! MachineLeaming For S@gnalProcs_singv Group

Neural Networks:
Optimization Part 2

Intro to Deep Learning, Fall 2017



# of respondents

o N OB~ OO

Average
5.38/ 10 points

Quiz 3

Median
5/ 10 points

Total points distribution

4 5 6
Points scored

Range
3 -9 points

10



Quiz 3

* Which of the following are necessary

conditions for a value x to be a loca

minimum

of a twice differentiable function f defined

over the reals having gradient g anc

hessian H

(select all that apply)? Comparison operators
are applied elementwise in this question

»g(x)?0
»eigenvalues of H(x) ? O



Quiz 3

* Select all of the properties that are true of the
gradient of an arbitrary differentiable scalar
function with a vector input

» It is invariant to a scaling transformation of the input
> It is orthogonal to the level curve of the function

» It is the direction in which the function is increasing
most quickly

» The dot product of <g(x), x> gives the instantaneous
change in function value

> fly) —f(x) = <g(x), (x—y)>



Quiz 3

* T/F: In a fully connected multi-layer
perceptron with a softmax as its output layer,
*every* weight in the network influences
*every* output in the network

* T/F: In subgradient descent, any (negated)
subgradient may be used as the direction of
descent



Quiz 3

* T/F: The solution that gradient descent finds is
not sensitive to the initialization of the
weights in the network



Quiz 3

* |n class, we discussed how back propagation with a mean
squared error loss function may not find a solution which
separates the classes in the training data even when the
classes are linearly separable. Which of the following
statements are true (select all that apply)?

» Back-propagation can get stuck in a local minimum that does
not separate the data

» The global minimum may not separate the data

» The perceptron learning rule may also not find a solution which
separates the classes

» The back-propagation is higher variance than the perceptron
algorithm

» The back-propagation algorithm is more biased than the
perceptron algorithm



Quiz 3

 T/F If the Hessian of a loss function with
respect to the parameters in a network is
diagonal, then QuickProp is equivalent to
gradient descent with optimal step size.



Quiz 3

* Which of the following is True of the RProp algorithm?

> It sets the step size in a given component to to either a -1
orl

» It increases the step size for a given component when the
gradient has not changed size in that component

» When the sign of the gradient has changed in any
component after a step, RProp undoes that step

» It uses the sign of the gradient in each component to
determine which parameters in the network will be
adjusted during the update

» It uses the sign of the gradient to approximate second
order information about the loss surface



Quiz 3

* When gradient descent is used to minimize a non-convex
function, why is a large step size (e.g. more than twice the
optimal step size for a quadratic approximation) useful for
escaping "bad" local minima (select all that apply)?

» A large step size tends to make the algorithm converge to a
global minimum

» A large step size tends to make the algorithm diverge when the
function value is changing very quickly

» A large step size tends to make the algorithm converge only
where a local minimum is close in function value to the global
minimum

» A large step size increases the variance of the parameter
estimates



Quiz 3

* When gradient descent is used to minimize a non-convex function,
why is a large step size (e.g. more than twice the optimal step size
for a quadratic approximation) useful for escaping "bad" local
minima (select all that apply)?

» A large step size tends to make the algorithm converge to a global
minimum

» A large step size tends to make the algorithm diverge when the
function value is changing very quickly

» A large step size tends to make the algorithm converge only where a
local minimum is close in function value to the global minimum

» A large step size increases the variance of the parameter estimates:
We’re accepting this answer because it’s open to interpretation:
» Increases the variance across single updates
» Decreases the variance across runs
» Why? We are biasing towards a type of answer



Quiz 3

* When the gradient of a twice differentiable
function is normalized by the Hessian during
gradient descent, this is equivalent to a
reparameterization of the function which

(select all that apply)

» Makes the optimal learning rate the same for every
parameter

» Makes the function parameter space less eccentric
» Makes the function parameter space axis aligned

» Can also be achieved by rescaling the parameters
independently



Recap

Neural networks are universal approximators

We must train them to approximate any

function

’

Networks are trained to minimize total “error’
on a training set

— We do so through empirical risk minimization

We use variants of gradient descent to do so

— Gradients are computed through backpropagation




Recap

e Vanilla gradient descent may be too slow or unstable

* Better convergence can be obtained through

— Second order methods that normalize the variation across
dimensions

— Adaptive or decaying learning rates can improve
convergence

— Methods like Rprop that decouple the dimensions can
Improve convergence

— TODAY: Momentum methods which emphasize directions
of steady improvement and deemphasize unstable
directions




The momentum methods

e Maintain a running average of all 1
past steps

— Indirections in which the {51
convergence is smooth, the
average will have a large value

— Indirections in which the estimate 1l
swings, the positive and negative
swings will cancel out in the
average

* Update with the running !
average, rather than the current
gradient




Momentum Update

Plain gradient update With momentum

U= E==>

The momentum method maintains a running average of all gradients
until the current step

AW ® = AW *=1) — 7, Err(W kD)
w@® = k=1 L Ay
— Typical S value is 0.9

The running average steps
— Get longer in directions where gradient stays in the same sign
— Become shorter in directions where the sign keeps flipping



Training by gradient descent

* |Initialize all weights W;, W,, ..., W
* Do:
— For all layers k, initialize Vy, Err =0

— Forallt = 1:T

* For every layer k:
— Compute Vyy, Div(Y, d;)

— Compute Vi, Err += %VWkDiv(Yt, di)

— For every layer k:
Wy = W —nVy, Err

* Until Err has converged

17



Training with momentum

* |Initialize all weights W;, W,, ..., W
* Do:
— For all layers k, initialize Iy, Err = 0, AW, = 0

— Forallt = 1:T

* For every layer k:
— Compute Vyy, Div(Y, d;)

— Compute Vi, Err += %VWkDiv(Yt, di)

— For every layer k:
AWy = AW, —nVy, ETT
Wk = Wk + AWk

 Until Err has converged

18



Momentum Update

e The momentum method

AW ® = pAw =D — 7, Err(W *-D)

e Atany iteration, to compute the current step:



Momentum Update

&

* The momentum method
AW ® = pAw =D — 7, Err(W *-D)

e Atany iteration, to compute the current step:
— First computes the gradient step at the current location




Momentum Update

S

* The momentum method
AW ® = pAw =D — 7, Err(W *-D)

e Atany iteration, to compute the current step:
— First computes the gradient step at the current location

— Then adds in the scaled previous step

* Which is actually a running average



Momentum Update

e  The momentum method
AW® = gaw k=D — pi, Err(W *-D)

e Atany iteration, to compute the current step:
— First computes the gradient step at the current location

— Then adds in the scaled previous step
*  Which is actually a running average

— To get the final step



Momentum update

* Takes a step along the past
running average after walking
along the gradient

 The procedure can be made more
optimal by reversing the order of
operations..



