Neural Networks
Learning the network: Part 1

11-785, Fall 2017
Lecture 3

Desighing a net..

Binary addition:
— Input: Two binary inputs
— Output: The binary (bit-sequence) sum

“Input units”?
Output units?
Architecture?
Output activation?

Designing a net..

Clustering:

— Input: Real-valued vector
— Output: Cluster ID

“Input units”?
Output units?
Architecture?
Output activation?

Topics for the day

The problem of learning
The perceptron rule for perceptrons
— And its inapplicability to multi-layer perceptrons

Greedy solutions for classification networks:
ADALINE and MADALINE

Learning through Empirical Risk Minimization

Intro to function optimization and gradient
descent

Input layer : . g Hidden layer

* Neural networks are universal function approximators
— Can model any Boolean function
— Can model any classification boundary
— Can model any continuous valued function

* Provided the network satisfies minimal architecture constraints

— Networks with fewer than required parameters can be very poor
approximators

These boxes are functions

Voice

. Text caption
signal

Transcription Image

Game
State

Next move

* Take an input
* Produce an output
 Can be modeled by a neural network!

Questions

Something
weird

Something
odd

* Preliminaries:
— How do we represent the input?

— How do we represent the output?

* How do we compose the network that performs
the requisite function?

Questions

Something
weird

Something
odd

* Preliminaries:

— How do we re=q the input?
A\
— How do(p*tepresent the output?

 How do we compose the network that performs
the requisite function? <

The original perceptron

Inputs Weights

Threshold T

* Simple threshold unit

— Unit comprises a set of weights and a threshold

Preliminaries: The units in the

network

X1 W4

Z = Z W; X +b
X5 l_
X3

y
XN A & A4 B W =2 A
Activation functions o(z)

Perceptron

— General setting, inputs are real valued
— Activation functions are not necessarily threshold functions
— A bias b representing a threshold to trigger the perceptron

10

Preliminaries: Redrawing the neuron

Activation functions o (z)

 The bias can also be viewed as the weight of another input
component that is always set to 1

— If the bias is not explicitly mentioned, we will implicitly be assuming
that every perceptron has an additional input that is always fixed at 1

11

First: the structure of the network

£y
——— = — —— o
— PN =
= e, output layer
e Sy, o
A
x
e ; ?,
T e T
p—

We will assume a feed-forward network

— No loops: Neuron outputs do not go feed back to their inputs directly or
indirectly

— Loopy networks are a future topic
* Part of the design of a network: The architecture
— How many layers/neurons, which neuron connects to which and how, etc.

* For now, assume the architecture of the network is capable of

representing the needed function
12

What we learn: The parameters of the
network

The network is a function f()
with parameters W which must
be set to the appropriate values
to get the desired behavior from

the net

Y =fX;W)

 @Given: the architecture of the network

* The parameters of the network: The weights and biases
— The weights associated with the blue arrows in the picture

* learning the network : Determining the values of these parameters

such that the network computes the desired function
13

* Moving on..

The MLP can represent anything

 The MLP can be constructed to represent anything
* But how do we construct it?

15

Option 1: Construct by hand

0,1

D
N4

0,-1

e Given a function, handcraft a network to satisfy it
e E.g.: Build an MLP to classify this decision boundary
* Not possible for all but the simplest problems..

Option 2: Automatic estimation

of an MLP
Y = F(G W) %\

* More generally, given the function g(X) to
model, we can derive the parameters of the
network to model it, through computation

How to learn a network?

* When f(X; W) has the capacity to exactly represent g(X)

W = argminj div(f(X; W),g(X))dX
w X

« div() is a divergence function that goes to zero when f(X; W) = g(X)

18

Problem g(X) is unknown

%

A

* Function g(X) must be fully specified

— Known everywhere, i.e. for every input X

* |n practice we will not have such specification

Sampling the function

|
=5

-

\
#

* Sample g(X)
— Basically, get input-output pairs for a number of samples of input X;
* Many samples (X;,d;), where d; = g(X;) + noise
— Good sampling: the samples of X will be drawn from P(X)
* Very easy to do in most problems: just gather training data
— E.g. set of images and their class labels
— E.g. speech recordings and their transcription -

Drawing samples

I\
A»j\'

e We must learn the entire function from these
few examples

— The “training” samples

21

Learning the function

e Estimate the network parameters to “fit” the training
points exactly

— Assuming network architecture is sufficient for such a fit
— Assuming unique output d at any X

* And hopefully the function is also correct where we don’t have

training samples .

