
Neural Networks

Hopfield Nets and Boltzmann Machines

Fall 2017

1

• Symmetric loopy network

• Each neuron is a perceptron with +1/-1 output

• Every neuron receives input from every other neuron

• Every neuron outputs signals to every other neuron

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

Recap: Hopfield network

2

Recap: Hopfield network

• At each time each neuron receives a “field” σ𝑗≠𝑖𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

• If the sign of the field matches its own sign, it does not

respond

• If the sign of the field opposes its own sign, it “flips” to

match the sign of the field

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 + 𝑏𝑖

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

3

Recap: Energy of a Hopfield Network

𝐸 = − ෍

𝑖,𝑗<𝑖

𝑤𝑖𝑗𝑦𝑖𝑦𝑗

• The system will evolve until the energy hits a local minimum

• In vector form, including a bias term (not used in Hopfield nets)

𝑦𝑖 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗

Θ 𝑧 = ቊ
+1 𝑖𝑓 𝑧 > 0
−1 𝑖𝑓 𝑧 ≤ 0

4

Not assuming node bias

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

Recap: Evolution

• The network will evolve until it arrives at a

local minimum in the energy contour

state
PE

5

𝐸 = −
1

2
𝐲𝑇𝐖𝐲

Recap: Content-addressable memory

• Each of the minima is a “stored” pattern

– If the network is initialized close to a stored pattern, it
will inevitably evolve to the pattern

• This is a content addressable memory

– Recall memory content from partial or corrupt values

• Also called associative memory

state
PE

6

Recap – Analogy: Spin Glasses

• Magnetic diploes

• Each dipole tries to align itself to the local field

– In doing so it may flip

• This will change fields at other dipoles

– Which may flip

• Which changes the field at the current dipole…
7

Recap – Analogy: Spin Glasses

• The total potential energy of the system

𝐸(𝑠) = 𝐶 −
1

2
෍

𝑖

𝑥𝑖𝑓 𝑝𝑖 = 𝐶 −෍

𝑖

෍

𝑗>𝑖

𝑟𝑥𝑖𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 −෍

𝑖

𝑏𝑖𝑥𝑗

• The system evolves to minimize the PE

– Dipoles stop flipping if any flips result in increase of PE

Total field at current dipole:

𝑓 𝑝𝑖 =෍

𝑗≠𝑖

𝑟𝑥𝑗

𝑝𝑖 − 𝑝𝑗
2 + 𝑏𝑖

Response of current diplose

𝑥𝑖 = ൝
𝑥𝑖 𝑖𝑓 𝑠𝑖𝑔𝑛 𝑥𝑖 𝑓 𝑝𝑖 = 1

−𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

8

Recap : Spin Glasses

• The system stops at one of its stable configurations

– Where PE is a local minimum

• Any small jitter from this stable configuration returns it to the stable
configuration

– I.e. the system remembers its stable state and returns to it

state

PE

9

Recap: Hopfield net computation

• Very simple
• Updates can be done sequentially, or all at once
• Convergence

𝐸 = −෍

𝑖

෍

𝑗>𝑖

𝑤𝑗𝑖𝑦𝑗𝑦𝑖

does not change significantly any more

1. Initialize network with initial pattern

𝑦𝑖 0 = 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑁 − 1

2. Iterate until convergence

𝑦𝑖 𝑡 + 1 = Θ ෍

𝑗≠𝑖

𝑤𝑗𝑖𝑦𝑗 , 0 ≤ 𝑖 ≤ 𝑁 − 1

10

Examples: Content addressable
memory

• http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/11

“Training” the network

• How do we make the network store a specific
pattern or set of patterns?

– Hebbian learning

– Geometric approach

– Optimization

• Secondary question

– How many patterns can we store?