Nestorov’s Accelerated
Gradient

* Change the order of operations

* At any iteration, to compute the current step:



Nestorov’s Accelerated
Gradient

(=)

* Change the order of operations

* At any iteration, to compute the current step:

— First extend the previous step



Nestorov’s Accelerated
Gradient

—

* Change the order of operations

* At any iteration, to compute the current step:
— First extend the previous step

— Then compute the gradient step at the resultant
position



Nestorov’s Accelerated
Gradient

* Change the order of operations
* At any iteration, to compute the current step:
— First extend the previous step
— Then compute the gradient step at the resultant
position
— Add the two to obtain the final step



Nestorov’s Accelerated Gradient

o

e Nestorov’s method
AW ® = pAW *=D — i, Err(W® + gaw (-D)
w@E = w k-1 L Ay )



Nestorov’s Accelerated Gradient

 Comparison with momentum
(example from Hinton)

* Converges much faster



Moving on: Topics for the day

Incremental updates
Revisiting “trend” algorithms
Generalization

Tricks of the trade

— Divergences..
— Activations
— Normalizations



The training formulation

.
.
.
.
.
.
‘e
.

--------
““
‘I
o

.® .

-----
""""""""
Re

output (y)

e Given input output pairs at a number of
locations, estimate the entire function



Gradient descent

A
o
e
‘e
~'.,. PEXLELTTIOR “‘-‘ .
'.. ‘-“‘ e Pl i o** .,
LT T TE L A e - o
’“/ \ .,
' d ’0. ‘s
,/ . \\ ‘x
4 ." \ ‘e
’ . ‘e
4 \ -
V4 '....“ .

S ., .
- 4 . r
”— ~~~ s .
’/ - ~ - .

-—
,’ S ”‘ ~-~~~~._"

~ e
~~-____ -

L L < 4 L >

Start with an initial function



Gradient descent

e Start with an initial function
e Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points



Gradient descent

e Start with an initial function
e Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points



Gradient descent

e Start with an initial function
e Adjust its value at all points to make the outputs closer to the required
value
— Gradient descent adjusts parameters to adjust the function value at all points

— Repeat this iteratively until we get arbitrarily close to the target function at the
training points



Effect of number of samples

* Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points

— We must process all training points before making a single
adjustment

— “Batch” update



Alternative: Incremental update

.l ..

(LN}
----
.
.
.®
.
.
.
.
.
o
*

o - v
- --;.-.."

e Alternative: adjust the function at one training point at a time
— Keep adjustments small



Alternative: Incremental update

e Alternative: adjust the function at one training point at a time
— Keep adjustments small



Alternative: Incremental update

W
‘e
.
.... sut®
'. ‘-“‘ 3
....... LN
----- . P
‘k/r,
s Semr’
,/
i’
@ @

Py

LT}
----
.
.
.®
.
.
.
.
.
o
*

~
~
-~
-~
-~
pal P—

o - v
- --;.-.."

[
v

e Alternative: adjust the function at one training point at a time

— Keep adjustments small



Alternative: Incremental update

e Alternative: adjust the function at one training point at a time
— Keep adjustments small



Alternative: Incremental update

LT}
----
.
.
.®
.*
.
.
.
.
o
*

e Alternative: adjust the function at one training point at a time
— Keep adjustments small

— Eventually, when we have processed all the training points, we will
have adjusted the entire function

* With greater overall adjustment than we would if we made a single “Batch”
update



Incremental Update: Stochastic
Gradient Descent

Given (Xl; dl)l (XZI dZ)I"'I (XT) dT)
nitialize all weights W, W, ..., Wy

DO:
—Forallt = 1:T

* For every layer k:

— Compute Vy, Div(Y,, d;)
— Update
Wi = Wy —nVy, Div(Y,, dy)

Until Er7 has converged

43



Caveats: order of presentation

* |f we loop through the samples in the same
order, we may get cyclic behavior



Caveats: order of presentation

,‘@

* |f we loop through the samples in the same
order, we may get cyclic behavior

* We must go through them randomly



Caveats: order of presentation

* |f we loop through the samples in the same
order, we may get cyclic behavior



Caveats: order of presentation

* |f we loop through the samples in the same
order, we may get cyclic behavior



Caveats: order of presentation

* |f we loop through the samples in the same
order, we may get cyclic behavior



Caveats: order of presentation

* If we loop through the samples in the same order,
we may get cyclic behavior

* We must go through them randomly to get more
convergent behavior



Caveats: learning rate

output (y)

Input (=X)
* Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances

— Correcting the function for individual instances will lead to
never-ending, non-convergent updates

— We must shrink the learning rate with iterations to prevent this

e Correction for individual instances with the eventual miniscule
learning rates will not modify the function



Incremental Update: Stochastic

Gradient Descent

Given (X{,d,), (X5,d5),..., (X7, d7)
Initialize all weights W, W5, ..., Wy, j=0
Do:
— Randomly permute (X,d,), (X,,d>),..., (X7, d7)
— Forallt = 1:T

cj=j+1

* For every layer k:

— Compute Vy, Div(Yy, d;)

— Update
Wi = Wy —n;Vy, Div(Yy, dy)

Until E77 has converged

51



Incremental Update: Stochastic

Gradient Descent
* Given (Xy,dq), (X3,d3),..., (X7, dr)
* Initialize all weights W, W,, ..., Wy; j=0
* Do:

— Randomly permute (Xy, d;), (X3, d>),..., (X7, dr)
— Forallt = 1:T T

Randomize input order

‘]=]+1< 

For every layer k: Learning rate reduces with |

— Compute Vy, Div(Yy, d;)
— Update /

W, = W, @Vwkniv(yt, d,)
* Until Err has converged

52



Stochastic Gradient Descent

* The iterations can make multiple passes over
the data

* Asingle pass through the entire training data
is called an “epoch”

— An epoch over a training set with T samples
results in T updates of parameters



When does SGD work

* SGD converges “almost surely” to a global or local minimum for most
functions

— Sufficient condition: step sizes follow the following conditions

an=°°
Kk

* Eventually the entire parameter space can be searched
Q<
k

— The fastest converging series that satisfies both above requirements is

1
oc_
Nk 2

* This is the optimal rate of shrinking the step size for strongly convex functions

* The steps shrink

— More generally, the learning rates are optimally determined
e |fthe loss is convex, SGD converges to the optimal solution
* For non-convex losses SGD converges to a local minimum



Batch gradient convergence

In contrast, using the batch update method, for
strongly convex functions,

(W —w| < c*|w©® —w+

— Giving us the iterations to € convergence as O (log (1))

€
For generic convex functions, the € convergence is
1
0(3)
€

Batch gradients converge “faster”
— But SGD performs T updates for every batch update



SGD convergence

We will define convergence in terms of the number of iterations taken to
get within € of the optimal solution

- [f(w®) —fw
— Note: f(W) here is the error on the entire training data, although SGD itself
updates after every training instance

<€

Using the optimal learning rate 1/k, for strongly convex functions,

1
Wi —w+| < - |w© — w+

. : . 1
— Giving us the iterations to € convergence as 0 (E)

For generically convex (but not strongly convex) function, various proofs
1, . 1
report an € convergence of —= using a learning rate of —.
P g = g g =



SGD Convergence: Loss value

If:
* f is A-strongly convex, and

e at step t we have a noisy estimate of the
subgradient g, with E[||G.]|?] < G* for all t,

* and we use step size n; = 1/,,

Then forany T > 1:

17G*(1 +1
B[ (wp) — fw)] < o108




SGD Convergence

 We can bound the expected difference between the
loss over our data using the optimal weights, w*, and

the weights at any single iteration, wy, to O (logT(T)) for
log(T)
VT

strongly convex loss or O ( ) for convex loss

* Averaging schemes can improve the bound to O (%)
1
and 0 (\/_T)

* Smoothness of the loss is not required



SGD example

K:
0.04 T — T r — T g —T T T r —

SIGD K‘-M;a.r?ms -—-—I ‘

Batch K-Means

0.035 |-
0.03

0.025 |

0.02 |-

0.015 |

0.01 -]

Error from Best K-Means Objective Function Value

0.005 | -]

0 | | |
0.0001 0.001 0.01 0.1 1 10 100 1000
Training CPU secs

 Asimpler problem: K-means
* Note: SGD converges slower

e Also note the rather large variation between runs
— Lets try to understand these results..



Recall: Modelling a function

* Tolearn a network f(X; W) to model a function g(X) we

minimize the expected divergence

W = argmin j div(f(X; W), g(X))P(X)dX
w X
= argmin E[div(f(X; w), g(X))]
w

61



Recall: The Empirical risk

T
|
o

-

;

In practice, we minimize the empirical error

N
1
Err(fX; W), g(X)) = Nz div(f(X; W), d;)
i=1

W = argmin Err(f(X; W), g(X))
%

The expected value of the empirical error is actually the expected divergence
E[Err(f(X; W), g(X))] = E[div(f (W), g(x))]

62



Recap: The Empirical risk

4
|
o

-

;

In practice, we minimize the empirical error

N
1
Err(fX; W), g(X)) = Nz div(f(X; W), d;)

The empirical error is an unbiased estimate of the expected error
Though there is no guarantee that minimizing it will minimize the
expected error

TTTGC \-I\l\l\.—\—b\-u vVOUTOUOC UT LTTC \—llll\lll TCUT CTTUT TI9 UUL\JUII, CTTGC \—I\H\-UL\—U CTTUT

E[Err(f W), g@0)] = E[div(f (X; W), g(x))]




Recap: The Empirical risk

/

< N

The variance of the empirical error: var(Err) = 1/N var(div)

The variance of the estimator is proportional o 1/N
The larger this variance, the greater the likelihood that the W that
minimizes the empirical error will differ significantly from the W that
minimizes the expec’red error

The empirical error is an unblased es’rlma’re of ’rhe expec‘red error

Though there is no guarantee that minimizing it will minimize the
expected error

The expected value of the empirical error is actually the expected error

E[Err(f W), g@0)] = E[div(f (X; W), g(x))]




SGD

* At each iteration, SGD focuses on the divergence
of a single sample div(f(X; W), d;)

* The expected value of the sample error is still the
expected divergence E [div( fX; W), gX ))] .




SGD

* At each iteration, SGD focuses on the divergence

r o [l 1 ) YTAT\ 7 N\

The sample error is also an unbiased estimate of the expected error

* The expected value of the sample error is still the
expected divergence E [div( fX; W), gX ))]




SGD

The variance of the sample error is the variance of the divergence itself: var(div)
This is N times the variance of the empirical average minimized by batch update

r o [l 1 ) YTAT\ 7 N\

The sample error is also an unbiased estimate of the expected error

* The expected value of the sample error is still the
expected divergence E [div( fX; W), gX ))]



Explaining the variance

v

* The blue curve is the function being approximated
* The red curve is the approximation by the model at a given W

* The heights of the shaded regions represent the point-by-point error
— The divergence is a function of the error
— We want to find the W that minimizes the average divergence



Explaining the variance

f(x)

gl W)

NS

X

 Sample estimate approximates the shaded area with the
average length of the lines



Explaining the variance

 Sample estimate approximates the shaded area
with the average length of the lines

* This average length will change with position of
the samples



Explaining the variance

f(x) ~
e RN
)?;KI\MDQ\I\ /( /.
| L~

* Having more samples makes the estimate more
robust to changes in the position of samples

