
Neural Networks
Learning the network: Part 2

11-785, Fall 2017
Lecture 4

1

Quiz 2
• A multi-class classifier can use log(C) output neurons, each

predicting either 0 or 1 to encode C classes. For which of the
following reasons is this setup is not typical:
– It is possible for the classifier to produce a code that does not

correspond to any class in this scheme.
– It is an inefficient representation of the classes in terms of the number

of output neurons.
– It implicitly assumes that some classes are more similar to each other

than other classes.
– It is more computationally expensive to compute the gradient in this

scheme.

• In the empirical risk minimization framework, the function which
measures the error (divergence function) should always be non-
negative (T/F)?

2

Quiz 2

• If the perceptron rule is used to train a multi-
layer perceptron network, the training
computation scales _____ with the number of
data points.

• The perceptron learning rule will find the
separating hyperplane with the largest
margin(T/F)?

3

Quiz 2
• Which of the following is true of the MADALINE learning algorithm (select

all that apply):
– It computes the gradient of the network with respect to all of the weights in

the network.
– It greedily assigns the desired output label to a hidden node in the network

during training.
– It updates the weights for every training example.
– To update the weights for a neuron the weighted sum of the inputs, rather

than the output of the activation function, is compared to the desired label.

• For a single perceptron with a threshold activation function, the ADALINE
learning rule _____ (select all that apply)
– moves the weights in the direction of the negative gradient of the mean

squared error.
– is equivalent to the perceptron learning rule.
– is equivalent to the generalized delta rule.
– enables learning in a network with multiple layers.

4

Quiz 2
• Which of the following activation functions will have the largest

magnitude gradient as the input to the activation function increases
from 0 in the positive direction:
– Threshold / Sigmoid / Softplus

• If the empirical risk of a neural network is 0 then (select all that
apply):
– The weights of the network will not change for any of the learning

algorithms we have discussed.
– The network has learned the target function.
– The network will predict the correct class for *all* data points that it

has not seen during training.
– The network will predict the correct class for *all* data points that is

has seen during training.

5

Quiz 2
• Which of the following are advantages of using a sigmoid activation

function for all nodes in a neural network?
– The output of each node has a probabilistic interpretation.
– The gradient of the function computed by the network with respect to

the weights of a neuron is smaller when the input to the neuron is
near the mean input to the neuron.

– By scaling the weights, a learning algorithm can change the output of a
neuron to be more linear/less linear with respect to the input.

– The error signal from the output layer can be used to greedily adjust
weights throughout the network.

• If we use the generalized delta rule to update the weights of an
output neuron, then the sigmoid activation function is less sensitive
to outliers than the identity activation function (T/F)?

6

Design exercise

• Input: Binary coded number
• Output: One-hot vector

• Input units?
• Output units?
• Architecture?
• Activations?

7

Recap: The MLP can represent any
function

• The MLP can be constructed to represent anything
• But how do we construct it?

8

Recap: How to learn the function

• By minimizing expected error

9

Recap: Sampling the function

• is unknown, so sample it
– Basically, get input-output pairs for a number of samples of

input ௜

• Many samples ௜ ௜ , where ௜ ௜

– Good sampling: the samples of will be drawn from

• Estimate function from the samples
10

Xi

di

The Empirical risk

• The expected error is the average error over the entire input space

௑

• The empirical estimate of the expected error is the average error over the samples

௜ ௜

்

௜ୀଵ 11

Xi

di

Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance: ௜ ௜

– Empirical average error on all training data:

௜ ௜

௜

• Estimate the parameters to minimize the empirical estimate of expected
error

ௐ

– I.e. minimize the empirical error over the drawn samples 12

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

13

• A CRASH COURSE ON FUNCTION
OPTIMIZATION

14

Caveat about following slides

• The following slides speak of optimizing a
function w.r.t a variable “x”

• This is only mathematical notation. In our actual
network optimization problem we would be
optimizing w.r.t. network weights “w”

• To reiterate – “x” in the slides represents the
variable that we’re optimizing a function over
and not the input to a neural network

• Do not get confused!

