

Neural Networks: What can a network represent

Deep Learning, Fall 2017

Projects

- Everyone must do a project
 - Teams of two
- Projects must
 - Use neural networks
 - Address a well-defined problem
 - Outcomes must be objectively or subjectively evaluateable
- Quality:
 - May simply revisit already published literature
 - E.g. obtain near-state-of-art on imagenet, or speech recognition
 - Existing solutions, new problems
 - MT for a new language
 - Propose new designs or learning methods
 - E.g. use LSTMs for image recognition
 - Be entirely novel
- Objective: Demonstrate ability to implement a complex solution using neural networks

Projects

- Schedule:
 - Announce teams to TAs/myself by 15 Sep
 - Send project proposals by 21 Sep
 - Finalize project by 28 Sep

 Poster presentation: Between Dec 7 and Dec 10th

Recap: Neural networks have taken over Al

Tasks that are made possible by NNs, aka deep learning

Recap: NNets and the brain

 In their basic form, NNets mimic the networked structure in the brain

Recap: The brain

The Brain is composed of networks of neurons

Recap: Nnets and the brain

 Neural nets are composed of networks of computational models of neurons called perceptrons

Recap: the perceptron

- A threshold unit
 - "Fires" if the weighted sum of inputs exceeds a threshold

A better figure

$$z = \sum_{i} w_{i} x_{i} - T$$

$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{else} \end{cases}$$

- A threshold unit
 - "Fires" if the weighted sum of inputs and the "bias" T is positive

The "soft" perceptron

$$z = \sum_{i} w_{i} x_{i} - T$$

$$y = \frac{1}{1 + exp(-z)}$$

- A "squashing" function instead of a threshold at the output
 - The sigmoid "activation" replaces the threshold
 - Activation: The function that acts on the weighted combination of inputs (and threshold)

Other "activations"

- Does not always have to be a squashing function
 - We will hear more about activations later
- We will continue to assume a "threshold" activation in this lecture

Recap: the multi-layer perceptron

- A network of perceptrons
 - Generally "layered"

Defining "depth"

What is a "deep" network

Deep Structures

 In any directed network of computational elements with input source nodes and output sink nodes, "depth" is the length of the longest path from a source to a sink

• Left: Depth = 2. Right: Depth = 3

Deep Structures

• Layered deep structure

• "Deep" → Depth > 2

The multi-layer perceptron

- Inputs are real or Boolean stimuli
- Outputs are real or Boolean values
 - Can have multiple outputs for a single input
- What can this network compute?
 - What kinds of input/output relationships can it model?

MLPs approximate functions

- MLPs can compose Boolean functions
- MLPs can compose real-valued functions
- What are the limitations?

Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

The MLP as a Boolean function

How well do MLPs model Boolean functions?

The perceptron as a Boolean gate

 A perceptron can model any simple binary Boolean gate

Perceptron as a Boolean gate

- The universal AND gate
 - AND any number of inputs
 - Any subset of who may be negated

Perceptron as a Boolean gate

- The universal OR gate
 - OR any number of inputs
 - Any subset of who may be negated

Perceptron as a Boolean Gate

- Universal OR:
 - Fire if any K-subset of inputs is "ON"

The perceptron is not enough

Cannot compute an XOR

Multi-layer perceptron

MLPs can compute the XOR

Multi-layer perceptron

 $((A\&\bar{X}\&Z)|(A\&\bar{Y}))\&((X\&Y)|\overline{(X\&Z)})$

- MLPs can compute more complex Boolean functions
- MLPs can compute any Boolean function
 - Since they can emulate individual gates
- MLPs are universal Boolean functions

MLP as Boolean Functions

 $((A\&\bar{X}\&Z)|(A\&\bar{Y}))\&((X\&Y)|\overline{(X\&Z)})$

- MLPs are universal Boolean functions
 - Any function over any number of inputs and any number of outputs
- But how many "layers" will they need?