— The variance of the estimate is smaller



Explaining the variance

With only one sample

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly



Explaining the variance

With only one sample

gl W)

X

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly



Explaining the variance

With only one sample

* Having very few samples makes the estimate
swing wildly with the sample position

— Since our estimator learns the W to minimize this
estimate, the learned W too can swing wildly



SGD example

0.04

o SIGD K‘-M;a.r?ms -—-—I ‘
Batch K-Means
0.035

0.03 |-

0.025 |

0.02 |-

0.015 |

0.01

Error from Best K-Means Objective Function Value

0.005 |

0 | | |
0.0001 0.001 0.01 0.1 1 10 100 1000
Training CPU secs

* Asimpler problem: K-means
* Note: SGD converges slower

* Also has large variation between runs



SGD vs batch

e SGD uses the gradient from only one sample
at a time, and is consequently high variance

e But also provides significantly quicker updates
than batch

* |sthere a good medium?



Alternative: Mini-batch update

Alternative: adjust the function at a small, randomly chosen subset of
points

— Keep adjustments small

— If the subsets cover the training set, we will have adjusted the entire function

As before, vary the subsets randomly in different passes through the
training data



Incremental Update: Mini-batch
update

* Given (Xq,dy), (X5,d5),..., X7, d7)
* |Initialize all weights Wy, W,, ..., Wy, j =10
* Do:
— Randomly permute (X;,d,), (X5,d>5),..., (X7, dr)
— Fort = 1:b:T
.« j=j+1
For every layer k:
— AW, =0
* Fort'=t:t+b-1

— Forevery layer k:
» Compute Vi, Div(Y;, d;)

» AWk = AWk + VWkDiU(Yt, dt)

Update

— For every layer k:

Wk = Wk — T]]AWR

 Until Err has converged



Incremental Update: Mini-batch
update

* Given (Xq,dy), (X5,d5),..., X7, d7)
* |Initialize all weights Wy, W,, ..., Wy, j =10
* Do:
— Randomly permute (X;,d,), (X5,d>5),..., (X7, dr)

— Fort = 1
@ Mini-batch size

e j=j+1
* For every layer k:
— AW, =0 Shrinking step size

* Fort'=t:t+b-1
— Forevery layer k:
» Compute Vi, Div(Y;, d;)

» AWk - AWk + VWkDiv(Yt! dt)
e Update

— For every layer k:

Wk - Wk @Wk

 Until Err has converged 79



Mini Batches

Mini-batch updates compute and minimize a batch error

b
BatchErr(f(X; W), g(X)) = %Z div(f(X; W), d;)
i=1

The expected value of the batch error is also the expected divergence
E|BatchErr(f(X; W), g(X))| = E|div(f(X; W), g(X))]

80



Mini Batches

* Mini-batch updates computes an empirical batch error

b
1
RatchErvr( £L(X- TN\ al(X)) — _Y‘ Adiv( £LX-- W) 4D

The batch error is also an unbiased estimate of the expected error

* The expected value of the batch error is also the expected divergence
E|BatchErr(f(X; W), g(X))| = E|div(f(X; W), g(X))]

81




Mini Batches

e Mini-batch undates comnutes an emnirical bhatch error

The variance of the batch error: var(Err) = 1/b var(div)
This will be much smaller' ’rhan ’rhe var'lance of ’rhe sample error in SGD

7%

The batch error is also an unblased es’ruma‘re of ‘rhe expec’red error

The expected value of the batch error is also the expected divergence
E|BatchErr(f(X; W), g(X))| = E|div(f(X; W), g(X))]



Minibatch convergence

1

For convex functions, convergence rate for SGD is 0 (\/_E)

For mini-batch updates with batches of size b, the

. 1 1
convergence rate Is 0 (\/ﬁ + E)

— Apparently an improvement of Vb over SGD

— But since the batch size is b, we perform b times as many
computations per iteration as SGD

— We actually get a degradation of Vb

However, in practice

— The objectives are generally not convex; mini-batches are more
effective with the right learning rates

— We also get additional benefits of vector processing



SGD example

K=10
0.04

I SIGD KI-M;a.r?ms -—-—I ‘
Batch K-Means

Mini-Batch K-Means (b=1000) 311 e
0.035 |- ]

0.03 |-
0.025 |

0.02 |-

0.015 |-

0.01 -

Error from Best K-Means Objective Function Value

'
-
-
- U
"l’a
- 'l,
H e

J#—
0.005 | e,
Ll

0 | n =1
0.0001 0.001 0.01 0.1 1 10 100 1000
Training CPU secs

* Mini-batch performs comparably to batch
training on this simple problem

— But converges orders of magnitude faster



Measuring Error

K=10

* Convergence is generally
defined in terms of the
overall training error

nction Value

Error from Best K-Means Objective Fu

— Not sample or batch error

0
000000

* |nfeasible to actually measure the overall training error
after each iteration

 More typically, we estimate is as

— Divergence or classification error on a held-out set

— Average sample/batch error over the past N
samples/batches



Training and minibatches

* |n practice, training is usually performed using mini-
batches

— The mini-batch size is a hyper parameter to be optimized

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error plateaus,
then reduce learning rate by a fixed factor (e.g. 10)

— Advanced methods: Adaptive updates, where the learning
rate is itself determined as part of the estimation



Training and minibatches

* |n practice, training is usually performed using mini-
batches

— The mini-batch size is a hyper parameter to be optimized

* Convergence depends on learning rate

— Simple technique: fix learning rate until the error plateaus,
then reduce learning rate by a fixed factor (e.g. 10)

— Advanced methods: Adaptive updates, where the learning
rate is itself determined as part of the estimation



Recall: Momentum

&>

* The momentum method
AW = pAW *=D + n, Err(W *-1)

* Updates using a running average of the gradient



Momentum and incremental updates

&=

e The momentum method
AW = pAW &=D + i, Err(W *-1)