15

The problem of optimization

• General problem of
optimization: find
the value of x where
f(x) is minimum

f(x)

x

global minimum

inflection point

local minimum

global maximum

16

Finding the minimum of a function

• Find the value at which = 0
– Solve

• The solution is a “turning point”
– Derivatives go from positive to negative or vice versa at this point

• But is it a minimum?
17

x

f(x)

Turning Points

18

0

+
+

+

0

+
+

+

+

+

+

0

- - -

- ----- - -

• Both maxima and minima have zero derivative

• Both are turning points

Derivatives of a curve

19

• Both maxima and minima are turning points

• Both maxima and minima have zero derivative

xf(x)

f ’(x)

Derivative of the derivative of the
curve

20

• Both maxima and minima are turning points
• Both maxima and minima have zero derivative

• The second derivative is –ve at maxima and
+ve at minima!

xf(x)

f ’(x)
f ’’(x)

Soln: Finding the minimum or
maximum of a function

• Find the value at which = 0: Solve

• The solution ௦௢௟௡ is a turning point
• Check the double derivative at ௦௢௟௡ : compute

ᇱᇱ
௦௢௟௡

௦௢௟௡

• If ᇱᇱ
௦௢௟௡ is positive ௦௢௟௡ is a minimum, otherwise it is a maximum

21

x

f(x)

What about functions of multiple
variables?

• The optimum point is still “turning” point
– Shifting in any direction will increase the value
– For smooth functions, miniscule shifts will not result in any change at all

• We must find a point where shifting in any direction by a microscopic
amount will not change the value of the function

22

A brief note on derivatives of
multivariate functions

23

The Gradient of a scalar function

• The Gradient of a scalar function of a
multi-variate input is a multiplicative factor that
gives us the change in for tiny variations in

24

Gradients of scalar functions with
multi-variate inputs

• Consider

• Check:

25

A well-known vector property

• The inner product between two vectors of
fixed lengths is maximum when the two
vectors are aligned
– i.e. when

26

Properties of Gradient
•

– The inner product between and

• Fixing the length of
– E.g.

• is max if is aligned with
–

– The function f(X) increases most rapidly if the input
increment is perfectly aligned to

• The gradient is the direction of fastest increase in f(X)

27Some sloppy maths here, with apology – comparing row and column vectors

Gradient

28

Gradient
vector

Gradient

29

Gradient
vector

Moving in this
direction increases

fastest

Gradient

30

Gradient
vector

Moving in this
direction increases

fastestMoving in this
direction decreases

fastest

Gradient

31

Gradient here
is 0

Gradient here
is 0

Properties of Gradient: 2

• The gradient vector is perpendicular to the level curve
32

The Hessian
• The Hessian of a function is

given by the second derivative

33

Ñ2 f (x1,..., xn) :=

¶2 f

¶x1
2

¶2 f

¶x1¶x2

. .
¶2 f

¶x1¶xn

¶2 f

¶x2¶x1

¶2 f

¶x2
2

. .
¶2 f

¶x2¶xn

.

.

¶2 f

¶xn¶x1

¶2 f

¶xn¶x2

. .
¶2 f

¶xn
2

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

Returning to direct optimization…

34

Finding the minimum of a scalar
function of a multi-variate input

• The optimum point is a turning point – the
gradient will be 0

35

Unconstrained Minimization of
function (Multivariate)

1. Solve for the where the gradient equation equals to
zero

2. Compute the Hessian Matrix at the candidate
solution and verify that
– Hessian is positive definite (eigenvalues positive) -> to

identify local minima
– Hessian is negative definite (eigenvalues negative) -> to

identify local maxima

36

0)(=Ñ Xf

Unconstrained Minimization of
function (Example)

• Minimize

• Gradient

37

f (x1, x2, x3) = (x1)2 + x1(1- x2)- (x2)2 - x2x3 + (x3)2 + x3

T

xx

xxx

xx

f

ú
ú
ú

û

ù

ê
ê
ê

ë

é

++-
-+-

-+
=Ñ

12

2

12

32

321

21

Unconstrained Minimization of
function (Example)

