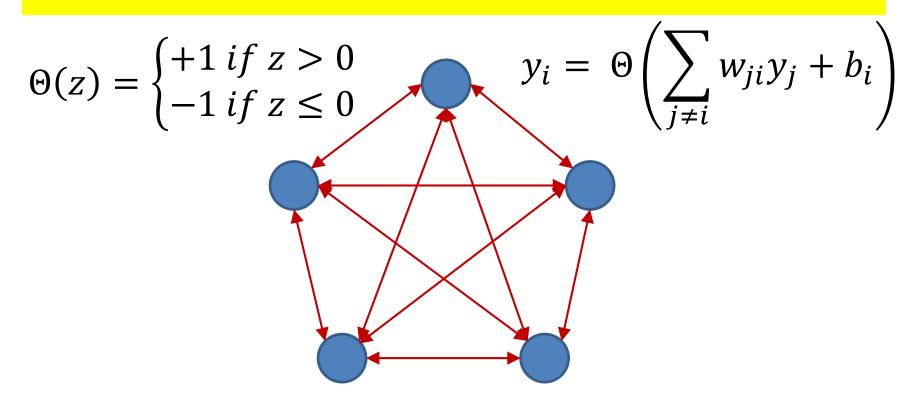
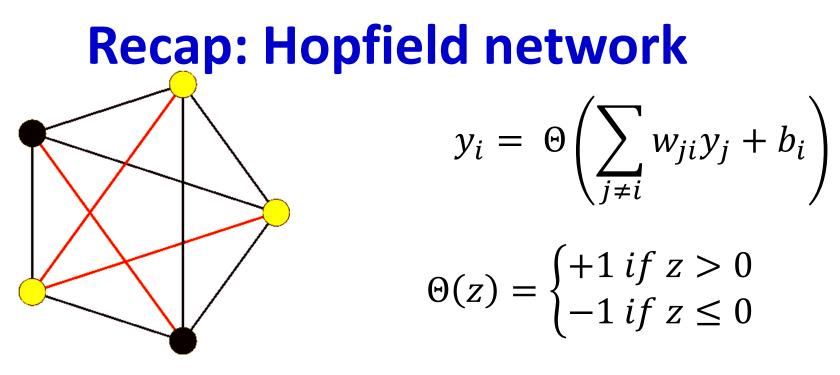
Neural Networks

Hopfield Nets and Boltzmann Machines Fall 2017

Recap: Hopfield network

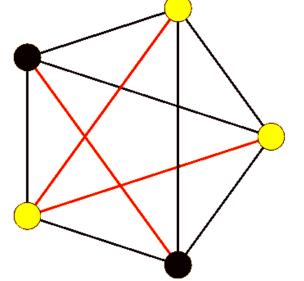


- Symmetric loopy network
- Each neuron is a perceptron with +1/-1 output
- Every neuron *receives* input from every other neuron
- Every neuron *outputs* signals to every other neuron



- At each time each neuron receives a "field" $\sum_{i \neq i} w_{ii} y_i + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it "flips" to match the sign of the field

Recap: Energy of a Hopfield Network



$$y_i = \Theta\left(\sum_{j\neq i} w_{ji} y_j\right)$$
$$\Theta(z) = \begin{cases} +1 \text{ if } z > 0\\ -1 \text{ if } z \le 0 \end{cases}$$

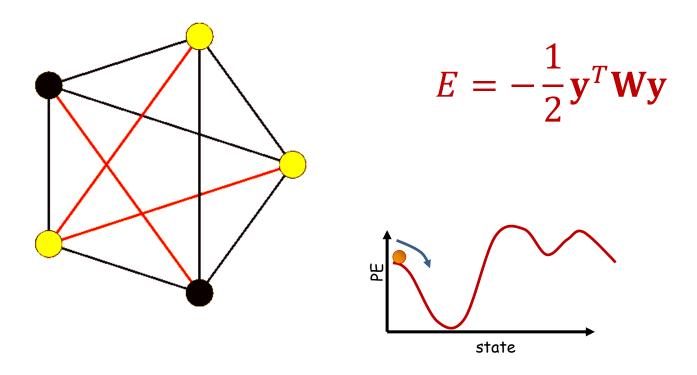
Not assuming node bias

$$E = -\sum_{i,j < i} w_{ij} y_i y_j$$

- The system will evolve until the energy hits a local minimum
- In vector form, including a bias term (not used in Hopfield nets)

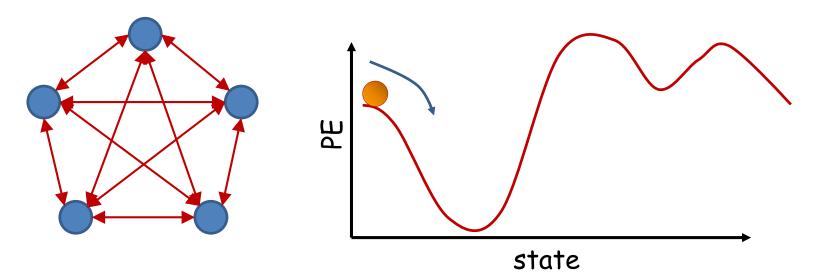
$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