Lets begin with a simple task

* Learning a classifier

— Simpler than regressions

* This was among the earliest problems
addressed using MLPs

* Specifically, consider binary classification

— Generalizes to multi-class

History: The original MLP

* The original MLP as proposed by Minsky: a
network of threshold units

— But how do you train it?

24

MLSE

e Learn this function

— A step function across a hyperplane

25

MLSE

The simplest MLP: a single perceptron

w

X: W, . ZZZw[-xi+b
»
’ X
»
X o * o
K
* g ¥x
» »
»

e Learn this function
— A step function across a hyperplane

— Given only samples form it

26

Learning the perceptron

»
»
»
»
X2 » »
»* .
» ’, » X,
s ¥
. »

* Given a number of input output pairs, learn the
weights and bias

— vy =max(0,); wix; + b)

— Learn W = [w;..wy] and b, given several (X, y) pairs .

Restating the perceptron

Weights
X4 Wi

* Restating the perceptron equation by adding another dimension to X

N+1

f
y=1if Zwixizo
=1

. O otherwise

where Xy;q1 =1

28

The Perceptron Problem

* Find the hyperplane Il-V;f w;X; = 0 that
perfectly separates the two groups of points

29

Perceptron Learning Algorithm

Given N training instances (X{,Y;), (X5, Y,), ..., (Xy, Yi)
— Y, =+1or-1

Initialize W
Cycle through the training instances:

While more classification errors
— Fori = 1..N, 4,
0(X;) = sign(WTX;)
« IfO(X;)) Y,
W=W +YX;

30

Perceptron Algorithm: Summary

* Cycle through the training instances
* Only update W on misclassified instances

e |f instance misclassified:

— If instance is positive class
W=W + X;
— If instance is negative class
W=W —X;

31

A Simple Method: The Perceptron
Algorithm

+1 (green)

-1(Red) ®

* Initialize: Randomly initialize the hyperplane
— l.e. randomly initialize the normal vector W
— Classification rule sign(W'X)
— The random initial plane will make mistakes

32

Perceptron Algorithm

® P Initialization

+1 (green)

-1(Red) ®

33

Perceptron Algorithm

+1 (green)

-1(Red) ®

Misclassified positive instance

34

Perceptron Algorithm

+1 (green)

-1(Red)

35

Perceptron Algorithm

Updated weight vector

Misclassified positive instance, add it to W

36

Perceptron Algorithm

+1 (green) -1(Red)

1
Updated hyperplane

37

Perceptron Algorithm

Misclassified instance, negative class
o
®
o
o
o
® >

+1 (green) -1(Red)

38

Perceptron Algorithm

+1 (green) -1(Red)

Perceptron Algorithm

o ° e °
.
. & :
wod
e I S
|74 ®
: ®
+1 (green) { -1(Red)

Misclassified negative instance, subtract it from W

40

Perceptron Algorithm

Updated hyperplane

41

Perceptron Algorithm

Perfect classification, no more updates

42

Convergence of Perceptron Algorithm

* Guaranteed to converge if classes are linearly

separable

2
R . e
— After no more than (;) misclassifications

» Specifically when W is initialized to O
— R is length of longest training point
— vis the best case closest distance of a training

point from the classifier
 Same as the margin in an SVM

— Intuitively — takes many increments of size y to
undo an error resulting from a step of size R

43

Perceptron Algorithm

v is the best-case margin
R is the length of the longest vector

44

History: A more complex problem

X, *

':. e, s,
.."....o:....'..
* 2 et e ratan ® »

.

e Learn an MLP for this function

— 1in the yellow regions, 0 outside
e Using just the samples
* We know this can be perfectly represented using an MLP

45

More complex decision boundaries

* Even using the perfect architecture
 Can we use the perceptron algorithm?