• Set the gradient to null

• Solving the 3 equations system with 3 unknowns

38

Ñf = 0Þ

2x1 +1- x2

-x1 + 2x2 - x3

-x2 + 2x3 +1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
0
0
0

é

ë

ê
ê
ê

ù

û

ú
ú
ú

x =

x1

x2

x3

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
-1
-1
-1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Unconstrained Minimization of
function (Example)

• Compute the Hessian matrix

• Evaluate the eigenvalues of the Hessian matrix

• All the eigenvalues are positives => the Hessian
matrix is positive definite

• The point is a minimum

39

Ñ2 f =
2 -1 0
-1 2 -1
0 -1 2

é

ë

ê
ê
ê

ù

û

ú
ú
ú

l1 = 3.414, l2 = 0.586, l3 = 2

x =

x1

x2

x3

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
-1
-1
-1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Closed Form Solutions are not always
available

• Often it is not possible to simply solve
– The function to minimize/maximize may have an

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it

iteratively until the correct value is obtained
40

X

f(X)

Iterative solutions

• Iterative solutions
– Start from an initial guess ଴ for the optimal
– Update the guess towards a (hopefully) “better” value of
– Stop when no longer decreases

• Problems:
– Which direction to step in
– How big must the steps be

41

f(X)

X
x0 x1 x2 x3

x4

x5
଴

ଵ

ଶ

The Approach of Gradient Descent

• Iterative solution:
– Start at some point
– Find direction in which to shift this point to decrease error

• This can be found from the derivative of the function
– A positive derivative moving left decreases error
– A negative derivative moving right decreases error

– Shift point in this direction

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
– Initialize ଴

– While ᇱ ௞

• If ᇱ ௞ is positive:

– 𝑥௞ାଵ = 𝑥௞ − 𝑠𝑡𝑒𝑝

• Else
– 𝑥௞ାଵ = 𝑥௞ + 𝑠𝑡𝑒𝑝

– What must step be to ensure we actually get to the optimum?

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
– Initialize

– While

•

– Identical to previous algorithm

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
– Initialize

– While

•

– is the “step size”

Gradient descent/ascent (multivariate)

• The gradient descent/ascent method to find the
minimum or maximum of a function iteratively
– To find a maximum move in the direction of the gradient

𝑇

– To find a minimum move exactly opposite the direction of
the gradient

𝑇

• Many solutions to choosing step size
– Later lecture

11-755/18-797 46

1. Fixed step size
• Fixed step size

– Use fixed value for

11-755/18-797 47

Influence of step size example
(constant step size)

11-755/18-797 48

2
221

2
121)(4)(),(xxxxxxf ++= xinitial = 3

3

é

ë
ê

ù

û
ú

2.0=1.0=

x0 x0

What is the optimal step size?

• Step size is critical for fast optimization
• Will revisit this topic later
• For now, simply assume a potentially-

iteration-dependent step size

49

Gradient descent convergence criteria

• The gradient descent algorithm converges
when one of the following criteria is satisfied

• Or

11-755/18-797 50

f (xk+1)- f (xk) <e1

Ñf (xk) <e2

Overall Gradient Descent Algorithm

• Initialize:
–

–

• While
–

–

11-755/18-797 51

• Returning to our problem..

52

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

53

Preliminaries

• Before we proceed: the problem setup

54

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

55

What are these input-output pairs?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

56

What are these input-output pairs?

What is f() and
what are its
parameters?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

57

What are these input-output pairs?

What is f() and
what are its
parameters W?

What is the
divergence div()?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

58

What is f() and
what are its
parameters W?