* Incremental SGD and mini-batch gradients tend
to have high variance

e Momentum smooths out the variations

— Smoother and faster convergence



Nestorov’s Accelerated Gradient

f
AAI’O

* Atany iteration, to compute the current step:
— First extend the previous step
— Then compute the gradient at the resultant position
— Add the two to obtain the final step
* This also applies directly to incremental update methods

— The accelerated gradient smooths out the variance in the
gradients



More recent methods

e Several newer methods have been proposed that
follow the general pattern of enhancing long-
term trends to smooth out the variations of the
mini-batch gradient
— RMS Prop
— ADAM: very popular in practice

— Adagrad
— AdaDelta

* All roughly equivalent in performance



Variance-normalized step

M M

* |n recent past
— Total movement in Y component of updates is high
— Movement in X components is lower
* Current update, modify usual gradient-based update:
— Scale down Y component
— Scale up X component
* Avariety of algorithms have been proposed on this premise

— We will see a popular example
96



RMS Prop

* Notation:
— Updates are by parameter

— Sum derivative of divergence w.r.t any individual
parameter w is shown as d,,D

— The squared derivative is 92D = (9,,D)?

— The mean squared derivative is a running estimate of the
average squared derivative. We will show this as E[02 D]

 Modified update rule: We want to
— scale down updates with large mean squared derivatives
— scale up updates with small mean squared derivatives

97



RMS Prop

* This is a variant on the basic mini-batch SGD algorithm

* Procedure:

— Maintain a running estimate of the mean squared value of
derivatives for each parameter

— Scale update of the parameter by the inverse of the root mean
squared derivative

E[05D]y = YE[05D]x-1 + (1 — y)(85D)y

n
Wip1 = Wi — 0w D

98



RMS Prop (updates are for each
oo weight of each layer)

— Randomly shuffle inputs to change their order
— Initialize: k = 1; for all weights w in all layers, E[02D], =
— Forallt = 1:B: T (incrementing in blocks of B inputs)
 For all weights in all layers initialize (d,,D); = 0
* Forb =0:B—-1

— Compute

» Output Y (X;,p)

dDiv(Y(X¢+p),de+p)
dw
dDiv(Y(X¢+p),de+p)

» Compute gradient

» Compute(d,,D); +=

dw

* update:
E[o},D], =vE[o;D] _ + (1 —-y)(a;D)
n

Wii1 = Wi — d.,D
* JE[®2D], +€

e k =k+1
o Until E(WD, W@ . W) )has converged

99



Visualizing the optimizers: Beale’s Function

i R SGD -
| — Momentum
—— NAG g
- Adagrad
Adadelta
Rmsprop

i

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

101



Visualizing the optimizers: Long Valley

-  SGD
= Momentum
= NAG
- Adagrad
Adadelta
4 Rmsprop
2
0
-2
-4

1.0

http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

102



Saddle Point

- SGD

[ ]
[ ]
Adadelta

—  Rmsprop

- Momentum

- NAG
- Adagrad

1.0—1.0

iImizers

0.0

Visualizing the opt

tions-for.html

-anima

//www.denizyuret.com/2015/03/alec-radfords

http

103



Story so far

* Gradient descent can be sped up by incremental
updates
— Convergence is guaranteed under most conditions

— Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

— Mini-batch updates: update after batches. Can be more
efficient than SGD

* Convergence can be improved using smoothed updates

— RMSprop and more advanced techniques



Topics for the day

Incremental updates
Revisiting “trend” algorithms
Generalization

Tricks of the trade
— Divergences..

— Activations

— Normalizations



Tricks of the trade..

* To make the network converge better
— The Divergence
— Dropout
— Batch normalization

— Other tricks

* Gradient clipping
* Data augmentation
* Other hacks..



Training Neural Nets by Gradient Descent:
The Divergence

Total training error:

1
Err = 72 Div(Y,, dy Wy, W,, ..., Wy)
t

* The convergence of the gradient descent
depends on the divergence
— Ideally, must have a shape that results in a
significant gradient in the right direction outside

the optimum

* To “guide” the algorithm to the right solution



Desiderata for a good divergence

= &

<

* Must be smooth and not have many poor local optima

* Low slopes far from the optimum == bad

— Initial estimates far from the optimum will take forever to
converge

* High slopes near the optimum == bad
— Steep gradients

108



Desiderata for a good divergence

= &

Functions that are shallow far from the optimum will result in very small steps during optimization
— Slow convergence of gradient descent
Functions that are steep near the optimum will result in large steps and overshoot during
optimization
— Gradient descent will not converge easily
The best type of divergence is steep far from the optimum, but shallow at the optimum

— But not too shallow: ideally quadratic in nature
109



Choices for divergence

1 2 3 4 0
|| !
Softmax

Desired output:  d

Desired output:  [0,0, ..., 1, ..., 0]

L2 Div = (y—d)?

Div = Z()’i —d;)?
i

KL Div = dlog(y) + (1 — d) log(1 — y)

Div = Z d;log(y;)
i

* Most common choices:
the KL divergence

The L2 divergence and

110



L2 or KL?

 The L2 divergence has long been favored in
most applications

* |tis particularly appropriate when attempting
to perform regression

— Numeric prediction

* The KL divergence is better when the intent is
classification

— The output is a probability vector



L2 or KL

L2 div KL div
100

800 —
80

700

60

600

500

400

300

200

100

* Plot of L2 and KL divergences for a single perceptron, as
function of weights

— Setup: 2-dimensional input
— 100 training examples randomly generated

112



The problem of covariate shifts

* Training assumes the training data are all similarly distributed

— Minibatches have similar distribution



The problem of covariate shifts

* Training assumes the training data are all similarly distributed
— Minibatches have similar distribution

* |n practice, each minibatch may have a different distribution
— A “covariate shift”
— Which may occur in each layer of the network



The problem of covariate shifts

* Training assumes the training data are all similarly distributed
— Minibatches have similar distribution

* In practice, each minibatch may have a different distribution
— A “covariate shift”

e Covariate shifts can be large!
— All covariate shifts can affect training badly



Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches



Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches



Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches



Solution: Move all subgroups to a “standard”
location

®

e “Move” all batches to have a mean of 0 and unit
standard deviation

— Eliminates covariate shift between batches



Solution: Move all subgroups to a “standard”
location

e “Move” all batches to have a mean of O and unit
standard deviation

— Eliminates covariate shift between batches



Solution: Move all subgroups to a “standard”
location

 “Move” all batches to have a mean of 0 and unit
standard deviation
— Eliminates covariate shift between batches
— Then move the entire collection to the appropriate location



Batch normalization

X, 5
O—7
X, , 5
1 1 1

* Batch normalization is a covariate adjustment unit that happens
after the weighted addition of inputs but before the application of

activation
— |Is done independently for each unit, to simplify computation

* Training: The adjustment occurs over individual minibatches



Batch normalization
zZ = ijij + b

Covariate shift to Shift to right

standard position position
Iy \ /
Zi — Up —
U = Zi=)ui+f
OB

Neuron-specific terms
* BN aggregates the statistics over a minibatch and normalizes the
batch by them

 Normalized instances are “shifted” to a unit-specific location



- Batch normalization: Training
ZZZWjij+b

' 7 Fatch normaljzatiorl 2
P (o —

Iy
B B Z; — U
1 1 u: = L £ a— .
Hp = % ) 7| |of = Ez(zi—ug)z ‘T JoZie AT YUEE
i=1 i=1

BN aggregates the statistics over a minibatch and normalizes the
batch by them

 Normalized instances are “shifted” to a unit-specific location



- Batch normalization: Training
ZZZWjij+b

' 7 Fatch normaljzatiorl 2
P (o —

Minibatch size Minibatch mean

B
1 1 . — /_
——E - 2—_E )2 (BT Z;=yu; +
Up = B Zl O-B_ B 1(Zl luB) l /O-l§+€ L yl ﬁ
1=

ﬂ / Minibatch standard deviation

Zi — Up

BN aggregates the statistics over a minibatch and normalizes the
batch by them

Normalized instances are “shifted” to a unit-specific location



- Batch normalization: Training
ZZZWjij+b

' 7 Fatch normaljzatiorl 2
P (o —

Normalize minibatch to Shift to right

Zero-mean unit variance position
i \ /
B B Z; — U
1 1 Uu; = L £ 7 . — 5
o= 5,50k = g ) - [T Jogag  BETAEE
i=1 i=1

BN aggregates the statistics over a minibatch and normalizes the
batch by them
 Normalized instances are “shifted” to a unit-specific location



Batch normalization:
Backpropagation

il dDiv .
dzZ

IN"1
u = Zi — HUB
i_
2
iy VO T €

|
M=
N

Up =

B
1
|0k = 5 ) Gi—us)’
=1

dDiv
dy

F(2)

° 7 atch normalizatio A l
: D (0 )—

Zi=yu;+p




Batch normalization:

Backpropagation
dDiv _ dDiv Parameters to be
dp dz " learned
dDiv_ dDiv
dy " dz
il lev_ ,(A dDiv
az -
iy

1 ZI»lui_'ﬁy

Batch normalization

u;

z
|
M=

N

Up =

B
1
|0k = 5 ) Gi—us)’
=1




Batch normalization:

Backpropagation
dDiv _ dDiv . Parameters to be
dp dz learned
dDiv B dDiv
dy " dz
dDiv dDiv
Tu 14 1z dDiv dDiv

— =)

|

Il
=

B 1 B
Zzi 05 = EZ(ZL' — HB)Z
] i=1




dDiv
do2

i=1

B
dDiv

aui

Batch normalization:
Backpropagation

-1 _
(2 —1p) - (o + &) 72

DO —

Batch nor

Up

|

-

zatlon

1 &
= EZ(ZL' — up)?
=1

u; =

Zi — Up

JOoi + €

=yu; +p




Batch normalization:
Backpropagation

B
dDiv . dDiv

dg2 ou;
B=1 7

-1 _
(2 —1p) - (o + &) 72

N

Influence diagram \

N \Z'l #H—O—

Batch nor zatlon

Zi — Up

u; =

Zi=yu;+p
JOoi +€ l l

(us) 15
EZ(ZL' - HB)Z
=1




Batch normalization:
Backpropagation

B
dDiv . dDiv
doZ

—1 _3
2w, i) 5 @O /2
=

aDiv ( = oDiv 1 >+ oDiv T, —2(z — pip)

T L 0u; \[o2 + € dog b

Ly

D () —

Batch normalization

Zi — Up

u; =

Zi=yu;+p
JOoi +€ l l

z
|
M=

N

Up =

B
1
|0k = 5 ) Gi—us)’
=1




B
dDiv

Batch normalization:
Backpropagation

-1 _
(2 —1p) - (o + &) 72

dog B

>+aDw.zi1—uz—4@)

z_| :
—

tch normalizati

B
Zi — Up

Joi + €

u; =

B
1
|0k = 5 ) Gi—us)’
=1

Influence diagram




Batch normalization:
Backpropagation

aDw

=) —(aB+e) 2

aDw — dDiv Y2 ,—2(z; — ug)
+—
au’l O' +E dog B
dDiv _ dDiv 1 +6Div 2(z; —ug) 0dDiv 1
0w JoZte 005 B oup B

Batch normalization

Zi — Up
u; =

B
1 , 1 B , \/O'é + €
Up = EZZL' op = EZ(ZL' — Ug)
=1

ﬁIIqul 2y




Batch normalization:
Backpropagation

aDw

=) —(aB+e) 2

aDw — dDiv Y2 ,—2(z; — ug)
au’l O' +E 30'5 B
dDiv _ dDiv 1 +6Div 2(z; —ug) 0dDiv 1
0w JoZte 005 B oup B

Batch normalization

ﬁl»lulq'z

oDiv
aZi

The rest of backprop continues from




Batch normalization: Inference

7 Fatch normalizatio 2
T I y

7. —
In31 l UBN

L Z;=yu +
Joyre TS

 On test data, BN requires ug and o5.
* We will use the average over all training minibatches