Recap: Evolution



• The network will evolve until it arrives at a local minimum in the energy contour

Recap: Content-addressable memory

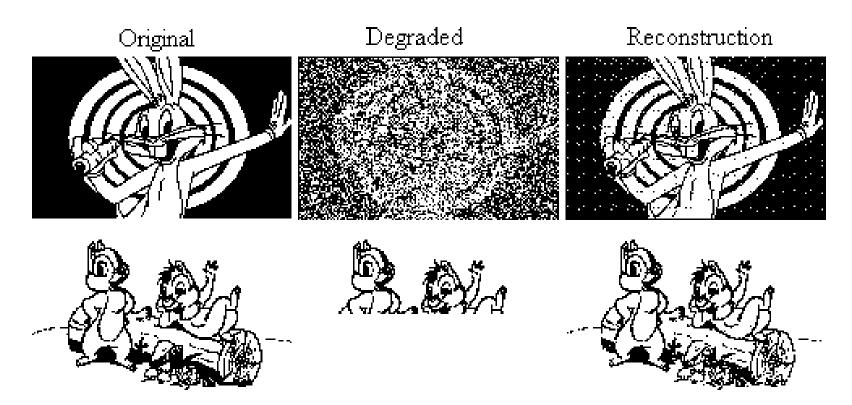


- Each of the minima is a "stored" pattern
 - If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- This is a content addressable memory

Recall memory content from partial or corrupt values

• Also called *associative memory*

Examples: Content addressable memory



Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/

The bottom line

- With an network of *N* units (i.e. *N*-bit patterns)
- The maximum number of stable patterns is actually *exponential* in *N*
 - McElice and Posner, 84'
 - E.g. when we had the Hebbian net with N orthogonal base patterns, all patterns are stable
- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided K ≤ N
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN

– McElice et. Al. 87'

- But this may come with many "parasitic" memories

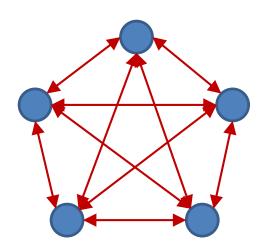
Training the Net

- How do we make the network store *a specific* pattern or set of patterns?
 - Hebbian learning
 - Geometric approach

– Optimization

- Secondary question
 - How many patterns can we store?

Consider the energy function



$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

- This must be *maximally* low for target patterns
- Must be *maximally* high for *all other patterns*
 - So that they are unstable and evolve into one of the target patterns

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}$$
$$\widehat{\mathbf{W}} = \operatorname{argmin}_{\mathbf{W}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Minimize total energy of target patterns

Which could be repeated to emphasize their importance

- Maximize the total energy of all *non-target* patterns
 - Which too could be repeated to emphasize their importance

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

Various versions of choosing $\mathbf{y} \in \mathbf{Y}_P$ let us assign importance to \mathbf{y}

Various versions of choosing $\mathbf{y} \notin \mathbf{Y}_P$ gave us different learning algorithms

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta_{\mathbf{y}} \mathbf{y} \mathbf{y}^T \right)$$

Weighted average (weights sum to 1.0) Weights capture importance

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta_{\mathbf{y}} \mathbf{y} \mathbf{y}^T \right)$$

Weighted average (weights sum to 1.0) Weights capture importance

THIS LOOKS LIKE AN EXPECTATION!

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^{T} \right)$$

Desideratum: The weights should ideally reflect confusability Lower-energy patterns (according to the current weights) should be more important to pull "up"

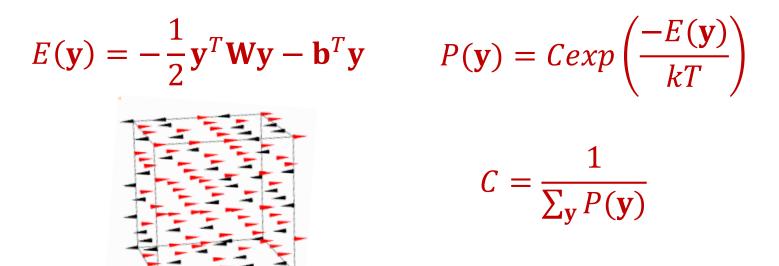
If you want the dependence on energy to be exponential..

A probabilistic interpretation $E(\mathbf{y}) = \frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(-\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}\right)$

- For continuous y, the energy of a pattern is a perfect analog to the negative log likelihood of a Gaussian density
- For *binary* **y** it is the analog of the negative log likelihood of a *Boltzmann distribution*
 - Minimizing energy maximizes log likelihood