46

The pattern to be learned at the
lower level

. " > Car T
e \ *
. oY PR
4#@» m
w. = ‘1‘
* .
' W\

* The lower-level neurons are linear classifiers

The pattern to be learned at the
lower level

 The lower-level neurons are linear classifiers
— They require linearly separated labels to be learned

48

The pattern to be learned at the
lower level

\ »
*T*F s e
o\ ¥ .
P PR LU

* The lower-level neurons are linear classifiers
— They require linearly separated labels to be learned
— The actually provided labels are not linearly separated

49

The pattern to be learned at the
lower level

\ %

* The lower-level neurons are linear classifiers
— They require linearly separated labels to be learned
— The actually provided labels are not linearly separated
— Challenge: Must also learn the labels for the lowest units! =

Individual neurons represent one of the lines
that compose the figure (linear classifiers)

Must know the output of every neuron
for every training instance, in order

to learn this neuron

The outputs should be such that the
neuron individually has a linearly
separable task

The linear separators must combine to
form the desired boundary

This must be done for every neuron

Getting any of them wrong will result in
incorrect output!

51

Learning a multilayer perceptron

Training data only specifies
input and output of network

Training this network using the perceptron rule is a combinatorial optimization
problems

We don’t know the outputs of the individual intermediate neurons in the network
for any training input

Must also determine the correct output for each neuron for every training
instance

NP! Exponential complexity
52

Greedy algorithms: Adaline and
Madaline

* The perceptron learning algorithm cannot
directly be used to learn an MLP

— Exponential complexity of assigning intermediate
labels

* Even worse when classes are not actually separable

 Can we use a greedy algorithm instead?
— Adaline / Madaline
— On slides, will skip in class (check the quiz)

A little bit of History: Widrow

Bernie Widrow
» Scientist, Professor, Entrepreneur

* Inventor of most useful things in
signal processing and machine
learning!

* First known attempt at an analytical solution to training
the perceptron and the MLP

* Now famous as the LMS algorithm
— Used everywhere
— Also known as the “delta rule”

History: ADALINE

Z=ZWL'XL'
t
10, z<0
Y= 1, z>0

* Adaptive linear element
(Hopf and Widrow, 1960)

* Actually just a regular perceptron

— Weighted sum on inputs and bias passed
through a thresholding function

 ADALINE differs in the learning rule

History: Learning in ADALINE

Z = ZWL'XL'
t

;= 0, z <0
out = 1, z>0

During learning, minimize the squared
error assuming z to be real output

The desired output is still binary!

1
Err(x) = > (d — 2)?

dErr(x)

dWl- = —(d — Z)Xl'

History: Learning in ADALINE

Z = ZWL'XL'
t

Err(x) = %(d — 7)?

dErr(x)
dWl'

= —(d — Z)Xl'

* |f we just have a single training input,
the gradient descent update rule is

w; =w; +n(d — 2)x;

The ADALINE learning rule

Online learning rule

After each input X, that has
target (binary) output d, compute
and update:

O=d—z

W; = W; ~+ 775Xi

This is the famous delta rule
— Also called the LMS update rule

The Delta Rule

* |n fact both the Perceptron
and ADALINE use variants
of the delta rule!

— Perceptron: Output used in
deltarule isy

— ADALINE: Output used to
estimate weights is z

6 =d-177?

W; = W; ~+ 7’]5Xi

Perceptron

Aside: Generalized delta rule

For any differentiable activation function d

the following update rule is used

0=d-—y
w; = w; + 161 (2)x;

This is the famous Widrow-Hoff update rule

— Lookahead: Note that this is exactly
backpropagation in multilayer nets if we let f (2)
represent the entire network between z and y

It is possibly the most-used update rule in
machine learning and signal processing

— Variants of it appear in almost every problem

Multilayer perceptron: MADALINE

X4 +

Multiple Adaline
— A multilayer perceptron with threshold activations
— The MADALINE

MADALINE Training

X4 +

X5 T

1

* Update only on error

—0#0
— On inputs for which output and target values differ

MADALINE Training

X D—() & _

; :
Xz% @/‘9 %@%
1 1 1

* While stopping criterion not met do:
— Classify an input

MADALINE Training

* While stopping criterion not met do:
— Classify an input
— If error, find the z that is closest to O

MADALINE Training

9 <«
X1
ol
X7
1 1

* While stopping criterion not met do:
— Classify an input
— If error, find the z that is closest to O
— Flip the output of corresponding unit and compute new output

MADALINE Training

1

* While stopping criterion not met do:
— Classify an input
— If error, find the z that is closest to O
— Flip the output of corresponding unit and compute new output

— If error reduces:
* Set the desired output of the unit to the flipped value
* Apply ADALINE rule to update weights of the unit

MADALINE

* Greedy algorithm, effective for small networks
* Not very useful for large nets

— Too expensive
— Too greedy

History..