1
HBN = Nbatches z ug (batch)
batch
5 B

_ 2
BN = (B —1)Nbatches Z op (batch)

batch

* Note: these are neuron-specific

— ug(batch) and o5 (batch) here are obtained from the final converged network
— The B/(B — 1) term gives us an unbiased estimator for the variance



Batch normalization

e Batch normalization may only be applied to some layers
— Or even only selected neurons in the layer

* Improves both convergence rate and neural network performance
— Anecdotal evidence that BN eliminates the need for dropout

— To get maximum benefit from BN, learning rates must be increased
and learning rate decay can be faster

* Since the data generally remain in the high-gradient regions of the activations

— Also needs better randomization of training data order



Batch Normalization: Typical result

0.8
E RUTERY I P -
0.7 - N‘- - -
0.6H;-
= = = |nception
= = BN-Baseline
osg-t BN-x5
BN—x30
+ -+ BN-x5-Sigmoid
4  Steps to match Inception

0.4

10M 15M 20M 25M 30M

* Performance on Imagenet, from loffe and Szegedy, JMLR
2015



The problem of data
underspecification

* The figures shown so far were fake news..



Learning the network
/ ]
@

 We attempt to learn an entire function from just

a few snapshots of it



General approach to training

Black lines: error when
\\ function is above desired
output

Blue lines: error when
function is below desired
output

F=) 0= f(x, W))?

* Define an error between the actual network output for
any parameter value and the desired output

— Error typically defined as the sum of the squared error over
individual training instances



Overfitting

* Problem: Network may just learn the values at
the inputs

— Learn the red curve instead of the dotted blue one

e Given only the red vertical bars as inputs



Data under-specification

<>

@/
-
=
-
" -

A

Consider a binary 100-dimensional input
There are 2199=1030 possible inputs

Complete specification of the function will require specification of 103° output
values

A training set with only 10*° training instances will be off by a factor of 101>

143



Data under-specification in learning

X<D\® Find the function! %
\q/ o

N

A

Consider a binary 100-dimensional input
There are 2199=1030 possible inputs

Complete specification of the function will require specification of 103° output
values

A training set with only 10*° training instances will be off by a factor of 101>

144



Need “smoothing” constraints

>

-
----————————

-
-
”

* Need additional constraints that will “fill in”
the missing regions acceptably

— Generalization



Smoothness through weight

Jolg

lat

manipu

a

y

* [llustrative example: Simple binary classifier

— The “desired” output is generally smooth



Smoothness through weight

manipulation
K
b qp——
;-—.—-—ﬁ// >

* |llustrative example: Simple binary classifier
— The “desired” output is generally smooth
» Capture statistical or average trends

— An unconstrained model will model individual instances
instead



. The unconstrained model

* |llustrative example: Simple binary classifier
— The “desired” output is generally smooth
» Capture statistical or average trends

— An unconstrained model will model individual instances
instead



i
W NN
)

Why overfitting

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes

in output



The individual perceptron

-

e Using a sigmoid activation
— As |w| increases, the response becomes steeper

10



Smoothness through weight

manipulation

1

0.9

0.8

0.7 [

0.6

0.5

04r

03r

0.2

01r

0

J

-10

* Steep changes that enable overfitted responses are

facilitated by perceptrons with large w

-5

0

10



Smoothness through weight
manipulation

t’ fhir

y !
| /{éf/w

51 0.7
429 S ONNN
v SR
NN !

e ‘r‘.'r./ L i R i
e O O - % =
] " 7
\'\\ ? P ."'.’
oA
A

) \‘I\\,\

74

v

e Steep changes that enable overfitted response%xare
facilitated by perceptrons with large w

e Constraining the weights w to be low will force slower
perceptrons and smoother output response



Objective function for neural
networks

Y, Desired output of network: d;

Error on i-th training input:  Div(Y,, d; Wi, W5, ..., W)

Batch training error:

1
Err(WlJ Wz, sery WK) — TZ Div(ytl dt: Wl) WZ) L’ WK)
t

e Conventional training: minimize the total error:

Wi, Wy, ..., W = argmin Err(Wy, W,, ..., Wg)
Wi Wo,... Wi

153



Smoothness through weight
constraints

* Regularized training: minimize the error while also minimizing the
weights

1
LWy, Wy, ..., W) = Err(Wy, W,, ..., W) + EAZIIWRII%
k

Wy, W, ...,Wix = argmin LWy, W,, ..., Wg)
Wy Wo, ... Wk

* Aisthe regularization parameter whose value depends on how
important it is for us to want to minimize the weights

* Increasing | assigns greater importance to shrinking the weights

— Make greater error on training data, to obtain a more acceptable network

154




Regularizing the weights

1 1
LWy, Wy, o, W) =2 ) Div(Veyde) +52 ) Wl
t k
Batch mode:

1
AWk — Tz VWkDiV(Yt; dt)T + AWk
t

SGD:
AWk — VWkDiU(Yt' dt)T + /IWk
Minibatch:
1t+b—1
AW = 2 Vo, Div(Yy, )T + AW
=t
Update rule:

Wk — Wk — T]AWR



Incremental Update: Mini-batch
update

* Given (Xq,dy), (X5,d5),..., X7, d7)
* |Initialize all weights Wy, W,, ..., Wy, j =10
* Do:
— Randomly permute (X;,d,), (X5,d>5),..., (X7, dr)
— Fort = 1:b:T
.« j=j+1
For every layer k:
— AW, =0
* Fort'=t:t+b-1

— Forevery layer k:
» Compute Vi, Div(Y;, d;)

» AWk - AWk + VWkDiU(Yt, dt)

Update

— For every layer k:

Wk = Wk — T]](AWR + A'Wk)

 Until Err has converged 156



Smoothness through network
structure

MLPs naturally impose constraints <\

MLPs are universal approximators /
— Arbitrarily increasing size can give /

you arbitrarily wiggly functions \<

— The function will remain ill-defined
on the majority of the space

For a given number of parameters deeper networks impose
more smoothness than shallow ones

— Each layer works on the already smooth surface output by the
previous layer

157



Even when we get it all right

n - B M\\
E _,\W/

e Typical results (varies with initialization)

e 1000 training points Many orders of magnitude more than

e All the training tricks known to mankind

you usually get

158



But depth and training data help

3 layers 4 layers 3 layers 4 layers

6 layers 11 layers 6 layers 11 layers

 Deeper networks seem to learn better, for the same 10000 trainin
number of total neurons

— Implicit smoothness constraints

* As opposed to explicit constraints from more conventional
classification models

instances

e Similar functions not learnable using more usual

pattern-recognition models!! 7



Regularization..