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y}\right)$$

The Boltzmann Distribution

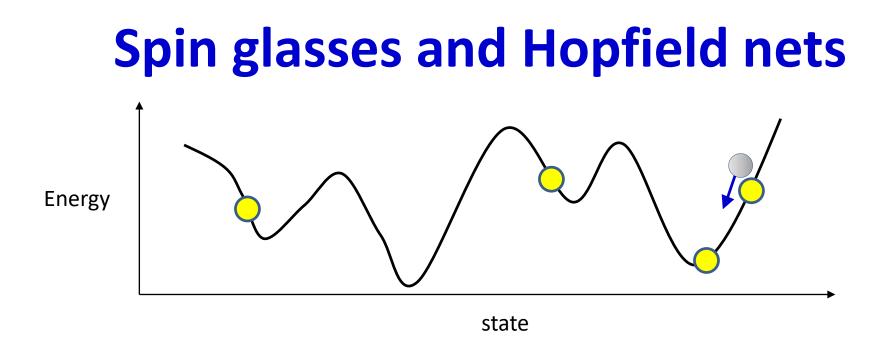


- k is the Boltzmann constant
- *T* is the temperature of the system
- The energy terms are like the loglikelihood of a Boltzmann distribution at T = 1
 - Derivation of this probability is in fact quite trivial..

Continuing the Boltzmann analogy

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{T}\mathbf{W}\mathbf{y} - \mathbf{b}^{T}\mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{-E(\mathbf{y})}{kT}\right)$$
$$C = \frac{1}{\sum_{\mathbf{y}} P(\mathbf{y})}$$

- At each instant the system *probabilistically* moves to a new state, greatly favoring states with lower energy
 - The lower the T, the more it favors low-energy states
 - With infinitesimally slow cooling, at T = 0, it arrives at the global minimal state



• Selecting a next state is akin to drawing a sample from the Boltzmann distribution at T = 1, in a universe where k = 1

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^{T} \right)$$

THIS LOOKS LIKE AN EXPECTATION!

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T \mathbf{W} \mathbf{y} \quad \widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

• Update rule

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_{P}} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^{T} - \sum_{\mathbf{y} \notin \mathbf{Y}_{P}} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^{T} \right)$$
$$\mathbf{W} = \mathbf{W} + \eta \left(E_{\mathbf{y} \sim \mathbf{Y}_{P}} \mathbf{y} \mathbf{y}^{T} - E_{\mathbf{y} \sim Y} \mathbf{y} \mathbf{y}^{T} \right)$$

Natural distribution for variables: The Boltzmann Distribution

Continuing on..

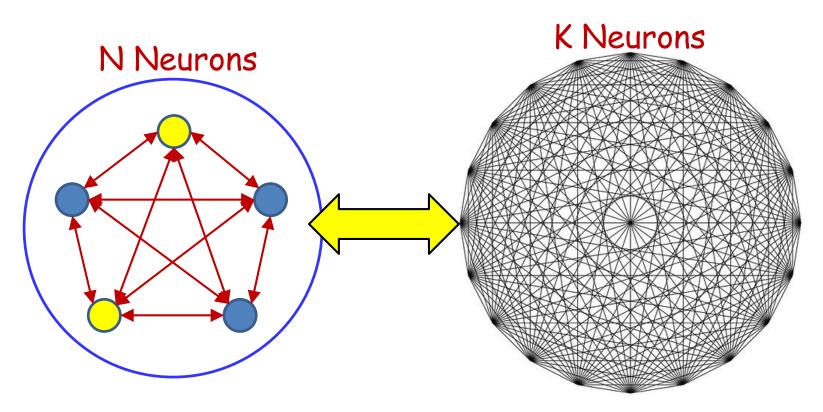
Adding capacity to a Hopfield network

And the Boltzmann analogy

Storing more than N patterns

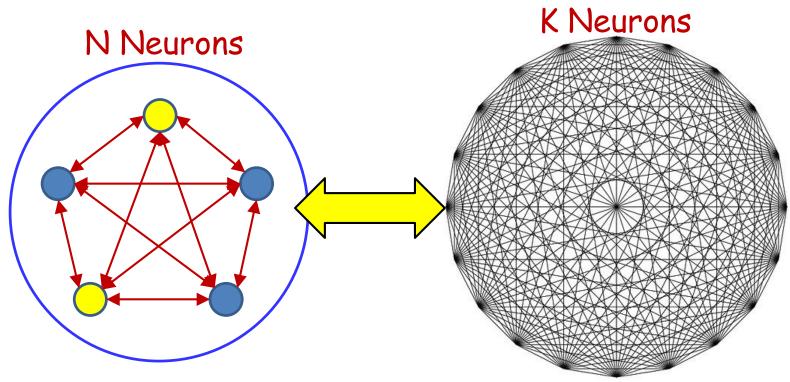
- The memory capacity of an *N*-bit network is at most *N*
 - Stable patterns (not necessarily even stationary)
 - Abu Mustafa and St. Jacques, 1985
 - Although "information capacity" is $\mathcal{O}(N^3)$
- How do we increase the capacity of the network
 - Store more patterns

Expanding the network



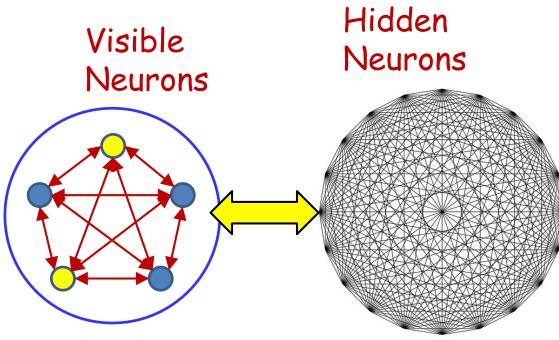
 Add a large number of neurons whose actual values you don't care about!

