Neural Networks

Hopfield Nets and Boltzmann Machines Fall 2017

Recap: Hopfield network

- *Symmetric loopy network*
- Each neuron is a perceptron with $+1/-1$ output
- Every neuron *receives* input from every other neuron
- Every neuron *outputs* signals to every other neuron

- At each time each neuron receives a "field" $\sum_{i \neq i} w_{ii} y_i + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it "flips" to match the sign of the field

Recap: Energy of a Hopfield Network

$$
y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j\right)
$$

$$
\Theta(z) = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}
$$

Not assuming node bias

$$
E = -\sum_{i,j
$$

- The system will evolve until the energy hits a local minimum
- In vector form, including a bias term (not used in Hopfield nets)

$$
E = -\frac{1}{2} \mathbf{y}^T \mathbf{W} \mathbf{y} - \mathbf{b}^T \mathbf{y}
$$

Recap: Evolution

• The network will evolve until it arrives at a local minimum in the energy contour

Recap: Content-addressable memory

state

- Each of the minima is a "stored" pattern
	- If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- **This is a** *content addressable memory*

– Recall memory content from partial or corrupt values

• Also called *associative memory*

Examples: Content addressable memory

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/

The bottom line

- With an network of N units (i.e. N -bit patterns)
- The maximum number of stable patterns is actually *exponential* in
	- McElice and Posner, 84'
	- E.g. when we had the Hebbian net with N orthogonal base patterns, *all* patterns are stable
- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided $K \leq N$
	- Mostafa and St. Jacques 85'
		- For large N, the upper bound on K is actually $N/4logN$

– McElice et. Al. 87'

– **But this may come with many "parasitic" memories**

Training the Net

- How do we make the network store *a specific* pattern or set of patterns?
	- Hebbian learning
	- Geometric approach

– Optimization

- Secondary question
	- How many patterns can we store?

Consider the energy function

$$
E = -\frac{1}{2} \mathbf{y}^T \mathbf{W} \mathbf{y} - \mathbf{b}^T \mathbf{y}
$$

- This must be *maximally* low for target patterns
- Must be *maximally* high for *all other patterns*
	- So that they are unstable and evolve into one of the target patterns

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}
$$

$$
\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

- Minimize total energy of target patterns
	- Which could be repeated to emphasize their importance
- Maximize the total energy of all *non-target* patterns
	- Which too could be repeated to emphasize their importance

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad \widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

• Simple gradient descent:

$$
\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)
$$

Various versions of choosing $y \in Y_p$ let us assign importance to y

Various versions of choosing $\mathbf{y} \notin \mathbf{Y}_P$ gave us different learning algorithms

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad \widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

• Simple gradient descent:

$$
\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta_{\mathbf{y}} \mathbf{y} \mathbf{y}^T \right)
$$

Weighted average (weights sum to 1.0) Weights capture importance

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad \widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

• Simple gradient descent:

$$
\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta_{\mathbf{y}} \mathbf{y} \mathbf{y}^T \right)
$$

Weighted average (weights sum to 1.0) Weights capture importance

THIS LOOKS LIKE AN EXPECTATION!

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad \widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

• Simple gradient descent:

$$
\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^T \right)
$$

Desideratum: The weights should ideally reflect confusability Lower-energy patterns (according to the current weights) should be more important to pull "up"

15 If you want the dependence on energy to be exponential..

A probabilistic interpretation $E(\mathbf{y}) =$ 1 2 $\mathbf{y}^T \mathbf{W} \mathbf{y}$ $P(\mathbf{y}) = C exp \Big(- \frac{1}{2} \mathbf{y} \Big)$ 1 2 $\mathbf{y}^T \mathbf{W} \mathbf{y}$

- For continuous y, the *energy* of a pattern is a perfect analog to the *negative log likelihood* of a Gaussian density
- For *binary* **y** it is the analog of the negative log likelihood of a *Boltzmann distribution*
	- **Minimizing energy maximizes log likelihood**

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad P(\mathbf{y}) = C \exp\left(\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}\right)
$$

The Boltzmann Distribution

- \bullet k is the Boltzmann constant
- T is the temperature of the system
- The energy terms are like the loglikelihood of a Boltzmann distribution at $T=1$
	- Derivation of this probability is in fact quite trivial..