* The realization that training an entire MLP was
a combinatorial optimization problem stalled

development of neural networks for well over
a decade!

Why this problem?

The perceptron is a flat function with zero derivative everywhere,
except at O where it is non-differentiable

— You can vary the weights a lot without changing the error

— There is no indication of which direction to change the weights to
reduce error

69

This only compounds on larger
problems

X,
»
......

» *s @
'.'.. . ae

* s s¥guanae

»

»

* |ndividual neurons’

weights can change significantly

without changing overall error

 The simple MLP is a flat, non-differentiable function

70

A second problem: What we actually

model
9 o’ 9 ® ¢
o
® o [] °
. >
®
O

Real-life data are rarely clean
— Not linearly separable

— Rosenblatt’s perceptron wouldn’t work in the first
place

71

Solution

Activation functions o (z)

* Lets make the neuron differentiable

— Small changes in weight can result in non-negligible changes in
output

— This enables us to estimate the parameters using gradient
descent techniques.. .

Differentiable Activations: An aside

* This particular one has a nice interpretation

73

Non-linearly separable data

 Two-dimensional example
— Blue dots (on the floor) on the “red” side
— Red dots (suspended at Y=1) on the “blue” side
— No line will cleanly separate the two colors

74

Non-linearly separable data: 1-D example

* One-dimensional example for visualization
— All (red) dots at Y=1 represent instances of class Y=1
— All (blue) dots at Y=0 are from class Y=0

— The data are not linearly separable
* In this 1-D example, a linear separator is a threshold

* No threshold will cleanly separate red and blue dots .

The probability of y=1

A\
) eo 0po 0000 0 000 0 0 0

“\

\

|

\ \

‘x o f
_/

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of Y=1 at that point

The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

Y
A
. o0 O PO 0000 O 000 O O O
\
| |
| |
\\ //
AN

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

e | 0O O PO 0000 O 000 O O O
“ |

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

y

P
N\
/

* 0@ 0“.

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

y

A\

o®

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The probability of y=1

y

N\
/

/ \
[] o0 O PO 0000 © 000 0 O O

|
/

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

84

The probgbility of y=1

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

85

The probability of y=1

/"\
\

. L....

\

\ \ / /
N2

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

86

The probability of y=1

y
/// \\

o L... ...

|

/

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

87

The probability of y=1

y

e Consider this differently: at each point look at a small
window around that point

* Plot the average value within the window
— This is an approximation of the probability of 1 at that point

The logistic regression model

y=1

P(Y = 1]X)

y=0

X

* Class 1 becomes increasingly probable going left to right
— Very typical in many problems

89

Logistic regression

Decision: y > 0.5?

X4

: 1
When X is a 2-D variable P = = o (=3, wixy —)

* This the perceptron with a sigmoid activation
— It actually computes the probability that the input belongs to class 1

90

Perceptrons and probabilities

 We will return to the fact that perceptrons

with sigmoidal activations actually model class
probabilities later

e But for now moving on..

Perceptrons with differentiable
activation functions

dy dy dz /

= — =0 (Z)X;
dw; dz dw; () l
dy dy dz /
— =———=0 (Z2)W;
dx; dz dx; (Z)w;

* 0(2)is a differentiable function of z

do(2) is well-defined and finite for all z

* Using the chain rule, y is a differentiable function of both inputs x; and
weights w;

* This means that we can compute the change in the output for small
changes in either the input or the weights 92

Overall network is differentiable

y = output of overall network

Wl!fj = weight connecting the ith unit
of the kth layer to the jth unit of
the k+1-th layer

yl-k = output of the ith unit of the kth layer

o() is differentiable w.r.t both w and yl-k

* Every individual perceptron is differentiable w.r.t its inputs and its
weights (including “bias” weight)