Expanded Network



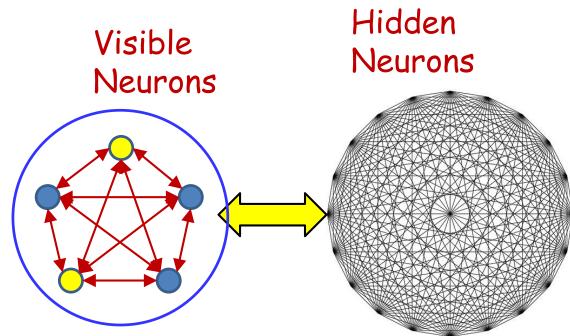
- New capacity: $\sim (N + K)$ patterns
 - Although we only care about the pattern of the first N neurons
 - We're interested in *N-bit* patterns

Terminology



- Terminology:
 - The neurons that store the actual patterns of interest: Visible neurons
 - The neurons that only serve to increase the capacity but whose actual values are not important: *Hidden neurons*
 - These can be set to anything in order to store a visible pattern

Training the network

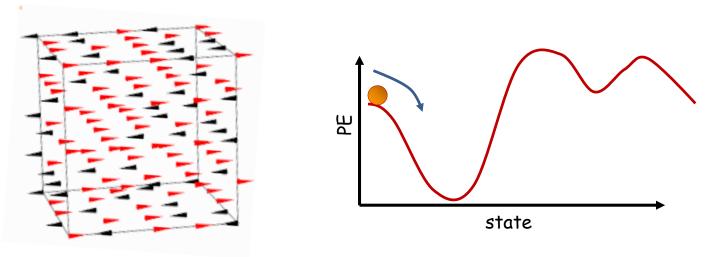


- For a given pattern of visible neurons, there are any number of hidden patterns (2^K)
- Which of these do we choose?
 - Ideally choose the one that results in the lowest energy
 - But that's an exponential search space!
 - Solution: Combinatorial optimization
 - Simulated annealing

The patterns

- In fact we could have *multiple* hidden patterns coupled with any visible pattern
 - These would be multiple stored patterns that all give the same visible output
 - How many do we permit
- Do we need to specify one or more particular hidden patterns?
 - How about *all* of them
 - What do I mean by this bizarre statement?

Revisiting Thermodynamic Phenomena



- Is the system actually in a specific state at any time?
- No the state is actually continuously changing
 - Based on the temperature of the system
 - At higher temperatures, state changes more rapidly
- What is actually being characterized is the *probability* of the state
 - And the *expected* value of the state

- A thermodynamic system at temperature *T* can exist in one of many states
 - Potentially infinite states
 - At any time, the probability of finding the system in state sat temperature T is $P_T(s)$
- At each state s it has a potential energy E_s
- The *internal energy* of the system, representing its capacity to do work, is the average:

$$U_T = \sum_{s} P_T(s) E_s$$

• The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

$$H_T = -\sum_s P_T(s) \log P_T(s)$$

• The *Helmholtz* free energy of the system measures the *useful* work derivable from it and combines the two terms

$$F_T = U_T + kTH_T$$

$$=\sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

- A system held at a specific temperature *anneals* by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved
- The probability distribution of the states at steady state is known as the *Boltzmann distribution*

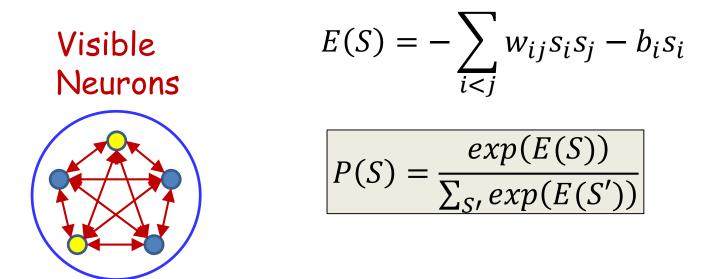
$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

• Minimizing this w.r.t $P_T(s)$, we get

$$P_T(s) = \frac{1}{Z} exp\left(\frac{-E_s}{kT}\right)$$

- Also known as the Gibbs distribution
- -Z is a normalizing constant
- Note the dependence on T
- A T = 0, the system will always remain at the lowestenergy configuration with prob = 1.