12

Recap: Hebbian Learning to Store a
Specific Pattern

• For a single stored pattern, Hebbian learning
results in a network for which the target
pattern is a global minimum

HEBBIAN LEARNING:
𝑤𝑗𝑖 = 𝑦𝑗𝑦𝑖

1

-1

-1

-1 1

13

𝐖 = 𝐲𝑝𝐲𝑝
𝑇 − I

Hebbian learning: Storing a 4-bit pattern

• Left: Pattern stored. Right: Energy map

• Stored pattern has lowest energy

• Gradation of energy ensures stored pattern (or its ghost) is recalled
from everywhere 14

• {p} is the set of patterns to store
– Superscript 𝑝 represents the specific pattern

• 𝑁𝑝 is the number of patterns to store

1

-1

-1

-1 1

1

1

-1

1 -1

15

𝐖 =෍

𝑝

𝐲𝑝𝐲𝑝
𝑇 − 𝐈 = 𝐘𝐘𝑇 − 𝑁𝑝𝐈𝑤𝑗𝑖 = ෍

𝑝∈{𝑝}

𝑦𝑖
𝑝
𝑦𝑗
𝑝

Recap: Hebbian Learning to Store
Multiple Patterns

How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can
store up to 0.14𝑁 patterns

16

• Consider that the network is in any stored state 𝑦𝑝′

• At any node 𝑘 the field we obtain is

ℎ𝑘
𝑝′
=෍

𝑗

𝑦𝑘
𝑝′
𝑦𝑗
𝑝′
𝑦𝑗
𝑝′
+ ෍

𝑝≠𝑝′

෍

𝑗

𝑦𝑘
𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′
= (𝑁 − 1)𝑦𝑘

𝑝′
+ ෍

𝑝≠𝑝′

෍

𝑗

𝑦𝑘
𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′

• If the second “crosstalk” term sums to less than 𝑁 − 1, the symbol will not
flip

1

-1

-1

-1 1

17

𝑤𝑗𝑖 = ෍

𝑝∈{𝑝}

𝑦𝑖
𝑝
𝑦𝑗
𝑝

Recap: Hebbian Learning to Store a
Specific Pattern

ℎ𝑘
𝑝′
=෍

𝑗

𝑦𝑘
𝑝′
𝑦𝑗
𝑝′
𝑦𝑗
𝑝′
+ ෍

𝑝≠𝑝′

෍

𝑗

𝑦𝑘
𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′
= (𝑁 − 1)𝑦𝑘

𝑝′
+ ෍

𝑝≠𝑝′

෍

𝑗

𝑦𝑘
𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′

• If 𝑦𝑘
𝑝′ σ𝑝≠𝑝′σ𝑗 𝑦𝑘

𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′

is positive, then σ𝑝≠𝑝′σ𝑗 𝑦𝑘
𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′

is the same

sign as 𝑦𝑘
𝑝′

, and it will not flip

• If we choose 𝑃 patterns at random, what is the probability that

𝑦𝑘
𝑝′ σ𝑝≠𝑝′σ𝑗 𝑦𝑘

𝑝
𝑦𝑗
𝑝
𝑦𝑗
𝑝′

will be positive for all symbols for all 𝑃 of them?

1

-1

-1

-1 1

18

𝑤𝑗𝑖 = ෍

𝑝∈{𝑝}

𝑦𝑖
𝑝
𝑦𝑗
𝑝

Recap: Hebbian Learning to Store a
Specific Pattern

How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can
store up to 0.14𝑁 patterns

• What does this really mean?

– Lets look at some examples

19

Hebbian learning: One 4-bit pattern

• Left: Pattern stored. Right: Energy map

• Note: Pattern is an energy well, but there are other local minima

– Where?