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5$$

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \overline{X_1} \overline{X_2} X_3 X_4 \overline{X_3} + \overline{X_1} X_2 \overline{X_3} X_4 X_5 + \overline{X_1} X_2 X_3 \overline{X_4} \overline{X_5} + X_1 \overline{X_2} \overline{X_3} \overline{X_4} \overline{X_5}$$

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5$$

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 X_3 X_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 \bar{X}_5$$

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_{1}\bar{X}_{2}X_{3}X_{4}\bar{X}_{5} + \bar{X}_{1}X_{2}\bar{X}_{3}X_{4}X_{5} + \bar{X}_{1}X_{2}X_{3}\bar{X}_{4}\bar{X}_{5} + X_{1}\bar{X}_{2}\bar{X}_{3}\bar{X}_{4}X_{5} + X_{1}\bar{X}_{2}\bar{X}_{3}\bar{X}_{4}X_{5} + X_{1}\bar{X}_{2}\bar{X}_{3}\bar{X}_{4}X_{5}$$

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5$$

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 \bar{X}_5$$

How many layers for a Boolean MLP?

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Y
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5$$

Expressed in disjunctive normal form

How many layers for a Boolean MLP?

Truth Table

X ₁	X ₂	X ₃	X ₄	X ₅	Υ
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1

Truth table shows all input combinations for which output is 1

$$Y = \bar{X}_1 \bar{X}_2 X_3 X_4 \bar{X}_5 + \bar{X}_1 X_2 \bar{X}_3 X_4 X_5 + \bar{X}_1 X_2 X_3 \bar{X}_4 \bar{X}_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5 + X_1 \bar{X}_2 \bar{X}_3 \bar{X}_4 X_5$$

- Any truth table can be expressed in this manner!
- A one-hidden-layer MLP is a Universal Boolean Function

But what is the largest number of perceptrons required in the single hidden layer for an N-input-variable function?

This is a "Karnaugh Map"

It represents a truth table as a grid Filled boxes represent input combinations for which output is 1; blank boxes have output 0

Adjacent boxes can be "grouped" to reduce the complexity of the DNF formula for the table

- DNF form:
 - Find groups
 - Express as reduced DNF

Basic DNF formula will require 7 terms

$$O = \bar{Y}\bar{Z} + \bar{W}X\bar{Y} + \bar{X}Y\bar{Z}$$

- Reduced DNF form:
 - Find groups
 - Express as reduced DNF

- - Find groups
 - Express as reduced DNF

Largest irreducible DNF?

 What arrangement of ones and zeros simply cannot be reduced further?

Largest irreducible DNF?

 What arrangement of ones and zeros simply cannot be reduced further?

Largest irreducible DNF?

How many neurons in a DNF (one-hidden-layer) MLP for this Boolean function?

 What arrangement of ones and zeros simply cannot be reduced further?

 How many neurons in a DNF (one-hiddenlayer) MLP for this Boolean function of 6 variables?

 How many neurons in a DNF (one-hiddenlayer) MLP for this Boolean function

How many units if we use multiple layers?

 How many neurons in a DNF (one-hiddenlayer) MLP for this Boolean function

$$O = W \oplus X \oplus Y \oplus Z$$

$$O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z$$

Multi-layer perceptron XOR

An XOR takes three perceptrons

- An XOR needs 3 perceptrons
- This network will require 3x3 = 9 perceptrons

$$O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z$$

15 perceptrons

- An XOR needs 3 perceptrons
- This network will require 3x5 = 15 perceptrons

$$O = U \oplus V \oplus W \oplus X \oplus Y \oplus Z$$

More generally, the XOR of N variables will require 3(N-1) perceptrons!!

- An XOR needs 3 perceptrons
- This network will require 3x5 = 15 perceptrons

Will require 3(N-1) perceptrons in a deep network

Linear in N!!!

Can be arranged in only $2\log_2(N)$ layers

A better representation

$$O = X_1 \oplus X_2 \oplus \cdots \oplus X_N$$

- Only 2 log₂ N layers
 - By pairing terms
 - 2 layers per XOR

$$O = (((((X_1 \oplus X_2) \oplus (X_1 \oplus X_2)) \oplus ((X_5 \oplus X_6) \oplus (X_7 \oplus X_8))) \oplus (((...$$

The challenge of depth

- Using only K hidden layers will require O(2^(N-K/2)) neurons in the Kth layer
 - Because the output can be shown to be the XOR of all the outputs of the K-1th hidden layer
 - I.e. reducing the number of layers below the minimum will result in an exponentially sized network to express the function fully
 - A network with fewer than the required number of neurons cannot model the function

Recap: The need for depth

- Deep Boolean MLPs that scale linearly with the number of inputs ...
- ... can become exponentially large if recast using only one layer

• It gets worse..