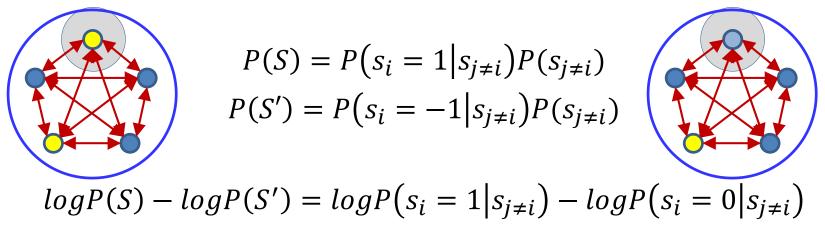
The Energy of the Network



- We can define the energy of the system as before
- Since each neuron are stochastic, there is disorder or entropy (with T = 1)
- The *equilibribum* probability distribution over states is the Boltzmann distribution at T=1
 - This is the probability of different states that the network will wander over at equilibrium

The field at a single node

- Let S and S' be otherwise identical states that only differ in the i-th bit
 - S has i-th bit = +1 and S' has i-th bit = -1

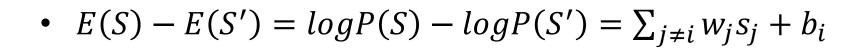


$$logP(S) - logP(S') = log \frac{P(s_i = 1 | s_{j \neq i})}{1 - P(s_i = 1 | s_{j \neq i})}$$

The field at a single node

Let S and S' be the states with the ith bit in the +1 and -1 states

$$E(S) = \log P(S) + C$$
$$E(S) = \frac{1}{2} \left(E_{not i} + \sum_{j \neq i} w_j s_j + b_i \right)$$
$$E(S') = \frac{1}{2} \left(E_{not i} - \sum_{j \neq i} w_j s_j - b_i \right)$$



The field at a single node

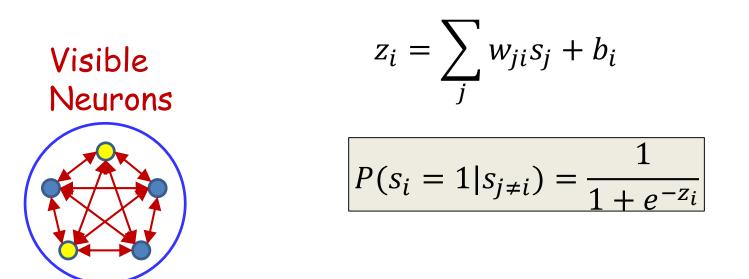
$$log\left(\frac{P(s_{i}=1|s_{j\neq i})}{1-P(s_{i}=1|s_{j\neq i})}\right) = \sum_{j\neq i} w_{j}s_{j} + b_{i}$$

• Giving us

$$P(s_{i} = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-(\sum_{j \neq i} w_{j} s_{j} + b_{i})}}$$

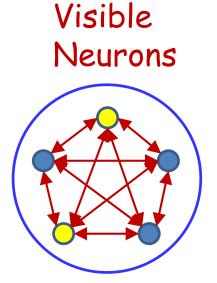
 The probability of any node taking value 1 given other node values is a logistic

Redefining the network



- First try: Redefine a regular Hopfield net as a stochastic system
- Each neuron is now a stochastic unit with a binary state s_i, which can take value 0 or 1 with a probability that depends on the local field
 - Note the slight change from Hopfield nets
 - Not actually necessary; only a matter of convenience

Running the network

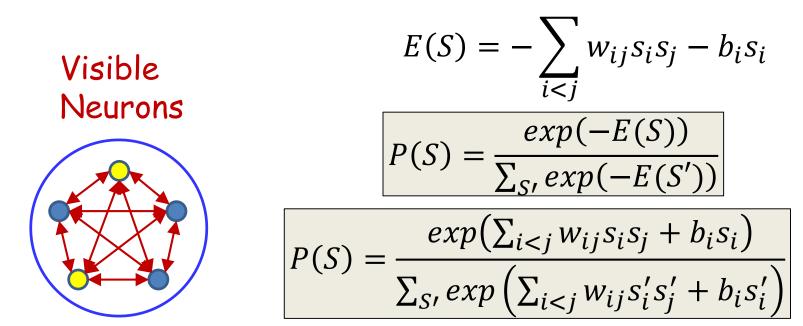


$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or -1 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until "convergence"), sample the individual neurons

Training the network



- As in Hopfield nets, in order to train the network, we need to select weights such that those states are more probable than other states
 - Maximize the likelihood of the "stored" states

Maximum Likelihood Training

$$\log(P(S)) = \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i\right) - \log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s_i' s_j' + b_i s_i'\right)\right)$$

$$< \log(P(\mathbf{S})) > = \frac{1}{N} \sum_{S \in \mathbf{S}} \log(P(S))$$

$$=\frac{1}{N}\sum_{S}\left(\sum_{i< j}w_{ij}s_{i}s_{j}+b_{i}s_{i}(S)\right)-\log\left(\sum_{S'}exp\left(\sum_{i< j}w_{ij}s_{i}'s_{j}'+b_{i}s_{i}'\right)\right)$$

- Maximize the average log likelihood of all "training" vectors S = {S₁, S₂, ..., SN}
 - In the first summation, s_i and s_j are bits of S
 - In the second, s_i' and s_j' are bits of S'

Maximum Likelihood Training

$$\left\langle \log(P(\mathbf{S})) \right\rangle = \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i \right) \right)$$

$$\frac{d\langle \log(P(\mathbf{S}))\rangle}{dw_{ij}} = \frac{1}{N} \sum_{S} s_i s_j -???$$

- We will use gradient descent, but we run into a problem..
- The first term is just the average s_is_j over all training patterns
- But the second term is summed over *all* states
 - Of which there can be an exponential number!