– Also note “shadow” pattern
20

Storing multiple patterns:
Orthogonality

• The maximum Hamming distance between two 𝑁-bit
patterns is 𝑁/2

– Because any pattern 𝑌 = −𝑌 for our purpose

• Two patterns 𝑦1and 𝑦2 that differ in 𝑁/2 bits are
orthogonal

– Because 𝑦1
𝑇𝑦2 = 0

• For 𝑁 = 2𝑀𝐿, where 𝐿 is an odd number, there are at most
2𝑀 orthogonal binary patterns

– Others may be almost orthogonal

21

Two orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)

– No other local minima exist

– But patterns perfectly confusable for recall
22

Two non-orthogonal 4-bit patterns

• Patterns are local minima (stationary and stable)

– No other local minima exist

– Actual wells for patterns

• Patterns may be perfectly recalled!

– Note K > 0.14 N 23

Three orthogonal 4-bit patterns

• All patterns are local minima (stationary and
stable)

– But recall from perturbed patterns is random
24

Three non-orthogonal 4-bit patterns

• All patterns are local minima and recalled

– Note K > 0.14 N

– Note some “ghosts” ended up in the “well” of other patterns

• So one of the patterns has stronger recall than the other two
25

Four orthogonal 4-bit patterns

• All patterns are stationary, but none are stable

– Total wipe out

26

Four nonorthogonal 4-bit patterns

• Believe it or not, all patterns are stored for K = N!

– Only “collisions” when the ghost of one pattern occurs
next to another

• [1 1 1 1] and its ghost are strong attractors (why)
27

How many patterns can we store?

• Hopfield: For a network of 𝑁 neurons can store up to
0.14𝑁 patterns

• Apparently a fuzzy statement

– What does it really mean to say “stores” 0.14N patterns?
• Stationary? Stable? No other local minima?

• N=4 may not be a good case (N too small)
28

A 6-bit pattern

• Perfectly stationary and stable

• But many spurious local minima..

– Which are “fake” memories
29

Two orthogonal 6-bit patterns

• Perfectly stationary and stable

• Several spurious “fake-memory” local minima..

– Figure over-states the problem: actually a 3-D Kmap
30

Two non-orthogonal 6-bit patterns

31

• Perfectly stationary and stable

• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”

– Fewer spurious minima than for the orthogonal case

Three non-orthogonal 6-bit patterns

32

• Note: Cannot have 3 or more orthogonal 6-bit patterns..

• Patterns are perfectly stationary and stable (K > 0.14N)

• Some spurious “fake-memory” local minima..

– But every stored pattern has “bowl”

– Fewer spurious minima than for the orthogonal 2-pattern case

Four non-orthogonal 6-bit patterns

33

• Patterns are perfectly stationary and stable for K > 0.14N

• Fewer spurious minima than for the orthogonal 2-pattern
case

– Most fake-looking memories are in fact ghosts..

Six non-orthogonal 6-bit patterns

34

• Breakdown largely due to interference from “ghosts”

• But patterns are stationary, and often stable

– For K >> 0.14N

More visualization..

• Lets inspect a few 8-bit patterns

– Keeping in mind that the Karnaugh map is now a
4-dimensional tesseract

35

One 8-bit pattern

36

• Its actually cleanly stored, but there are a few

spurious minima

Two orthogonal 8-bit patterns

37

• Both have regions of attraction

• Some spurious minima

Two non-orthogonal 8-bit patterns

38

• Actually have fewer spurious minima

– Not obvious from visualization..

Four orthogonal 8-bit patterns

39

• Successfully stored

Four non-orthogonal 8-bit patterns

40

• Stored with interference from ghosts..

Eight orthogonal 8-bit patterns

41

• Wipeout

Eight non-orthogonal 8-bit patterns

42

• Nothing stored

– Neither stationary nor stable

Making sense of the behavior

• Seems possible to store K > 0.14N patterns

– i.e. obtain a weight matrix W such that K > 0.14N patterns are
stationary

– Possible to make more than 0.14N patterns at-least 1-bit stable

• So what was Hopfield talking about?

• Patterns that are non-orthogonal easier to remember

– I.e. patterns that are closer are easier to remember than
patterns that are farther!!

• Can we attempt to get greater control on the process than
Hebbian learning gives us?