The need for depth

- The wide function can happen at any layer
- Having a few extra layers can greatly reduce network size

Network size: summary

- An MLP is a universal Boolean function
- But can represent a given function only if
 - It is sufficiently wide
 - It is sufficiently deep
 - Depth can be traded off for (sometimes) exponential growth of the width of the network
- Optimal width and depth depend on the number of variables and the complexity of the Boolean function
 - Complexity: minimal number of terms in DNF formula to represent it

Story so far

- Multi-layer perceptrons are Universal Boolean Machines
- Even a network with a single hidden layer is a universal Boolean machine
 - But a single-layer network may require an exponentially large number of perceptrons
- Deeper networks may require far fewer neurons than shallower networks to express the same function
 - Could be exponentially smaller

Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

The MLP as a classifier

- MLP as a function over real inputs
- MLP as a function that finds a complex "decision boundary" over a space of reals

A Perceptron on Reals

- A perceptron operates on real-valued vectors
 - This is a linear classifier

Boolean functions with a real perceptron

- Boolean perceptrons are also linear classifiers
 - Purple regions are 1

Composing complicated "decision" boundaries

 Build a network of units with a single output that fires if the input is in the coloured area

More complex decision boundaries

- Network to fire if the input is in the yellow area
 - "OR" two polygons
 - A third layer is required

Complex decision boundaries

Can compose arbitrarily complex decision boundaries

Complex decision boundaries

Can compose arbitrarily complex decision boundaries

Complex decision boundaries

- Can compose *arbitrarily* complex decision boundaries
 - With only one hidden layer!
 - How?

Exercise: compose this with one hidden layer

 How would you compose the decision boundary to the left with only one hidden layer?

Composing a Square decision boundary

The polygon net

Composing a pentagon

• The polygon net

Composing a hexagon

• The polygon net

How about a heptagon

- What are the sums in the different regions?
 - A pattern emerges as we consider N > 6..

Composing a polygon

The polygon net

 Increasing the number of sides reduces the area outside the polygon that have N/2 < Sum < N

Composing a circle

- The circle net
 - Very large number of neurons
 - Sum is N inside the circle, N/2 outside everywhere
 - Circle can be of arbitrary diameter, at any location

Composing a circle

- The circle net
 - Very large number of neurons
 - Sum is N/2 inside the circle, 0 outside everywhere
 - Circle can be of arbitrary diameter, at any location.

The "sum" of two circles sub nets is exactly N/2 inside either circle, and 0 outside

Composing an arbitrary figure

- Just fit in an arbitrary number of circles
 - More accurate approximation with greater number of smaller circles
 - Can achieve arbitrary precision

MLP: Universal classifier

- MLPs can capture any classification boundary
- A one-layer MLP can model any classification boundary
- MLPs are universal classifiers

Depth and the universal classifier

Deeper networks can require far fewer neurons

Special case: Sum-product nets

- "Shallow vs deep sum-product networks," Oliver
 Dellaleau and Yoshua Bengio
 - For networks where layers alternately perform either sums or products, a deep network may require an exponentially fewer number of layers than a shallow one

Depth in sum-product networks

Theorem 5

A certain class of functions \mathcal{F} of n inputs can be represented using a deep network with $\mathcal{O}(n)$ units, whereas it would require $\mathcal{O}(2^{\sqrt{n}})$ units for a shallow network.

Theorem 6

For a certain class of functions G of n inputs, the deep sum-product network with depth k can be represented with O(nk) units, whereas it would require $O((n-1)^k)$ units for a shallow network.