Continuing the Boltzmann analogy

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} - \mathbf{b}^T \mathbf{y} \qquad P(\mathbf{y}) = C \exp\left(\frac{-E(\mathbf{y})}{kT}\right)
$$

$$
C = \frac{1}{\sum_{\mathbf{y}} P(\mathbf{y})}
$$

- At each instant the system *probabilistically* moves to a new state, greatly favoring states with lower energy
	- The lower the T, the more it favors low-energy states
	- With infinitesimally slow cooling, at $T=0$, it arrives at the global minimal state

• Selecting a next state is akin to drawing a sample from the Boltzmann distribution at $T = 1$, in a universe where $k = 1$

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad \widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

• Simple gradient descent:

$$
\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^T \right)
$$

THIS LOOKS LIKE AN EXPECTATION!

$$
E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad \widehat{\mathbf{W}} = \operatorname*{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})
$$

• Update rule

$$
\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^T \right)
$$

$$
\mathbf{W} = \mathbf{W} + \eta (E_{\mathbf{y} \sim \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - E_{\mathbf{y} \sim \mathbf{Y}} \mathbf{y} \mathbf{y}^T)
$$

Natural distribution for variables: The Boltzmann Distribution

Continuing on..

• Adding capacity to a Hopfield network

– And the Boltzmann analogy

Storing more than N patterns

- The memory capacity of an N-bit network is at most N
	- Stable patterns (not necessarily even stationary)
		- Abu Mustafa and St. Jacques, 1985
		- Although "information capacity" is $\mathcal{O}(N^3)$
- How do we increase the capacity of the network
	- Store more patterns

Expanding the network

• Add a large number of neurons whose actual values you don't care about!

Expanded Network

- New capacity: \sim $(N + K)$ patterns
	- Although we only care about the pattern of the first N neurons
	- We're interested in *N-bit* patterns

Terminology

- Terminology:
	- The neurons that store the actual patterns of interest: *Visible neurons*
	- The neurons that only serve to increase the capacity but whose actual values are not important: *Hidden neurons*
	- These can be set to anything in order to store a visible pattern

Training **the network**

- For a given pattern of *visible* neurons, there are any number of *hidden* patterns (2^K)
- Which of these do we choose?
	- Ideally choose the one that results in the lowest energy
	- But that's an exponential search space!
		- Solution: Combinatorial optimization
			- Simulated annealing

The patterns

- In fact we could have *multiple* hidden patterns coupled with any visible pattern
	- These would be multiple stored patterns that all give the same visible output
	- How many do we permit
- Do we need to specify one or more particular hidden patterns?
	- How about *all* of them
	- What do I mean by this bizarre statement?

Revisiting Thermodynamic Phenomena

- Is the system actually in a specific state at any time?
- No the state is actually continuously changing
	- Based on the temperature of the system
		- At higher temperatures, state changes more rapidly
- What is actually being characterized is the *probability* of the state
	- And the *expected* value of the state

- A thermodynamic system at temperature T can exist in one of many states
	- Potentially infinite states
	- $-$ At any time, the probability of finding the system in state s at temperature T is $P_T(s)$
- At each state s it has a potential energy E_s
- The *internal energy* of the system, representing its capacity to do work, is the average:

$$
U_T = \sum_s P_T(s) E_s
$$

• The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

$$
H_T = -\sum_{s} P_T(s) \log P_T(s)
$$

• The *Helmholtz* free energy of the system measures the *useful* work derivable from it and combines the two terms

$$
F_T = U_T + kT H_T
$$

$$
= \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)
$$

$$
F_T = \sum_{S} P_T(s) E_S - kT \sum_{S} P_T(s) \log P_T(s)
$$

- A system held at a specific temperature *anneals* by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved
- The probability distribution of the states at steady state is known as the *Boltzmann distribution*

$$
F_T = \sum_{S} P_T(s) E_S - kT \sum_{S} P_T(s) \log P_T(s)
$$

• Minimizing this w.r.t $P_T(s)$, we get

$$
P_T(s) = \frac{1}{Z} exp\left(\frac{-E_s}{kT}\right)
$$

- Also known as the *Gibbs* distribution
- Z is a normalizing constant
- $-$ Note the dependence on T
- $-$ A T = 0, the system will always remain at the lowestenergy configuration with $prob = 1$.