43

Bold Claim

• I can always store (upto) N orthogonal
patterns such that they are stationary!

– Although not necessarily stable

• Why?

44

“Training” the network

• How do we make the network store a specific
pattern or set of patterns?

– Hebbian learning

– Geometric approach

– Optimization

• Secondary question

– How many patterns can we store?

45

A minor adjustment

• Note behavior of 𝐄 𝐲 = 𝐲𝑇𝐖𝐲 with

𝐖 = 𝐘𝐘𝑇 −𝑁𝑝𝐈

• Is identical to behavior with

𝐖 = 𝐘𝐘𝑇

• Since

𝐲𝑇 𝐘𝐘𝑇 −𝑁𝑝𝐈 𝐲 = 𝐲𝑇𝐘𝐘𝑇𝐲 − 𝑁𝑁𝑝

• But 𝐖 = 𝐘𝐘𝑇 is easier to analyze. Hence in the
following slides we will use 𝐖 = 𝐘𝐘𝑇

46

Energy landscape
only differs by

an additive constant

Gradients and location
of minima remain same

A minor adjustment

• Note behavior of 𝐄 𝐲 = 𝐲𝑇𝐖𝐲 with

𝐖 = 𝐘𝐘𝑇 −𝑁𝑝𝐈

• Is identical to behavior with

𝐖 = 𝐘𝐘𝑇

• Since

𝐲𝑇 𝐘𝐘𝑇 −𝑁𝑝𝐈 𝐲 = 𝐲𝑇𝐘𝐘𝑇𝐲 − 𝑁𝑁𝑝

• But 𝐖 = 𝐘𝐘𝑇 is easier to analyze. Hence in the
following slides we will use 𝐖 = 𝐘𝐘𝑇

47

Energy landscape
only differs by

an additive constant

Gradients and location
of minima remain same

Both have the
same Eigen vectors

A minor adjustment

• Note behavior of 𝐄 𝐲 = 𝐲𝑇𝐖𝐲 with

𝐖 = 𝐘𝐘𝑇 −𝑁𝑝𝐈

• Is identical to behavior with

𝐖 = 𝐘𝐘𝑇

• Since

𝐲𝑇 𝐘𝐘𝑇 −𝑁𝑝𝐈 𝐲 = 𝐲𝑇𝐘𝐘𝑇𝐲 − 𝑁𝑁𝑝

• But 𝐖 = 𝐘𝐘𝑇 is easier to analyze. Hence in the
following slides we will use 𝐖 = 𝐘𝐘𝑇

48

Energy landscape
only differs by

an additive constant

Gradients and location
of minima remain same

NOTE: This
is a positive

semidefinite matrix

Both have the
same Eigen vectors

Consider the energy function

• Reinstating the bias term for completeness sake

– Remember that we don’t actually use it in a Hopfield

net

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

49

Consider the energy function

• Reinstating the bias term for completeness sake

– Remember that we don’t actually use it in a Hopfield

net

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

This is a quadratic!

For Hebbian learning
W is positive semidefinite

E is convex

50

The energy function

• 𝐸 is a convex quadratic

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

51

The energy function

• 𝐸 is a convex quadratic

– Shown from above (assuming 0 bias)

• But components of 𝑦 can only take values ±1

– I.e 𝑦 lies on the corners of the unit hypercube

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

52

The energy function

• 𝐸 is a convex quadratic

– Shown from above (assuming 0 bias)

• But components of 𝑦 can only take values ±1

– I.e 𝑦 lies on the corners of the unit hypercube

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

53

The energy function

• The stored values of 𝐲 are the ones where all

adjacent corners are higher on the quadratic

– Hebbian learning attempts to make the quadratic

steep in the vicinity of stored patterns

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

Stored patterns

54

Patterns you can store

• Ideally must be maximally separated on the hypercube

– The number of patterns we can store depends on the

actual distance between the patterns

Stored patterns
Ghosts (negations)