Optimal depth in generic nets

- We look at a different pattern:
 - "worst case" decision boundaries

- For threshold-activation networks
 - Generalizes to other nets

 A one-hidden-layer neural network will required infinite hidden neurons

Two layer network: 56 hidden neurons

- Two layer network: 56 hidden neurons
 - 16 neurons in hidden layer 1

- Two-layer network: 56 hidden neurons
 - 16 in hidden layer 1
 - 40 in hidden layer 2
 - 57 total neurons, including output neuron

• But this is just $Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{16}$

- But this is just $Y_1 \oplus Y_2 \oplus \cdots \oplus Y_{16}$
 - The XOR net will require 16 + 15x3 = 61 neurons
 - Greater than the 2-layer network with only 52 neurons

 A one-hidden-layer neural network will required infinite hidden neurons

Actual linear units

64 basic linear feature detectors

- Two hidden layers: 608 hidden neurons
 - 64 in layer 1
 - 544 in layer 2
- 609 total neurons (including output neuron)

- XOR network (12 hidden layers): 253 neurons
- The difference in size between the deeper optimal (XOR) net and shallower nets increases with increasing pattern complexity

Network size?

- In this problem the 2-layer net was quadratic in the number of lines
 - $-\lfloor (N+2)^2/8 \rfloor$ neurons in 2nd hidden layer
 - Not exponential
 - Even though the pattern is an XOR
 - Why?

- Only two fully independent features
- The pattern is exponential in the dimension of the input (two)!

- Increasing input dimensions can increase the worst-case size of the shallower network exponentially, but not the XOR net
 - The size of the XOR net depends only on the number of first-level linear detectors (N)

Depth: Summary

- The number of neurons required in a shallow network is
 - Polynomial in the number of basic patterns
 - Exponential in the dimensionality input
 - (this is the worst case)
 - Alternately, exponential in the number of statistically independent features

Story so far

- Multi-layer perceptrons are Universal Boolean Machines
 - Even a network with a single hidden layer is a universal Boolean machine
- Multi-layer perceptrons are Universal Classification Functions
 - Even a network with a single hidden layer is a universal classifier
- But a single-layer network may require an exponentially large number of perceptrons than a deep one
- Deeper networks may require exponentially fewer neurons than shallower networks to express the same function
 - Could be exponentially smaller
 - Deeper networks are more expressive

Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

MLP as a continuous-valued regression

- A simple 3-unit MLP with a "summing" output unit can generate a "square pulse" over an input
 - Output is 1 only if the input lies between T₁ and T₂
 - T₁ and T₂ can be arbitrarily specified

MLP as a continuous-valued regression

- A simple 3-unit MLP can generate a "square pulse" over an input
- An MLP with many units can model an arbitrary function over an input
 - To arbitrary precision
 - Simply make the individual pulses narrower
- A one-layer MLP can model an arbitrary function of a single input

For higher dimensions

- An MLP can compose a cylinder
 - -N/2 in the circle, 0 outside

MLP as a continuous-valued function

- MLPs can actually compose arbitrary functions in any number of dimensions!
 - Even with only one layer
 - As sums of scaled and shifted cylinders
 - To arbitrary precision
 - By making the cylinders thinner
 - The MLP is a universal approximator!

Caution: MLPs with additive output units are universal approximators

- MLPs can actually compose arbitrary functions
- But explanation so far only holds if the output unit only performs summation
 - i.e. does not have an additional "activation"

"Proper" networks: Outputs with activations

- Output neuron may have actual "activation"
 - Threshold, sigmoid, tanh, softplus, rectifier, etc.
- What is the property of such networks?

The network as a function

$$f: \{0,1\}^N \to \{0,1\}$$
 Boolean

$$f: \mathbb{R}^N \to \{0,1\}$$
 Threshold

$$f: \mathbb{R}^N \to (0,1)$$
 Sigmoid

$$f: \mathbb{R}^N \to (-1,1)$$
 $Tanh$

$$f: \mathbb{R}^N \to (0, \infty)$$
 Softrectifier, Rectifier

- Output unit with activation function
 - Threshold or Sigmoid, or any other
- The network is actually a map from the set of all possible input values to all possible output values
 - All values the activation function of the output neuron

The network as a function

$$f: \{0,1\}^N \to \{0,1\}$$
 Boolean

$$f: \mathbb{R}^N \to \{0,1\}$$
 Threshold

$$f: \mathbb{R}^N \to (0,1)$$
 Sigmoid

$$f: \mathbb{R}^N \to (-1,1)$$
 Tanh

$$f: \mathbb{R}^N \to (0, \infty)$$
 Softmax, Rectifier

The MLP is a *Universal Approximator* for the entire *class* of functions (maps) it represents!