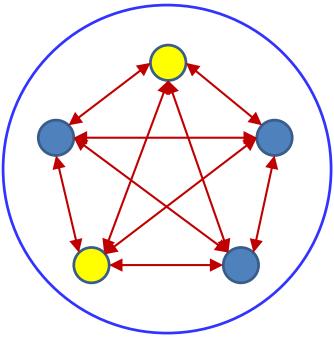
The second term

$$\frac{d\log(\sum_{s,exp}(\sum_{i$$

$$\frac{d\log(\sum_{S'} exp(\sum_{i < j} w_{ij}s'_is'_j + b_is'_i))}{dw_{ij}} = \sum_{S'} P(S')s'_is'_j$$

- The second term is simply the *expected value* of s_is_j, over all possible values of the state
- We cannot compute it exhaustively, but we can compute it by sampling!

The simulation solution



- Initialize the network randomly and let it "evolve"
 - By probabilistically selecting state values according to our model
- After many many epochs, take a snapshot of the state
- Repeat this many many times
- Let the collection of states be

$$\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \dots, S_{simul,M}\}$$

The simulation solution for the second term

$$\frac{d\log(\sum_{S'} exp(\sum_{i < j} w_{ij}s'_is'_j + b_is'_i))}{dw_{ij}} = \sum_{S'} P(S')s'_is'_j$$

$$\sum_{S'} P(S') s'_i s'_j \approx \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

 The second term in the derivative is computed as the average of sampled states when the network is running "freely"

Maximum Likelihood Training

$$\left\langle \log(P(\mathbf{S})) \right\rangle = \frac{1}{N} \sum_{S} \left(\sum_{i < j} w_{ij} s_i s_j + b_i s_i(S) \right) - \log\left(\sum_{S'} exp\left(\sum_{i < j} w_{ij} s'_i s'_j + b_i s'_i \right) \right)$$

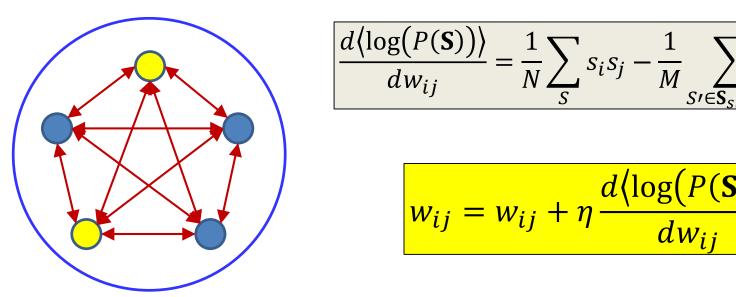
$$\frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}} = \frac{1}{N} \sum_{S} s_i s_j - \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

$$w_{ij} = w_{ij} + \eta \frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}}$$

• The overall gradient ascent rule

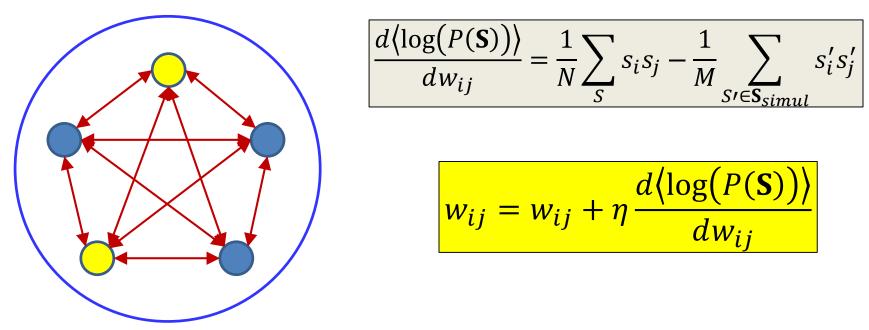
Overall Training

 $s_i's_j'$



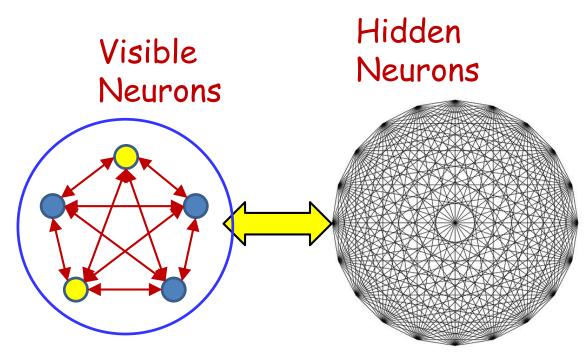
- Initialize weights
- Let the network run to obtain simulated state samples
- Compute gradient and update weights
- Iterate