55

Storing patterns
• A pattern 𝐲𝑃 is stored if:

– 𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝐲𝑝 for all target patterns

• Note: for binary vectors 𝑠𝑖𝑔𝑛 𝐲 is a projection

– Projects 𝐲 onto the nearest corner of the hypercube

– It “quantizes” the space into orthants

56

Storing patterns

• A pattern 𝐲𝑃 is stored if:
– 𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝐲𝑝 for all target patterns

• Training: Design 𝐖 such that this holds

• Simple solution: 𝐲𝑝 is an Eigenvector of 𝐖
– And the corresponding Eigenvalue is positive

𝐖𝐲𝑝 = 𝜆𝐲𝑝
– More generally orthant(𝐖𝐲𝑝) = orthant(𝐲𝑝)

• How many such 𝐲𝑝can we have?

57

Only N patterns?

• Patterns that differ in 𝑁/2 bits are orthogonal
• You can have no more than 𝑁 orthogonal vectors

in an 𝑁-dimensional space
59

(1,1)

(1,-1)

Another random fact that should
interest you

• The Eigenvectors of any symmetric matrix 𝐖
are orthogonal

• The Eigenvalues may be positive or negative

60

Storing more than one pattern

• Requirement: Given 𝐲1, 𝐲2, … , 𝐲𝑃
– Design 𝐖 such that

• 𝑠𝑖𝑔𝑛 𝐖𝐲𝑝 = 𝐲𝑝 for all target patterns

• There are no other binary vectors for which this holds

• What is the largest number of patterns that
can be stored?

61

Storing 𝑲 orthogonal patterns

• Simple solution: Design 𝐖 such that 𝐲1,

𝐲2, … , 𝐲𝐾 are the Eigen vectors of 𝐖

– Let 𝑌 = 𝐲1 𝐲2…𝐲𝐾

𝑊 = 𝑌Λ𝑌𝑇

– 𝜆1, … , 𝜆𝐾 are positive

– For 𝜆1 = 𝜆2 = 𝜆𝐾 = 1 this is exactly the Hebbian

rule

• The patterns are provably stationary
62

Hebbian rule

• In reality

– Let 𝑌 = 𝐲1 𝐲2…𝐲𝐾 𝐫𝑲+1 𝐫𝑲+2…𝐫𝑁

𝑊 = 𝑌Λ𝑌𝑇

– 𝐫𝑲+1 𝐫𝑲+2…𝐫𝑁 are orthogonal to 𝐲1 𝐲2…𝐲𝐾

– 𝜆1 = 𝜆2 = 𝜆𝐾 = 1

– 𝜆𝐾+1 , … , 𝜆𝑁 = 0

• All patterns orthogonal to 𝐲1 𝐲2…𝐲𝐾are also

stationary

– Although not stable

63

Storing 𝑵 orthogonal patterns

• When we have 𝑁 orthogonal (or near

orthogonal) patterns 𝐲1, 𝐲2, … , 𝐲𝑁

– 𝑌 = 𝐲1 𝐲2…𝐲𝑁

𝑊 = 𝑌Λ𝑌𝑇

– 𝜆1 = 𝜆2 = 𝜆𝑁 = 1

• The Eigen vectors of 𝑊 span the space

• Also, for any 𝐲𝑘
𝐖𝐲𝑘 = 𝐲𝑘

64

Storing 𝑵 orthogonal patterns
• The 𝑁 orthogonal patterns 𝐲1, 𝐲2, … , 𝐲𝑁 span the