What is f()? Typical network

• Multi-layer perceptron
• A directed network with a set of inputs and outputs

– No loops

• Generic terminology
– We will refer to the inputs as the input units

• No neurons here – the “input units” are just the inputs

– We refer to the outputs as the output units
– Intermediate units are “hidden” units 59

Input
units Output

units

Hidden units

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A differentiable activation function applied the sum

of weighted inputs and a bias

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 60

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A differentiable activation function applied the sum

of weighted inputs and a bias

𝑦 = 𝑓 ෍ 𝑤௜

௜

𝑥௜ + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 61

We will assume this
unless otherwise
specified

Parameters are weights
௜ and bias

Activations and their derivatives

• Some popular activation functions and their
derivatives 62

ଶ

This space left intentionally (kind
of) blank

Vector Activations

• We can also have neurons that have multiple coupled
outputs

– Function operates on set of inputs to produce set of
outputs

– Modifying the parameters will affect all outputs
63

Input
Layer Output

Layer

Hidden Layers

Vector activation example: Softmax

• Example: Softmax vector activation

64

ଵ

ଶ

ଷ

௞

s
o
f
t
m
a
x

ଵ

ଶ

௟

ଵ

ଶ

௟

Parameters are
weights
and bias

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
65

zx y

೗೔

Parameters are
weights
and bias

Typical network

• We assume a “layered” network for simplicity
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer

– Intermediate layers are “hidden” layers
66

Input
Layer Output

Layer

Hidden Layers

Typical network

• In a layered network, each layer of
perceptrons can be viewed as a single vector
activation

67

Input
Layer Output

Layer

Hidden Layers

Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as ௜
(௞)

– Input to network: ௜
(଴)

௜

– Output of network: ௜ ௜
(ே)

• We will represent the weight of the connection between the i-th unit of
the k-1th layer and the jth unit of the k-th layer as ௜௝

(௞)

– The bias to the jth unit of the k-th layer is ௝
(௞)

68

ଵ

஽

ଵ
(ଵ)

ଵ
(ଶ)

ଵ

௅

௜௝
(ଵ)

௜௝
(ଶ)

௜௝
(ଷ)

௜௝
(ସ)

ଵ
(ଷ)

௝
(ଵ)

௝
(ଶ)

௝
(ଷ)

௝
(ସ)

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

69

What are these input-output pairs?

Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

• ௡ ௡ଵ ௡ଶ ௡஽ is the nth input vector
• ௡ ௡ଵ ௡ଶ ௡௅ is the nth desired output
• ௡ ௡ଵ ௡ଶ ௡௅ is the nth vector of actual outputs of the

network
• We will sometimes drop the first subscript when referring to a specific

instance
70

ଵ

஽

ଵ

௅

Representing the input

• Vectors of numbers
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course
– Other real valued vectors

71

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the
desired output
• d = [d1 d2 .. dL] (vector of real values)

72

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

73

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general an feature value
X may occur for both classes, but with different probabilities

• Is differentiable 74

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭

Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation
of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two independent outputs, one representing the desired
output, the other representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

75

Multi-class output: One-hot
representations

• Consider a network that must distinguish if an input is a cat, a dog, a
camel, a hat, or a flower

• We can represent this set as the following vector:
[cat dog camel hat flower]T

• For inputs of each of the five classes the desired output is:
cat: [1 0 0 0 0] T

dog: [0 1 0 0 0] T

camel: [0 0 1 0 0] T

hat: [0 0 0 1 0] T

flower: [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output
with four zeros and a single 1 at the position of that class

• This is a one hot vector

76

Multi-class networks

• For a multi-class classifier with N classes, the one-hot
representation will have N binary outputs
– An N-dimensional binary vector

• The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

77

Input
Layer Output

Layer

Hidden Layers

Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class
classifier nets

௜ ௝௜
(௡)

௝
(௡ିଵ)

௝

௜
௜

௝

௝

• This can be viewed as the probability ௜
78

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Typical Problem Statement

• We are given a number of “training” data instances
• E.g. images of digits, along with information about

which digit the image represents
• Tasks:

– Binary recognition: Is this a “2” or not
– Multi-class recognition: Which digit is this? Is this a digit in

the first place?
79

Typical Problem statement:
binary classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

80

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Input: vector of
pixel values

Output: sigmoid

Typical Problem statement:
multiclass classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

81

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Input: vector of
pixel values

Output: Class prob

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

82

What is the
divergence div()?

Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
௜ ௜

ଶ

௜

– Squared Euclidean distance between true and desired output
– Note: this is differentiable

௜
௜ ௜

௒ ଵ ଵ ଶ ଶ
83

L2 Div()

d1d2 d3 d4

Div

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy
between the probability distribution and the ideal output probability

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

84

KL Div

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = − ෍ 𝑑௜ log 𝑦௜

௜

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌௜
= ൞

−
1

𝑦௖
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻௒𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦௖
… 0 0 85

KL Div()

d1d2 d3 d4

Div

Problem Setup
• Given a training set of input-output pairs

• The error on the ith instance is
• The total error

• Minimize w.r.t

86

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• While
–

–

11-755/18-797 87

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• While
– For every component

•
೔

–
11-755/18-797 88

Explicitly stating it by component

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights and biases ௜௝
(௞)

– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• 𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

− 𝜂
ௗா௥௥

ௗ௪
೔,ೕ
(ೖ)

• Until has converged

89

Total training error:

Assuming the bias is also
represented as a weight

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer for all update:

• ௜,௝
(௞)

௜,௝
(௞) ௗா௥௥

ௗ௪
೔,ೕ
(ೖ)

• Until has converged
90

Total training error:

The derivative

• Computing the derivative

91

Total derivative:

Total training error:

Training by gradient descent

• Initialize all weights ௜௝
(௞)

• Do:

– For all , initialize ௗா௥

ௗ௪
೔,ೕ
(ೖ)

– For all
• For every layer 𝑘 for all 𝑖, 𝑗:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

೔,ೕ
(ೖ)

– Compute
ௗா௥௥

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

೔,ೕ
(ೖ)

– For every layer for all :

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤௜,௝
(௞)

• Until has converged

92

The derivative

• So we must first figure out how to compute the
derivative of divergences of individual training
inputs

93

Total derivative:

Total training error:

Calculus Refresher: Basic rules of
calculus

94

For any differentiable function

with derivative
ௗ௬

ௗ௫

the following must hold for sufficiently small

For any differentiable function
ଵ ଶ ெ

with partial derivatives
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

Calculus Refresher: Chain rule

95

Check – we can confirm that :

For any nested function

Calculus Refresher: Distributed Chain
rule

96

Check:

భ

భ

మ

మ

ಾ

ಾ

భ

భ

మ

మ

ಾ

ಾ

Distributed Chain Rule: Influence
Diagram

• affects through each of

97

ଵ

ଶ

ெ

Distributed Chain Rule: Influence
Diagram

• Small perturbations in cause small
perturbations in each of each of
which individually additively perturbs 98

ଵ

ଶ

ெ

ଵ

ெ

Returning to our problem

• How to compute

99

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons

and inputs

100

+

+

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the weighted sum of inputs from the
activation

101

+

+

+

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights and activations shown
• The overall function is differentiable w.r.t every weight, bias

and input
102

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

Computing the derivative for a single
input

• Aim: compute derivative of w.r.t. each of the
weights

• But first, lets label all our variables and activation functions

103

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

Each yellow ellipse
represents a perceptron

Computing the derivative for a single
input

104

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଶ
(ଵ)

ଶ
(ଶ)

1

1

2

2

3

Div

Computing the gradient

• What is:

– Derive on board?

105

Computing the gradient

• What is:

• Derive on board?

• Note: computation of the derivative requires
intermediate and final output values of the
network in response to the input

106

BP: Scalar Formulation

• The network again

ଵଵ ௞௞௞ିଵ ேିଵ

ே

ே

Div(Y,d)

1 1 1 1 1

Gradients: Local Computation

• Redrawn
• Separately label input and output of each

node

௞ ேିଵ

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

Div(Y,d)
E

1 1 1

Forward Computation

fN

fN

ଵ

ேିଵ

y(N)z(N)

y(N-1)z(N-1)y(1)z(1)

ଵ

ଵ

ଵ

Assuming ଴௝
(ଵ)

