equally important?

* Major requirement: memories must be stable
— They must be broad valleys

e Spurious valleys in the neighborhood of
memories are more important to eliminate

Energy Y

state




Identifying the valleys..

* |nitialize the network at valid memories and let it evolve

— It will settle in a valley. If this is not the target pattern, raise it

)

Energy

v

state =



Training the Hopfield network

w=w+n<z yy” — z ny)

yeEYp yZYp&y=valley

Initialize W
Compute the total outer product of all target patterns
— More important patterns presented more frequently

Initialize the network with each target pattern and let it
evolve

— And settle at a valley
Compute the total outer product of valley patterns
Update weights

92



Training the Hopfield network: SGD

version
W=W+r7 ZYYT— z yy'
yeEYp yZYp&y=valley

* |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
* Sampling frequency of pattern must reflect importance of pattern

— Initialize the network at y,, and let it evolve
* And settle at a valley y,

— Update weights
* W=W+n(y,y5 —yoy7)
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A possible problem

 What if there’s another target pattern
downvalley

— Raising it will destroy a better-represented or
stored pattern!

Energy

state



A related issue

* Really no need to raise the entire surface, or
even every valley

Energy

state
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A related issue

* Really no need to raise the entire surface, or even
every valley
* Raise the neighborhood of each target memory

— Sufficient to make the memory a valley

— The broader the neighborhood considered, the
broader the valley

Energy T

state



Raising the neighborhood

» Starting from a target pattern, let the network
evolve only a few steps

— Try to raise the resultant location
* Will raise the neighborhood of targets

* Will avoid problem of down-valley targets

Energy

state



Training the Hopfield network: SGD

version
W=W+r7 ZYYT— z yy'
yeEYp yZYp&y=valley

 |nitialize W

* Do until convergence, satisfaction, or death from
boredom:

— Sample a target patterny,
* Sampling frequency of pattern must reflect importance of pattern

— Initialize the network at y,, and let it evolve a few steps (2-
4)
* And arrive at a down-valley position y,
— Update weights

« W=W+n(y,y) — yayi)
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A probabilistic interpretation

1 T 1 T
E(y) =5y Wy  P(y) = Cexp 5¥ Wy

For continuous y, the energy of a pattern is a perfect
analog to the negative log likelihood of a Gaussian density

For binary vy it is the analog of the negative log likelihood of
a Boltzmann distribution
— Minimizing energy maximizes log likelihood

1 1
E(y) = —gyTWy P(y) = Cexp <§yTWy>
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The Boltzmann Distribution

1 —E(y)
E(y)=—-y"Wy—-Db'y P(y) = Cexp
2 kT
P ey Yy P(y)

* kisthe Boltzmann constant
T isthe temperature of the system

 The energy terms are like the loglikelihood of a Boltzmann
distributionatT =1

— Derivation of this probability is in fact quite trivial..
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Continuing the Boltzmann analogy

1 _
E(y) = —EyTWy—bTy P(y) = Cexp( E(Y)>
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* The system probabilistically selects states with
lower energy

— With infinitesimally slow cooling, at T = 0, it
arrives at the global minimal state
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Spin glasses and Hopfield nets

Energy

state

* Selecting a next state is akin to drawing a
sample from the Boltzmann distribution at
T = 1,in auniverse wherek =1



Lookahead..

 The Boltzmann analogy
* Adding capacity to a Hopfield network



Storing more than N patterns

* How do we increase the capacity of the
network

— Store more patterns



Expanding the network
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 Add a large number of neurons whose actual
values you don’t care about!
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Expanded Network
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 New capacity: ~(N+K) patterns

— Although we only care about the pattern of the first N
neurons

— We're interested in N-bit patterns
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Introducing...
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 The Boltzmann machine...
* Friday please...
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