But this is missing hidden nodes

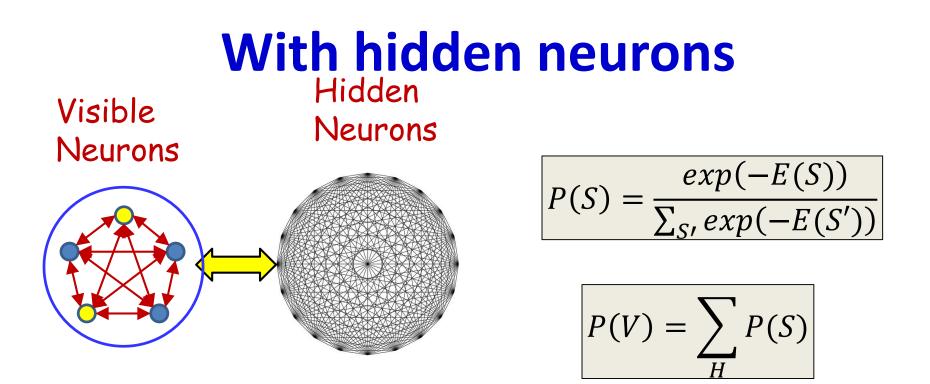


- This framework only works for networks with only visible nodes
- We wanted *hidden* nodes
- How do we extend the paradigm?

With hidden neurons

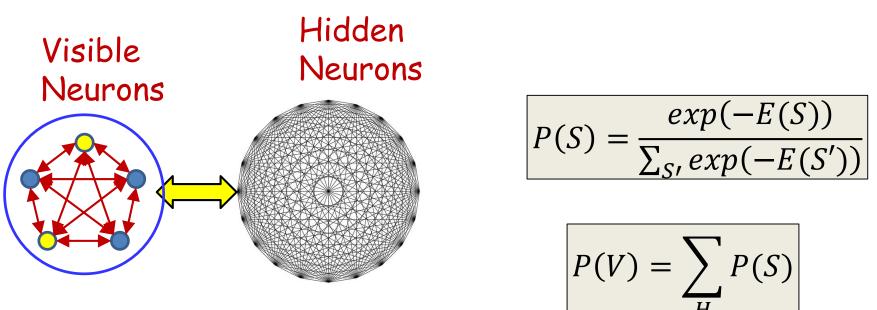


- Now, with hidden neurons the complete state pattern for even the *training* patterns is unknown
 - Since they are only defined over visible neurons

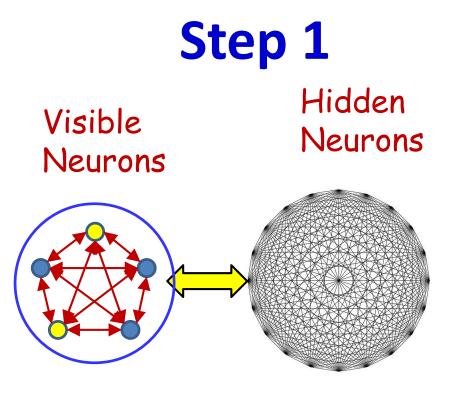


- We will now only maximize *marginal* probabilities over visible bits
- S = (V, H)
 - -V = visible bits
 - -H = hidden bits

More simulations

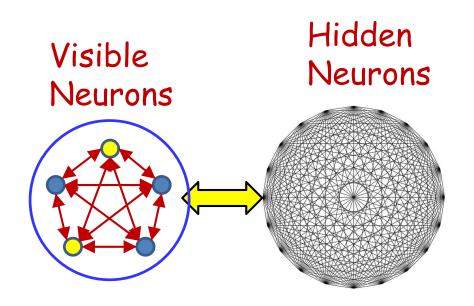


- Maximizing the marginal probability of V requires summing over all values of H
 - An exponential state space
 - So we will use simulations again



- For each training pattern V_i
 - Fix the visible units to V_i
 - Let the hidden neurons evolve from a random initial point to generate H_i
 - Generate $S_i = [V_i, H_i]$
- Repeat K times to generate synthetic training $\mathbf{S} = \{S_{1,1}, S_{1,2}, \dots, S_{1K}, S_{2,1}, \dots, S_{N,K}\}$

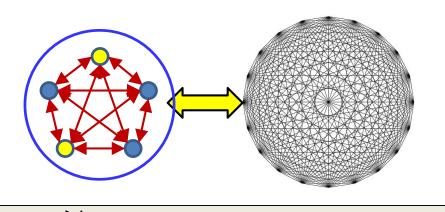
Step 2



 Now unclamp the visible units and let the entire network evolve several times to generate

$$\mathbf{S}_{simul} = \{S_{simul,1}, S_{simul,1=2}, \dots, S_{simul,M}\}$$

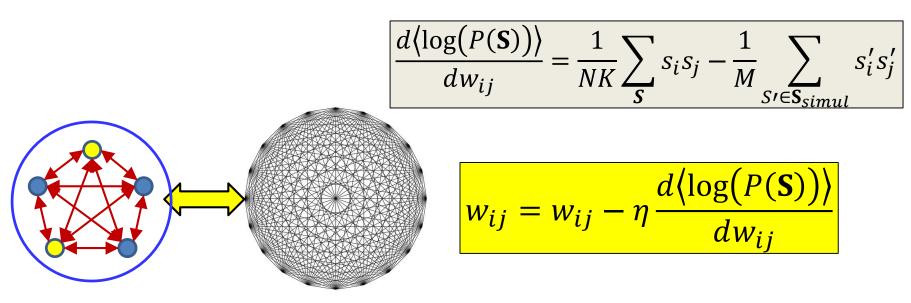
Gradients



$$\frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{\mathbf{S}} s_i s_j - \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$