௝
(ଵ) and ଴

1

Forward Computation

fN

fN

௞ ேିଵ

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

Assuming ଴௝
(௞)

௝
(௞) and ଴

(௞ିଵ)

1 1 1

Forward Computation

fN

fN

௞ ேିଵ

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

1 1 1

Forward Computation

fN

fN

௞ ேିଵ

ITERATE FOR k = 1:N

for j = 1:layer-width

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

1 1 1

Forward “Pass”
• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)ேೖ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
113

Dk is the size of the kth layer

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

Div(Y,d)

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

Div(Y,d)

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

Div(Y,d)

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

Div(Y,d)

௜
(ே) computed during the

forward pass

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

Div(Y,d)

Derivative of the activation
function of Nth layer

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

Because :

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
௜
(ே)

௜
(ே) ே

ᇱ
௜
(ே)

௜
(ே)

௜
(ேିଵ)

௝
(ே)

௜
(ேିଵ)

௝ ௝
(ே) ௜௝

(ே)

௝ ௝
(ே)

𝜕𝑧௝
(ே)

𝜕𝑦௜
(ேିଵ)

= 𝑤௜௝
(ே)

Div(Y,d)

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(ேିଵ) ௜௝

(ே)

௝ ௝
(ே)

௜
(௞) ௞

ᇱ
௜
(௞)

௜
(௞)

௜
௜
(ே)

௜
(ே) ே

ᇱ
௜
(ே)

௜
(ே)

Div(Y,d)

computed during
the forward pass

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(௞ିଵ)

௝
(௞)

௜
(௞ିଵ)

௝ ௝
(௞) ௜௝

(௞)

௝ ௝
(௞)

Div(Y,d)

௜
௜
(ே)

௜
(ே) ே

ᇱ
௜
(ே)

௜
(ே)

1 1 1

௞ ேିଵ

Div(Y,d)

Gradients: Backward Computation

fN

fN

wij
(k)

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(௞ିଵ) ௜௝

(௞)

௝ ௝
(௞)

௜௝
(௞)

௝
(௞)

௜௝
(௞)

௝
(௞) ௜

(௞ିଵ)

௝
(௞)

Div(Y,d)

௜
௜
(ே)

௜
(ே) ே

ᇱ
௜
(ே)

௜
(ே)

1 1 1

Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient
w.r.t network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௜
(௞) ௞

ᇱ
௜
(௞)

௜
(௞)

௜
(௞ିଵ) ௜௝

(௞)

௝ ௝
(௞)

௜௝
(௞) ௜

(௞ିଵ)

௝
(௞)

Div(Y,d)

௜
௜
(ே)

Figure assumes, but does not show
the “1” bias nodes

Backward Pass
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

•
డ஽

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ିଵ

124

Backward Pass
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௬೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

• For layer
– For ௞

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ିଵ

125

Called “Backpropagation” because
the derivative of the error is
propagated “backwards” through
the network

Very analogous to the forward pass:

Backward weighted combination
of next layer

Backward equivalent of activation

For comparison: the forward pass
again

• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

• ௝
(௞)

௜,௝
(௞)

௜
(௞ିଵ)ேೖ

௜ୀ଴

• ௝
(௞)

௞ ௝
(௞)

• Output:

–
126

Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect

computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Not discussed in class, but explained in slides
– Will appear in quiz. Please read the slides

127

Special Case 1. Vector activations

• Vector activations: all outputs are functions of
all inputs

128

z(k)y(k-1) y(k) z(k)y(k-1) y(k)

Special Case 1. Vector activations

129

z(k)y(k-1)

y(k)

Scalar activation: Modifying a
only changes corresponding

Vector activation: Modifying a
potentially changes all,

z(k)y(k-1)

y(k)

“Influence” diagram

130

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each
influences one

Vector activation: Each
influences all,

y(k-1)

The number of outputs

131

z(k) y(k)

• Note: The number of outputs (y(k)) need not be the
same as the number of inputs (z(k))
• May be more or fewer

z(k) y(k)y(k-1) y(k-1)