* By the chain rule, the overall function is differentiable w.r.t every
parameter (weight or bias)

— Small changes in the parameters result in measurable changes in output
93

Overall function is differentiable

 The overall function is differentiable w.r.t every parameter

— Small changes in the parameters result in measurable changes
in the output

— We will derive the actual derivatives using the chain rule later

94

Overall setting for “Learning” the MLP

 Given a training set of input-output pairs (X;,d;), (X5, d,), ..., Xy, dy) ...
— d isthe desired output of the network in response to X

— X and d may both be vectors

* ..we must find the network parameters such that the network produces the
desired output for each training input

— Or a close approximation of it
— The architecture of the network must be specified by us

95

Recap: Learning the function

— |\

* When f(X; W) has the capacity to exactly represent g(X)

—

W = argminj div(f(X; W),g(X))dX
w X

« div() is a divergence function that goes to zero when f(X; W) = g(X)

96

Minimizing expected error

— o\

* More generally, assuming X is a random variable

—

W = argmin j div(f(X; W), g(X))P(X)dX
w X

= argmin E|div(f (X; W), g(X))]
w

97

Recap: Sampling the function

&

« Sample g(X)
— Basically, get input-output pairs for a number of samples of
input X;
* Many samples (X;,d;), where d; = g(X;) + noise
— Good sampling: the samples of X will be drawn from P(X)

e Estimate function from the samples

98

The Empirical risk

/

The expected error is the average error over the entire input space

Eldiv(f(X; W), g(X))] = j div(f(X; W), g(X))P(X)dX
X

The empirical estimate of the expected error is the average error over the samples

E[div(f G W), g(0)] ~ Zdw(f(X W), d;)

99

Empirical Risk Minimization

Y =fX;W)

* Given a training set of input-output pairs (X1,d;), X5, d,), ..., Xy, dy)
— Error on the ith instance: div(f(X;; W), d;)
— Empirical average error on all training data:

Err(W) = %z div(f (X;; W), d;)

* Estimate the parameters to minimize the empirical estimate of expected
error

—

W = argmin Err(W)
w

— l.e. minimize the empirical error over the drawn samples 100

ERM for neural networks

Actual output of network:
Y; = net(X; {wVi,j, k})
= net(X; WL, W2, ..., WX

Desired output of network: d;

Error on i-th training input: Div(Y;, d; WY, W2, ..., W)

Total training error:

N
1
Err (WL, W2, ... WK) = Nz Div(Y; d; WL, W2, ..., WK)
i=1
— What is the exact form of Div()? More on this later

* Optimize network parameters to minimize the
total error over all training inputs 101

Problem Statement

* Given a training set of input-output pairs
(Xl; dl)i (XZ; dZ)J L (XN' dN)

* Minimize the following function

Err(W) = %2 div(f(X;; W), d;)
w.rt W

* This is problem of function minimization

— An instance of optimization

* A CRASH COURSE ON FUNCTION
OPTIMIZATION

Caveat about following slides

The following slides speak of optimizing a
function w.r.t a variable “x”

This is only mathematical notation. In our actual
network optimization problem we would be
optimizing w.r.t. network weights “w”

To reiterate — “x” in the slides represents the
variable that we’re optimizing a function over
and not the input to a neural network

Do not get confused!

104

The problem of optimization

f(x)

global maximum

inflection point

local minimum

gldbal minimum

o /

* General problem of
optimization: find
the value of x where
f(x) is minimum

= =

105

Finding the minimum of a function

A

fx)

X

* Find the value x at which f'(x) =0
— Solve

af @) _
dx
* The solution is a “turning point”
— Derivatives go from positive to negative or vice versa at this point
e Butisita minimum?