Output aint with activation junction

- Threshold or Sigmoid, or any other
- The network is actually a map from the set of all possible input values to all possible output values
 - All values the activation function of the output neuron

Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

The issue of depth

- Previous discussion showed that a single-layer MLP is a universal function approximator
 - Can approximate any function to arbitrary precision
 - But may require infinite neurons in the layer
- More generally, deeper networks will require far fewer neurons for the same approximation error
 - The network is a generic map
 - The same principles that apply for Boolean networks apply here
 - Can be exponentially fewer than the 1-layer network

Sufficiency of architecture

A network with 16 or more neurons in the first layer is capable of representing the figure to the right perfectly

A network with less than 16 neurons in the first layer cannot represent this pattern exactly

With caveats

A 2-layer network with 16 neurons in the first layer cannot represent the pattern with less than 41 neurons in the second layer

- A neural network can represent any function provided it has sufficient capacity
 - I.e. sufficiently broad and deep to represent the function
- Not all architectures can represent any function

Sufficiency of architecture

- The capacity of a network has various definitions
 - Information or Storage capacity: how many patterns can it remember
 - VC dimension
 - bounded by the square of the number of weights in the network
 - From our perspective: largest number of disconnected convex regions it can represent
- A network with insufficient capacity cannot exactly model a function that requires
 a greater minimal number of convex hulls than the capacity of the network
 - But can approximate it with error

The "capacity" of a network

- VC dimension
- A separate lecture
 - Koiran and Sontag (1998): For "linear" or threshold units, VC dimension is proportional to the number of weights
 - For units with piecewise linear activation it is proportional to the square of the number of weights
 - Harvey, Liaw, Mehrabian "Nearly-tight VC-dimension bounds for piecewise linear neural networks" (2017):
 - For any W, L s.t. $W > CL > C^2$, there exisits a RELU network with $\leq L$ layers, $\leq W$ weights with VC dimension $\geq \frac{WL}{C} \log_2(\frac{W}{L})$
 - Friedland, Krell, "A Capacity Scaling Law for Artificial Neural Networks" (2017):
 - VC dimension of a linear/threshold net is $\mathcal{O}(MK)$, M is the overall number of hidden neurons, K is the weights per neuron

Today

- Multi-layer Perceptrons as universal Boolean functions
 - The need for depth
- MLPs as universal classifiers
 - The need for depth
- MLPs as universal approximators
- A discussion of optimal depth and width
- Brief segue: RBF networks

Perceptrons so far

 The output of the neuron is a function of a linear combination of the inputs and a bias

An alternate type of neural unit: Radial Basis Functions

- The output is a function of the distance of the input from a "center"
 - The "center" w is the parameter specifying the unit
 - The most common activation is the exponent
 - β is a "bandwidth" parameter
 - But other similar activations may also be used
 - Key aspect is radial symmetry, instead of linear symmetry

An alternate type of neural unit: Radial Basis Functions

- Radial basis functions can compose cylinder-like outputs with just a single unit with appropriate choice of bandwidth (or activation function)
 - As opposed to $N \rightarrow \infty$ units for the linear perceptron

RBF networks as universal approximators

- RBF networks are more effective approximators of continuous-valued functions
 - A one-hidden-layer net only requires one unit per "cylinder"

RBF networks as universal approximators

- RBF networks are more effective approximators of continuous-valued functions
 - A one-hidden-layer net only requires one unit per "cylinder"

RBF networks

 More effective than conventional linear perceptron networks in some problems

We will revisit this topic, time permitting

Lessons today

- MLPs are universal Boolean function
- MLPs are universal classifiers
- MLPs are universal function approximators
- A single-layer MLP can approximate anything to arbitrary precision
 - But could be exponentially or even infinitely wide in its inputs size
- Deeper MLPs can achieve the same precision with far fewer neurons
 - Deeper networks are more expressive
- RBFs are good, now lets get back to linear perceptrons... ©

Next up

- We know MLPs can emulate any function
- But how do we make them emulate a specific desired function
 - E.g. a function that takes an image as input and outputs the labels of all objects in it
 - E.g. a function that takes speech input and outputs the labels of all phonemes in it
 - Etc...
- Training an MLP