Scalar Activation: Derivative rule

• In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

132

z(k)y(k-1) y(k)

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

– Regardless of the number of outputs
133

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector

activations:
డ௬ೕ

(ೖ)

డ௭
೔
(ೖ)

Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 134

z(k)y(k-1) y(k)

௜
(௞) ௜

(௞)

௝
(௞)

௝

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
௞

௝
௞

௜
(௞)

௝
(௞) ௜

(௞)
௜௝ ௝

(௞)

௝

Div

Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax),

etc.
135

z(k)y(k-1) y(k)

Special Case 2: Multiplicative
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far

• Seen in networks such as LSTMs, GRUs, attention models,
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward:)1()1()(--= k
l

k
j

k
i yyo

Backpropagation: Multiplicative
Networks

• Some types of networks have multiplicative
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward:)1()1()(--= k
l

k
j

k
i yyo

Backward:

)(
)1(

)()1(

)(

)1(k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div

¶
¶

=
¶
¶

¶
¶

=
¶
¶ -

--)(
)1(

)1(k
i

k
jk

l o

Div
y

y

Div

¶
¶

=
¶
¶ -

-

Multiplicative combintion as a case of
vector activations

• A layer of multiplicative combination is a special case of vector activation
138

z(k)y(k-1) y(k)

Multiplicative combintion: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
139

z(k)y(k-1) y(k)

೗೔
(ೖ)

ೕ೔
(ೖ)

೗೔
(ೖ)

Y, Div

Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

௝
(௞)

For k = N…1
For i = 1:layer-width

௜
(௞)

௝
(௞)

௝
(௞)

௜
(௞)

௝

௜
(௞ିଵ) ௜௝

(௞)

௝ ௝
(௞)

௜௝
(௞) ௜

(௞ିଵ)

௝
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

௜
(௞)

If layer has vector activation Else if activation is scalar

Backward Pass for softmax output
layer

• Output layer (N) :
– For

•
డ஽௜௩

డ௬೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ಿ)

డ஽ (௒,ௗ)

డ௬
ೕ
(ಿ) ௜

(ே)
௜௝ ௝

(ே)
௝

• For layer
– For

•
డ஽௜௩

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ) ௞

ᇱ
௜
(௞) డ஽௜௩

డ௬
೔
(ೖ)

•
డ஽௜

డ௪
೔ೕ
(ೖశభ) ௝

(௞) డ஽௜

డ௭
೔
(ೖశభ) for ௞ିଵ

141

z(N)
y(N)

KL Div

d

Div

so
ft

m
ax

Special Case 3: Non-differentiable
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g. The “max” function

• Must use “subgradients” where available
– Or “secants” 142

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y

௝
௝

z2

z3

z4

The subgradient

• A subgradient of a function at a point ଴ is any vector such that

଴
்

଴

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to
increase

• If the function is differentiable at ଴, the subgradient is the gradient
– The gradient is not always the subgradient though 143

Subgradients and the RELU

• Can use any subgradient
– At the differentiable points on the curve, this is the

same as the gradient
– Typically, will use the equation given

144

Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

145

z1

y

௝
௝

z2

zN

Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of
inputs
– Will be seen in convolutional networks

• Gradient for any output:
– 1 for the specific component that is maximum in corresponding input

subset
– 0 otherwise 146

ೕ

ೕ

z1 y1

z2

zN

y2

y3

yM

Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ஽௜௩

డ௒೔

డ஽௜௩(௒,ௗ)

డ௬
೔
(ಿ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭
೔
(ೖ)

௝ (vector activation)

• For layer
– For ௞

•
డ஽௜

డ௬
೔
(ೖ) ௜௝

(௞ାଵ)
௝

డ஽௜௩

డ௭
ೕ
(ೖశభ)

•
డ஽௜௩

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
೔
(ೖ)

డ௬೔
(ೖ)

డ௭
೔
(ೖ)

డ஽௜௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭
೔
(ೖ)

௝ (vector activation)