106

Turning Points

* Bot
e Bot

N maxima and minima have zero derivative

N are turning points

107

Derivatives of a curve

* Bot
e Bot

N Maxima anc

N Maxima anc

minima are turning points

minima have zero derivative

108

Derivative of the derivative of the
curve

e Both maxima and minima are turning points
 Both maxima and minima have zero derivative

* The second derivative f”’(x) is —ve at maxima and
+ve at minimal

109

Soln: Finding the minimum or
. maximum of a function

>
X
Find the value x at which f'(x) =0: Solve
dfeo _
dx

The solution x,;5, is a turning point
Check the double derivative at x¢,;,, : compute

df’ soln
f”(xsoln) — ! (C)lcx in)

If " (X5011,) iS pOSitive Xg,1,, iS @ minimum, otherwise it is a maximum

110

What about functions of multiple

variables?
7,&&% };3; j___ﬁ
%, = ﬁ”ﬂ .. %\/

Jr it
i

gl N _ ?’ 1 y
£ 03
| ; \ #ﬂ: “".' e *'*“# ".__?-_____ z
Mg RN

* The optimum point is still “turning” point
— Shifting in any direction will increase the value
— For smooth functions, miniscule shifts will not result in any change at all
We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

111

A brief note on derivatives of
multivariate functions

112

The Gradient of a scalar function

The Gradient Vf (X) of a scalar function f(X) of a
multi-variate input X is a multiplicative factor that

gives us the change in f(X) for tiny variations in X

df (X) = VF(X)dX

113

Gradients of scalar functions with

multi-variate inputs
e Consider f(X) = f(xq, x5, ..., Xp)

of (X) 0f(X)

Vi) = 0x4 dx,
e Check:
df(gj%:) i (X)(?C?iX) 0f (X)
= ——dx; +———dx,; + -+ —dx,

x4 0x,

114

A well-known vector property

u'v = |ul|v|cos6

* The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned

—i.e.when8 =0

115

Properties of Gradient

. df(X) = VF(X)dX
— The inner product between Vf(X) and dX

e Fixing the length of dX

— E.g. [dX| =1
e df (X) is max if dX is aligned with Vf(X)
— 2VF(X),dX = 0

— The function f(X) increases most rapidly if the input
increment dX is perfectly aligned to Vf (X)

* |The gradient is the direction of fastest increase in f(X)

Some sloppy maths here, with apology - comparing row and column vectors 116

lent

Grad

Gradient

_ vector V' f(X)

117

Gradient

ks

.....

Gradient

_ vector Vf(X)
| |

Moving in this
direction increases
f(X) fastest

_af - L
|l
|
¥
Iy :
|
| !
o
: _H__q_|
= j‘ .ll-"l-
= I s
L — :
e e —
e e -
‘-\-‘I.:-\'\- e - - .I..
Iy ™ :H-'-\._?:T—\"—_ 2
- B g
- e T . o 15
- ——
12 i A 1a
s 5
iLs]
“
2

118

Gradient

1 .ﬁ F..__..J-' -

12 i T I

ks

Q4 _r._..-'-"'

|
l* —Vf(X)

Moving in this
direction decreases
f(X) fastest

g
= 1
1
Py
-
i
e
L]

) =
e e
gyl e —

- T _.‘-\._ —,
e e S =
ey .\‘I-\._ .H‘-I,-\.
- i . o
< _.'_r = ——
il o - - = _'_'___-___
i __ % e e
12t 10
= -
T 5
15 _
a
2

Gradient
vector Vf(X)

-'I:H-_ I I

: ' Moving in this
- direction increases
2 f(X) fastest

119

lent

Grad

Gradient here

Gradient here I+

isO

120

Properties of Gradient: 2

* The gradient vector Vf(X) is perpendicular to the level curve
121

The Hessian

* The Hessian of a function f (x4, X5, ..., Xy,) is
given by the second derivative

62_f o f o' f
ox; oxox, Ox0Ox,
of of o f
Ox,0x, Ox: Ox,0x,
V2 f(x,.nX,) =
of o f 82_f
ox ox, oxox, Ox

Returning to direct optimization...