space

• Any pattern 𝐲 can be written as

𝐲 = 𝑎1𝐲1 + 𝑎2𝐲2 +⋯+ 𝑎𝑁𝐲𝑁
𝐖𝐲 = 𝑎1𝐖𝐲1 + 𝑎2𝐖𝐲2 +⋯+ 𝑎𝑁𝐖𝐲𝑁

= 𝑎1𝐲1 + 𝑎2𝐲2 +⋯+ 𝑎𝑁𝐲𝑁 = 𝐲

• All patterns are stable

– Remembers everything

– Completely useless network

65

Storing K orthogonal patterns

• Even if we store fewer than 𝑁 patterns

– Let 𝑌 = 𝐲1 𝐲2…𝐲𝐾 𝐫𝑲+1 𝐫𝑲+2…𝐫𝑁

𝑊 = 𝑌Λ𝑌𝑇

– 𝐫𝑲+1 𝐫𝑲+2…𝐫𝑁 are orthogonal to 𝐲1 𝐲2…𝐲𝐾

– 𝜆1 = 𝜆2 = 𝜆𝐾 = 1

– 𝜆𝐾+1 , … , 𝜆𝑁 = 0

• All patterns orthogonal to 𝐲1 𝐲2…𝐲𝐾 are stationary

• Any pattern that is entirely in the subspace spanned by 𝐲1 𝐲2…𝐲𝐾is also
stable (same logic as earlier)

• Only patterns that are partially in the subspace spanned by 𝐲1 𝐲2…𝐲𝐾 are
unstable

– Get projected onto subspace spanned by 𝐲1 𝐲2…𝐲𝐾

66

Problem with Hebbian Rule

• Even if we store fewer than 𝑁 patterns

– Let 𝑌 = 𝐲1 𝐲2…𝐲𝐾 𝐫𝑲+1 𝐫𝑲+2…𝐫𝑁

𝑊 = 𝑌Λ𝑌𝑇

– 𝐫𝑲+1 𝐫𝑲+2…𝐫𝑁 are orthogonal to 𝐲1 𝐲2…𝐲𝐾

– 𝜆1 = 𝜆2 = 𝜆𝐾 = 1

• Problems arise because Eigen values are all 1.0

– Ensures stationarity of vectors in the subspace

– What if we get rid of this requirement?

67

Hebbian rule and general (non-
orthogonal) vectors

𝑤𝑗𝑖 = ෍

𝑝∈{𝑝}

𝑦𝑖
𝑝
𝑦𝑗
𝑝

• What happens when the patterns are not orthogonal

• What happens when the patterns are presented more than
once

– Different patterns presented different numbers of times

– Equivalent to having unequal Eigen values..

• Can we predict the evolution of any vector 𝐲

– Hint: Lanczos iterations

• Can write 𝐘𝑃 = 𝐘𝑜𝑟𝑡ℎ𝑜𝐁, 𝐖 = 𝐘𝑜𝑟𝑡ℎ𝑜𝐁Λ𝐁
𝑇𝐘𝑜𝑟𝑡ℎ𝑜

𝑇

68

The bottom line

• With an network of 𝑁 units (i.e. 𝑁-bit patterns)

• The maximum number of stable patterns is actually
exponential in 𝑁

– McElice and Posner, 84’

– E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stable

• For a specific set of 𝐾 patterns, we can always build a
network for which all 𝐾 patterns are stable provided 𝐾 ≤ 𝑁

– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN

– McElice et. Al. 87’

– But this may come with many “parasitic” memories

69

The bottom line

• With an network of 𝑁 units (i.e. 𝑁-bit patterns)

• The maximum number of stable patterns is actually
exponential in 𝑁

– McElice and Posner, 84’

– E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stable

• For a specific set of 𝐾 patterns, we can always build a
network for which all 𝐾 patterns are stable provided 𝐾 ≤ 𝑁

– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN

– McElice et. Al. 87’

– But this may come with many “parasitic” memories

70

How do we find this
network?

The bottom line

• With an network of 𝑁 units (i.e. 𝑁-bit patterns)

• The maximum number of stable patterns is actually
exponential in 𝑁

– McElice and Posner, 84’

– E.g. when we had the Hebbian net with N orthogonal base
patterns, all patterns are stable

• For a specific set of 𝐾 patterns, we can always build a
network for which all 𝐾 patterns are stable provided 𝐾 ≤ 𝑁

– Mostafa and St. Jacques 85’

• For large N, the upper bound on K is actually N/4logN

– McElice et. Al. 87’

– But this may come with many “parasitic” memories

71

Can we do something
about this?