 Gradients are computed as before, except that the first term is now computed over the *expanded* training data

Overall Training



- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

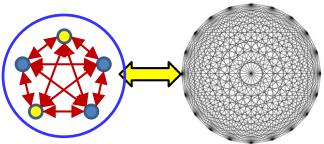
Boltzmann machines

- Stochastic extension of Hopfield nets
- Enables storage of many more patterns than Hopfield nets
- But also enables computation of probabilities of patterns, and completion of pattern

Boltzmann machines: Overall

$$z_i = \sum_j w_{ji} s_i + b_i$$

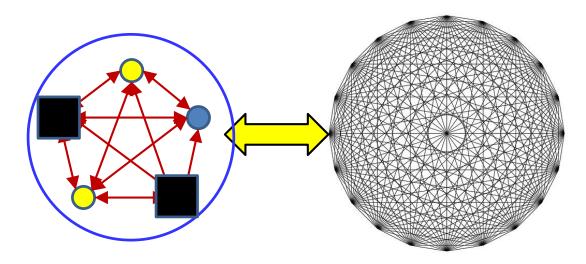
$$P(s_i = 1) = \frac{1}{1 + e^{-z_i}}$$



$$\frac{\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}} = \frac{1}{NK} \sum_{\mathbf{S}} s_i s_j - \frac{1}{M} \sum_{S' \in \mathbf{S}_{simul}} s'_i s'_j$$
$$w_{ij} = w_{ij} - \eta \frac{d\langle \log(P(\mathbf{S})) \rangle}{dw_{ij}}$$

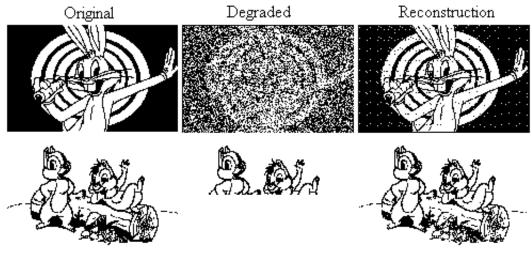
- **Training:** Given a set of training patterns
 - Which could be repeated to represent relative probabilities
- Initialize weights
- Run simulations to get clamped and unclamped training samples
- Compute gradient and update weights
- Iterate

Boltzmann machines: Overall



- Running: Pattern completion
 - "Anchor" the known visible units
 - Let the network evolve
 - Sample the unknown visible units
 - Choose the most probable value

Applications

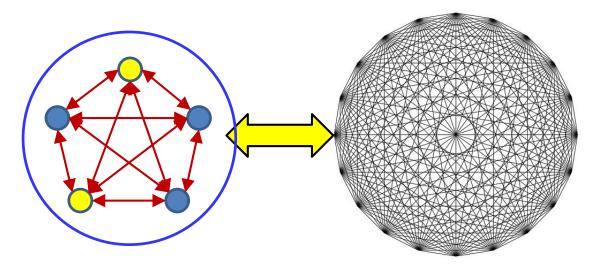


Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

- Filling out patterns
- Denoising patterns
- Computing conditional probabilities of patterns
- Classification!!

- How?

Boltzmann machines for classification

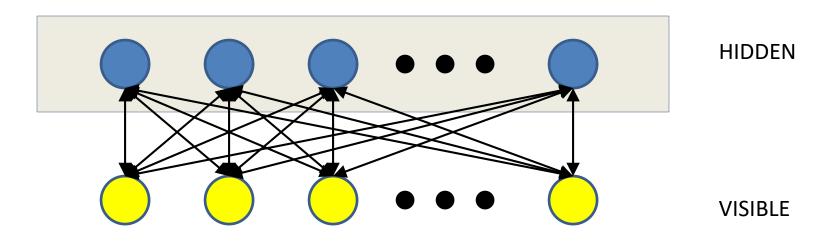


- Training patterns:
 - [f1, f2, f3, , class]
 - Features can have binarized or continuous valued representations
 - Classes have "one hot" representation
- Classification:
 - Given features, anchor features, estimate a posteriori probability distribution over classes
 - Or choose most likely class

Boltzmann machines: Issues

- Training takes for ever
- Doesn't really work for large problems
 - A small number of training instances over a small number of bits

Solution: *Restricted* Boltzmann Machines



- Partition visible and hidden units
 - Visible units ONLY talk to hidden units
 - Hidden units ONLY talk to visible units
- Restricted Boltzmann machine..

Topics missed..

- The Boltzmann machine as a probability distribution
- RBMs
- Running RBMs
- Inference over RBMs
- RBMs as feature extractors
 Pre training
- RBMs as generative models
- DBMs