Finding the minimum of a scalar
function of a multi-variate input

* The optimum point is a turning point — the
gradient will be 0

124

Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the gradient equation equals to
Zero

VI (X)=0

2. Compute the Hessian Matrix 74 f (X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) ->to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

Unconstrained Minimization of
function (Example)

e Minimize

J x5, x5) = () 42, (1= 2,) = (3,)" =0, +(x3) + x5

e Gradient

vf

2x, +1-x,

— X, +2x, — X,

— X, +2x;+1 |

126

Unconstrained Minimization of
function (Example)

e Set the gradient to null
2x+1-x, || o
Vi=0=>| —x,+2x,—-x; |=| 0
—x,+2x,+1 | | O

* Solving the 3 equations system with 3 unknowns

Unconstrained Minimization of

function (Example)

2

Compute the Hessian matrix y2¢-| _j

0

—1
2
—1

0
-1
2

Evaluate the eigenvalues of the Hessian matrix
A =3414, 1,=0.586, 1,=2

All the eigenvalues are positives => the Hessian
matrix is positive definite

The point x=

IS 2@ minimum

Closed Form Solutions are not always
1 available

f(X)

> X

» Often it is not possible to simply solve Vf(X) = 0

— The function to minimize/maximize may have an
intractable form

* In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained

Iterative solutions

f(X)

EE > X

Xo X% Xsf X3
X4

* |terative solutions
— Start from an initial guess X, for the optimal X
— Update the guess towards a (hopefully) “better” value of f(X)
— Stop when f(X) no longer decreases
* Problems:
— Which direction to step in
— How big must the steps be

130

The Approach of Gradient Descent

E
NEGATIVE SLOPE
. POSITIVE SLOPE

A IB DAL :
._—.' 4—

* |terative solution:
— Start at some point
— Find direction in which to shift this point to decrease error

* This can be found from the derivative of the function
— A positive derivative = moving left decreases error
— A negative derivative = moving right decreases error

— Shift point in this direction

The Approach of Gradient Descent

E
NEGATIVE SLOPE

POSITIVE SLOPE

GLOBAL (

WAL , .
]] Dec“as‘é\?] . Increase w
* |terative solution: Trivial algorithm
— Initialize x°

— While f'(x*) # 0

. If sign (f’(xk)) is positive:

k41 _ ok

- X — step

* Else
— xk+1 = x* + step

— What must step be to ensure we actually get to the optimum?

The Approach of Gradient Descent

NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

— Initialize x©

— While f'(x*) # 0

o x*k*t1 = xk — sign (f’(xk)) .step

— Identical to previous algorithm

The Approach of Gradient Descent

E
NEGATIVE SLOPE
: POSITIVE SLOPE

i

5 GLOBAL (

1 T :
Decrease w Increase w

* |terative solution: Trivial algorithm

— Initialize x
— Whilef'(x*) # 0
o yltl — 4k _ nkfl(xk)

—n® is the “step size”

Gradient descent/ascent (multivariate)

* The gradient descent/ascent method to find the
minimum or maximum of a function f iteratively

— To find a maximum move in the direction of the
gradient

xR+l — y ko nkvf(xk)T
— To find a minimum move exactly opposite the
direction of the gradient

xk+1 — xk . 77}!ch(xk)T

* Many solutions to choosing step size n*

1. Fixed step size

* Fixed step size

— Use fixed value for n*

fix) &

Small Steps Target
. i

EEEEEEEREE >
X

11-755/18-797 136

Influence of step size example
(constant step size) _ _

S (x;,x,) :(xl)z T XX, T 4(x2)2

2
LI S - - S -

5 -4 3 2 A >? 1 2 3 4 $1-755/18-797
1

2
I | i 1 I
(9] e~ w na — o == [R] w E=3 w
T T ——— T T T T —T
/ Vi \ \

xinitial _ 3

-5-4-3-2-1)911234@7

What is the optimal step size?

* Step size is critical for fast optimization
* Will revisit this topic later

* For now, simply assume a potentially-
iteration-dependent step size

Gradient descent convergence criteria

* The gradient descent algorithm converges
when one of the following criteria is satisfied

S =fON<g gy S

. lteration 3

* Or HVf(xk)H <&,

' lteration 4

Convergence

[T N | |
T EEEEE >

Final
11-75¢, Value 139

Overall Gradient Descent Algorithm

e |nitialize:
— 9
k=0

* While |f(x**1) — f(x*)| > ¢
Xt =k gk f (k)T

_k=k+1

11-755/18-797 140

Next up

e Gradient descent to train neural networks

 A.K.A. Back propagation