How do we find this
network?

A different tack

• How do we make the network store a specific
pattern or set of patterns?

– Hebbian learning

– Geometric approach

– Optimization

• Secondary question

– How many patterns can we store?

72

Consider the energy function

• This must be maximally low for target patterns

• Must be maximally high for all other patterns

– So that they are unstable and evolve into one of

the target patterns

𝐸 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

73

Alternate Approach to Estimating the
Network

• Estimate 𝐖 (and 𝐛) such that

– 𝐸 is minimized for 𝐲1, 𝐲2, … , 𝐲𝑃

– 𝐸 is maximized for all other 𝐲

• Caveat: Unrealistic to expect to store more than

𝑁 patterns, but can we make those 𝑁 patterns

memorable

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲

74

Optimizing W (and b)

• Minimize total energy of target patterns

– Problem with this?

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

75

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲)

The bias can be captured by
another fixed-value component

Optimizing W

• Minimize total energy of target patterns

• Maximize the total energy of all non-target

patterns

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

76

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

Optimizing W

• Simple gradient descent:

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲

77

෡𝐖 = argmin
𝐖

෍

𝐲∈𝐘𝑃

𝐸(𝐲) − ෍

𝐲∉𝐘𝑃

𝐸(𝐲)

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating

– More repetitions  greater emphasis

78

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

Optimizing W

• Can “emphasize” the importance of a pattern
by repeating

– More repetitions  greater emphasis

• How many of these?

– Do we need to include all of them?

– Are all equally important?
79

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

The training again..

• Note the energy contour of a Hopfield
network for any weight 𝐖

80

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Bowls will all actually be
quadratic

The training again

• The first term tries to minimize the energy at target patterns
– Make them local minima
– Emphasize more “important” memories by repeating them more

frequently

81

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Target patterns

The negative class

• The second term tries to “raise” all non-target
patterns
– Do we need to raise everything?

82

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃

𝐲𝐲𝑇

state

Energy

Option 1: Focus on the valleys

• Focus on raising the valleys

– If you raise every valley, eventually they’ll all move up above the
target patterns, and many will even vanish

83

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

state

Energy

Identifying the valleys..

• Problem: How do you identify the valleys for

the current 𝐖?

84

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

state

Energy

Identifying the valleys..

85state

Energy

• Initialize the network randomly and let it evolve

– It will settle in a valley

Training the Hopfield network

• Initialize 𝐖

• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Randomly initialize the network several times and let it
evolve

– And settle at a valley

• Compute the total outer product of valley patterns

• Update weights
86

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Training the Hopfield network: SGD
version

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley 𝐲𝑣

– Update weights

• 𝐖 = 𝐖+ 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑣𝐲𝑣

𝑇

87

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Training the Hopfield network

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Randomly initialize the network and let it evolve
• And settle at a valley 𝐲𝑣

– Update weights

• 𝐖 = 𝐖+ 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑣𝐲𝑣

𝑇

88

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Which valleys?

89state

Energy

• Should we randomly sample valleys?

– Are all valleys equally important?

Which valleys?

90state

Energy

• Should we randomly sample valleys?

– Are all valleys equally important?

• Major requirement: memories must be stable

– They must be broad valleys

• Spurious valleys in the neighborhood of
memories are more important to eliminate

Identifying the valleys..