•
డ஽௜௩

డ௪
ೕ೔
(ೖశభ) ௝

(௞) డ஽௜௩

డ௭
೔
(ೖశభ) for ௞ିଵ

147

Overall Approach
• For each data instance

– Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation

– Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

• Actual Error is the sum of the error over all training instances

• Actual gradient is the sum or average of the derivatives computed
for each training instance

–

Training by BackProp
• Initialize all weights ଵ ଶ ௄

• Do:

– Initialize ; For all , initialize ௗா௥௥

ௗ௪
೔,ೕ
(ೖ)

– For all (Loop over training instances)
• Forward pass: Compute

– Output 𝒀𝒕

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– Compute
ௗா௥௥

ௗ௪
೔,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
೔,ೕ
(ೖ)

– For all update:

𝑤௜,௝
(௞)

= 𝑤௜,௝
(௞)

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤௜,௝
(௞)

• Until has converged
149

Vector formulation

• For layered networks it is generally simpler to
think of the process in terms of vector operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector terms
– On slides, please read
– This is what is actually used in any real system
– Will appear in quiz

150

Vector formulation

• Arrange all inputs to the network in a vector
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix ௞

– Similarly with biases
15

1

ଵ

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖଶ
(௞)

ଵ஽ೖశభ

(௞)
ଵ஽ೖశభ

(௞)
ଵ஽ೖశభ

(௞)

ଶ

஽

ଵଵ
(ଵ)

஽భ஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖశభ

(௞)

Vector formulation

• The computation of a single layer is easily expressed in matrix
notation as (setting 𝟎):

15
2

ଵ

௞

ଵଵ
(௞) ଶଵ

(௞) ஽ೖଵ
(௞)

ଵଶ
(௞)

ଶଶ
(௞)

஽ೖଶ
(௞)

ଵ஽ೖశభ

(௞)
ଵ஽ೖశభ

(௞)
ଵ஽ೖశభ

(௞)

ଶ

஽

ଵଵ
(ଵ)

஽஽
(ଵ)

஽ଵ
(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

஽భ

(ଵ)

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖ

(௞)

ଵ

ଶ

஽

𝒌

ଵ
(௞)

ଶ
(௞)

஽ೖశభ

(௞)

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌 ௞ 𝒌

The forward pass: Evaluating the
network

153

𝟎

The forward pass

154

𝟏 𝟏 ଵ

𝟏
ଵ ଵ

155

ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

156

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

157

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏

The forward pass

158

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟐𝟏

The forward pass

159

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏

Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output

The Forward Pass
• Set

• For layer k = 1 to N:
– Recursion:

• Output:

161

The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The error for any is also a nested function

Calculus recap 2: The Jacobian

163

Using vector notation

Check:

• The derivative of a vector function w.r.t. vector input is called
a Jacobian

• It is the matrix of partial derivatives given below

Jacobians can describe the derivatives
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 164

z y

• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

165

z y

Jacobians can describe the derivatives
of neural activations w.r.t their input

For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs

w.r.t individual inputs
166

z y

Special case: Affine functions

• Matrix and bias operating on vector to
produce vector

• The Jacobian of w.r.t is simply the matrix
167

Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

168

Check

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs (is vector):

169

Check

Note the order: The derivative of the outer function comes first

Special Case

• Scalar functions of Affine functions

170

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a gradient (for scalar)
Or a Jacobian (for vector)

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .
The actual gradient depends on the divergence function.

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿ
ಿ ಿ

ಿ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

185

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

186

Note analogy to forward pass

For comparison: The Forward Pass
• Set

• For layer k = 1 to N:
– Recursion:

• Output:

187

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝛻𝐖ೖ
𝐸𝑟𝑟 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐸𝑟𝑟 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖௞ = 𝐖௞ −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

; 𝐛௞ = 𝐛௞ −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

• Until has converged

188

Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation

–

–

• Use KL divergence
• Backpropagation to learn network parameters 189

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Sigmoid output
neuron

Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 190

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Y1 Y2 Y3 Y4 Y0

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

191

Next up

• Convergence and generalization

192