The Energy of the Network

- We can define the energy of the system as before
- Since each neuron are stochastic, there is disorder or entropy (with $T = 1$)
- The *equilibribum* probability distribution over states is the Boltzmann distribution at T=1
	- This is the probability of different states that the network will wander over *at equilibrium*

The field at a single node

- Let S and S' be otherwise identical states that only differ in the i-th bit
	- $-$ S has i-th bit = $+1$ and S' has i-th bit = -1

$$
logP(S) - logP(S') = log \frac{P(s_i = 1|s_{j\neq i})}{1 - P(s_i = 1|s_{j\neq i})}
$$

The field at a single node

• Let S and S' be the states with the ith bit in the $+1$ and -1 states

$$
E(S) = \log P(S) + C
$$

\n
$$
E(S) = \frac{1}{2} \left(E_{not i} + \sum_{j \neq i} w_j s_j + b_i \right)
$$

\n
$$
E(S') = \frac{1}{2} \left(E_{not i} - \sum_{j \neq i} w_j s_j - b_i \right)
$$

• $E(S) - E(S') = logP(S) - logP(S') = \sum_{j \neq i} w_j s_j + b_i$

The field at a single node

$$
log\left(\frac{P(s_i = 1|s_{j\neq i})}{1 - P(s_i = 1|s_{j\neq i})}\right) = \sum_{j\neq i} w_j s_j + b_i
$$

• Giving us

$$
P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-(\sum_{j \neq i} w_j s_j + b_i)}}
$$

• The probability of any node taking value 1 given other node values is a logistic

Redefining the network

- First try: Redefine a regular Hopfield net as a stochastic system
- Each neuron is *now a stochastic unit* with a binary state s_i , which can take value 0 or 1 with a probability that depends on the local field
	- Note the slight change from Hopfield nets
	- Not actually necessary; only a matter of convenience

Running **the network**

$$
z_i = \sum_j w_{ji} s_j + b_i
$$

$$
P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}
$$

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or -1 according to the probability given above
	- Gibbs sampling: Fix N-1 variables and sample the remaining variable
	- As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until "convergence"), *sample* the individual neurons

Training **the network**

- As in Hopfield nets, in order to train the network, we need to select weights such that those states are more probable than other states
	- Maximize the likelihood of the "stored" states

Maximum Likelihood Training

$$
\log(P(S)) = \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i\right) - \log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i\right)\right)
$$

$$
\langle \log(P(S)) \rangle = \frac{1}{N} \sum_{S \in S} \log(P(S))
$$

$$
= \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i \right) \right)
$$

- Maximize the average log likelihood of all "training" vectors $\mathbf{S} = \{S^{}_1, S^{}_2, ..., SN\}$
	- $-$ In the first summation, s_i and s_j are bits of S
	- In the second, *sⁱ '* and *s^j '* are bits of *S*'

Maximum Likelihood Training

$$
\langle \log(P(S)) \rangle = \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log \left(\sum_{S'} \exp \left(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i \right) \right)
$$

$$
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{S} s_i s_j - ? ? ?
$$

- We will use gradient descent, but we run into a problem..
- The first term is just the average $s_i s_j$ over all training patterns
- But the second term is summed over *all* states
	- Of which there can be an exponential number!

The second term

$$
\frac{d\log(\sum_{S'} exp(\sum_{i < j} w_{ij} s_i' s_j' + b_i s_i'))}{d w_{ij}} = \sum_{S'} \frac{exp(\sum_{i < j} w_{ij} s_i' s_j' + b_i s_i')}{\sum_{S'} exp(\sum_{i < j} w_{ij} s_i' s_j' + b_i s_i')} s_i' s_j'}
$$

$$
\frac{d \log(\sum_{S'} exp(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i))}{d w_{ij}} = \sum_{S'} P(S') s'_i s'_j
$$

- The second term is simply the *expected value* of $s_i s_j$, over all possible values of the state
- We cannot compute it exhaustively, but we can compute it by sampling!