91state

Energy

• Initialize the network at valid memories and let it evolve

– It will settle in a valley. If this is not the target pattern, raise it

Training the Hopfield network

• Initialize 𝐖

• Compute the total outer product of all target patterns

– More important patterns presented more frequently

• Initialize the network with each target pattern and let it
evolve

– And settle at a valley

• Compute the total outer product of valley patterns

• Update weights
92

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

Training the Hopfield network: SGD
version

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at 𝐲𝑝 and let it evolve
• And settle at a valley 𝐲𝑣

– Update weights

• 𝐖 = 𝐖+ 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑣𝐲𝑣

𝑇

93

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

A possible problem

94state

Energy

• What if there’s another target pattern

downvalley

– Raising it will destroy a better-represented or

stored pattern!

A related issue
• Really no need to raise the entire surface, or

even every valley

95state

Energy

A related issue

• Really no need to raise the entire surface, or even
every valley

• Raise the neighborhood of each target memory
– Sufficient to make the memory a valley

– The broader the neighborhood considered, the
broader the valley

96state

Energy

Raising the neighborhood

97state

Energy

• Starting from a target pattern, let the network

evolve only a few steps

– Try to raise the resultant location

• Will raise the neighborhood of targets

• Will avoid problem of down-valley targets

Training the Hopfield network: SGD
version

• Initialize 𝐖

• Do until convergence, satisfaction, or death from
boredom:
– Sample a target pattern 𝐲𝑝

• Sampling frequency of pattern must reflect importance of pattern

– Initialize the network at 𝐲𝑝 and let it evolve a few steps (2-
4)
• And arrive at a down-valley position 𝐲𝑑

– Update weights

• 𝐖 = 𝐖+ 𝜂 𝐲𝑝𝐲𝑝
𝑇 − 𝐲𝑑𝐲𝑑

𝑇

98

𝐖 = 𝐖+ 𝜂 ෍

𝐲∈𝐘𝑃

𝐲𝐲𝑇 − ෍

𝐲∉𝐘𝑃&𝐲=𝑣𝑎𝑙𝑙𝑒𝑦

𝐲𝐲𝑇

A probabilistic interpretation

• For continuous 𝐲, the energy of a pattern is a perfect
analog to the negative log likelihood of a Gaussian density

• For binary y it is the analog of the negative log likelihood of
a Boltzmann distribution

– Minimizing energy maximizes log likelihood

99

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

1

2
𝐲𝑇𝐖𝐲

𝐸(𝐲) = −
1

2
𝐲𝑇𝐖𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

1

2
𝐲𝑇𝐖𝐲

The Boltzmann Distribution

• 𝑘 is the Boltzmann constant

• 𝑇 is the temperature of the system

• The energy terms are like the loglikelihood of a Boltzmann
distribution at 𝑇 = 1

– Derivation of this probability is in fact quite trivial..

100

𝐸 𝐲 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

−𝐸(𝐲)

𝑘𝑇

𝐶 =
1

σ𝐲𝑃(𝐲)

Continuing the Boltzmann analogy

• The system probabilistically selects states with

lower energy

– With infinitesimally slow cooling, at 𝑇 = 0, it

arrives at the global minimal state

101

𝐸 𝐲 = −
1

2
𝐲𝑇𝐖𝐲− 𝐛𝑇𝐲 𝑃(𝐲) = 𝐶𝑒𝑥𝑝

−𝐸(𝐲)

𝑘𝑇

𝐶 =
1

σ𝐲𝑃(𝐲)

Spin glasses and Hopfield nets

• Selecting a next state is akin to drawing a
sample from the Boltzmann distribution at
𝑇 = 1, in a universe where 𝑘 = 1

102

state

Energy

Lookahead..

• The Boltzmann analogy

• Adding capacity to a Hopfield network

103

Storing more than N patterns

• How do we increase the capacity of the
network

– Store more patterns

104

Expanding the network

• Add a large number of neurons whose actual
values you don’t care about!

N Neurons
K Neurons

105

Expanded Network

• New capacity: ~(N+K) patterns

– Although we only care about the pattern of the first N
neurons

– We’re interested in N-bit patterns

N Neurons
K Neurons

106

Introducing…

• The Boltzmann machine…

• Friday please…

N Neurons
K Neurons

107