The simulation solution

- Initialize the network randomly and let it "evolve"
	- By probabilistically selecting state values according to our model
- After many many epochs, take a snapshot of the state
- Repeat this many many times
- Let the collection of states be

$$
\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \ldots, S_{simul,M}\}
$$

The simulation solution for the second term

$$
\frac{d\log(\sum_{S'} exp(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i))}{d w_{ij}} = \sum_{S'} P(S') s'_i s'_j
$$

$$
\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
$$

• The second term in the derivative is computed as the average of sampled states when the network is running "freely"

Maximum Likelihood Training

$$
\left| \left\langle \log(P(S)) \right\rangle = \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log \left(\sum_{S'} exp \left(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i \right) \right) \right|
$$

$$
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{S} s_i s_j - \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
$$

$$
w_{ij} = w_{ij} + \eta \frac{d(\log(P(S)))}{dw_{ij}}
$$

• The overall gradient ascent rule

Overall Training

- Initialize weights
- Let the network run to obtain simulated state samples
- Compute gradient and update weights
- **Iterate**

But this is missing hidden nodes

- This framework only works for networks with only visible nodes
- We wanted *hidden* nodes
- How do we extend the paradigm?

With hidden neurons

- Now, with hidden neurons the complete state pattern for even the *training* patterns is unknown
	- Since they are only defined over visible neurons

- We will now only maximize *marginal* probabilities over visible bits
- $S = (V, H)$
	- $-V =$ visible bits
	- $H = h$ idden bits

More simulations

- Maximizing the marginal probability of V requires summing over all values of H
	- An exponential state space
	- So we will use simulations again

- For each training pattern V_i
	- $-$ Fix the visible units to V_i
	- Let the hidden neurons evolve from a random initial point to generate H_i
	- $-$ Generate $S_i = [V_i, H_i]$
- Repeat K times to generate synthetic training $S = \{S_{1,1}, S_{1,2}, \ldots, S_{1K}, S_{2,1}, \ldots, S_{N,K}\}\$

Step 2

• Now *unclamp* the visible units and let the entire network evolve several times to generate

$$
\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \ldots, S_{simul,M}\}
$$

Gradients

$$
\frac{d(\log(P(S)))}{dw_{ij}} = \frac{1}{NK} \sum_{S} s_i s_j - \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
$$

• Gradients are computed as before, except that the first term is now computed over the *expanded* training data

Overall Training

- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- **Iterate**

Boltzmann machines

- Stochastic extension of Hopfield nets
- Enables storage of many more patterns than Hopfield nets
- But also enables computation of probabilities of patterns, and completion of pattern

Boltzmann machines: Overall

$$
z_i = \sum_j w_{ji} s_i + b_i
$$

$$
P(s_i = 1) = \frac{1}{1 + e^{-z_i}}
$$

$$
\frac{d\langle \log(P(S)) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{S} s_i s_j - \frac{1}{M} \sum_{S' \in S_{simul}} s'_i s'_j
$$

$$
w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(S)) \rangle}{dw_{ij}}
$$

- **Training:** Given a set ot training patterns
	- Which could be repeated to represent relative probabilities
- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- **Iterate**

Boltzmann machines: Overall

- Running: Pattern completion
	- "Anchor" the *known* visible units
	- Let the network evolve
	- Sample the unknown visible units
		- Choose the most probable value

Applications

Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- Filling out patterns
- Denoising patterns
- *Computing conditional probabilities of patterns*
- *Classification!!*
	- *How?*

Boltzmann machines for classification

- Training patterns:
	- [f1, f2, f3, …. , class]
	- Features can have binarized or continuous valued representations
	- Classes have "one hot" representation
- Classification:
	- Given features, anchor features, estimate a posteriori probability distribution over classes
		- Or choose most likely class

Boltzmann machines: Issues

- Training takes for ever
- Doesn't really work for large problems
	- A small number of training instances over a small number of bits

Solution: *Restricted* Boltzmann Machines

- Partition visible and hidden units
	- Visible units ONLY talk to hidden units
	- Hidden units ONLY talk to visible units
- Restricted Boltzmann machine..

Topics missed..

- The Boltzmann machine as a probability distribution
- RBMs
- Running RBMs
- Inference over RBMs
- RBMs as feature extractors – Pre training
- RBMs as generative models
- DBMs