* Other techniques have been proposed to
improve the smoothness of the learned
function
— L, regularization of network activations
— Regularizing with added noise..

* Possibly the most influential method has been
“dropout”



Dropout
O

TR

\ 1
v\ o
HodEC
A

\
A

NI NN
e

TVARX AN
NN
N
W

* During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a



Dropout

* During training: For each input, at each iteration,

“turn off” each neuron with a probability 1-a
— Also turn off inputs similarly



Dropout

Input (O
\\‘l{/ﬂ\\vo
N

‘A
Wt

\\\%y V.

17 AW
’\\ »\‘ \ Q Mb
X, N Q}«h"A.A'AMA

AR

DAY
§i,llm‘}& ‘;;
‘ :f"‘\\" “
LA A
A
* During training: For each input, at each iteration, “turn off”

»
AW
each neuron (including inputs) with a probability 1-a

)
N A
N
\
O

— In practice, set them to 0 according to the success of a Bernoulli
random number generator with success probability 1-a



Dropout

In A\

\l/{/' NSO
/NN

Sl W\ output
\99 17 O ‘\Wyg O

d N0

\,.‘,
Y / \
NEHA ~AHA

/’/
WA
W
X A X
SR NN A\
L
N~/ N
?'(,41‘,\\7 "
NN
K, A" \
N “\¥

Inpu 7 O
RO\

Wi
\ r'v! "‘.\.

\F X3

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a

— In practice, set them to 0 according to the success of a Bernoulli
random number generator with success probability 1-a



Dropout

lé"
K,

Inu “ ‘
()

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

During training: Backpropagation is effectively performed only over the remaining
network
— The effective network is different for different inputs

— Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes
* For the remaining, the gradient is just 0



Statistical Interpretation

\‘(\.A

K
N

Y, X, ./ ) ‘/'.“o
.

* For a network with a total of N neurons, there are 2N
possible sub-networks

— Obtained by choosing different subsets of nodes
— Dropout samples over all 2N possible networks

— Effective learns a network that averages over all possible
networks

* Bagging



The forward pass

Input: D dimensional vector x = [x;, j = 1...D]

Set:

— Dy, = D, is the width of the 0% (input) layer

(0)

- y;)=x;, j=1..D;

Forlayerk =1..N
— Forj=1..D,

k=1..N
T

—szl

AL

'j i=0""i,j /i

o)

— Ifmask(k,j)
(k)

— Else

» y] =

OIS

w®yED 4 p®

* If (k = dropout layer):
— mask(k,j) = Bernoulli(a)

k
» Y —y,-( )Ja

Output:

v =y",j=1.Dy

167



Backward Pass

e Output layer (N) :
oDiv _ dDiv(Y,d)

aY; 0 yi(N)

0Div / ( (k)) 0Div
—_ = yA
azi(k) Ji l ayi(k)

* Forlayerk = N — 1downto 0

— Fori=1..D,
* If (not dropout layer OR mask (k, i))

dDiv (k+1) @Div
— —— =Y.w" —_—
ayl(k) 2] ij aZ](-k+1)

_ 9biv _ f;é (Z(k)) oDiv

azi(") i ayi(k)
_ % = y.(k)% forj=1..Dy4q
awij J 0z;
* Else
dDiv

_ 9w _
8z 168



What each neuron computes

* Each neuron actually has the following activation:

DG(Z Wy - 1>+b(k>>

— Where D is a Bernoulli variable that takes a value 1 with probability o

D may be switched on or off for individual sub networks, but over
the ensemble, the expected output of the neuron is

¢ _M(Z w (- 1>+b<k)>

* During test time, we will use the expected output of the neuron

— Which corresponds to the bagged average output
— Consists of simply scaling the output of each neuron by a



Dropout during test: implementation

Inpuf apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

i —om(z w .(k 1)+b(k)>
= oo (Z Wi aa(Z w~ 1) (k 2) +b(k 1)>+b(k))
J
o[ o) Sk ) )

J ]

Weest = OWerained

* Instead of multiplying every output by a, multiply
all weights by a



Dropout : alternate implementation

““ \'0»'
/
';:::% v
“0»‘“

* Alternately, during training, replace the activation
of all neurons in the network by a™a(.)
— This does not affect the dropout procedure itself

— We will use a(.) as the activation during testing, and not
modify the weights



Dropout: Typical results

2sff e T — S —

ey

150

Classification Error %

: ; \\‘é
AL,

1.0pF prrmrermrmsesnreneey vt ' A

0 200000 400000 600000 800000 1000000
Number of weight updates

 From Srivastava et al., 2013. Test error for different
architectures on MNIST with and without dropout

— 2-4 hidden layers with 1024-2048 units



Other heuristics: Early stopping

validation

error

training

—
epochs

* Continued training can result in severe over
fitting to training data
— Track performance on a held-out validation set

— Apply one of several early-stopping criterion to
terminate training when performance on validation
set degrades significantly



Additional heuristics: Gradient
clipping

Loss j

e Often the derivative will be too high

— When the divergence has a steep slope
— This can result in instability

* Gradient clipping: set a ceiling on derivative value
if 0,D > 0 then 0,,D =0
— Typical 6 value is 5

174



Additional heuristics: Data
Augmentation

r = *W‘
o = ¢

* Available training data will often be small

 “Extend” it by distorting examples in a variety of
ways to generate synthetic labelled examples

— E.g. rotation, stretching, adding noise, other distortion



Other tricks

* Normalize the input:

— Apply covariate shift to entire training data to make it O
mean, unit variance

— Equivalent of batch norm on input

* A variety of other tricks are applied
— Initialization techniques

* Typically initialized randomly

* Key point: neurons with identical connections that are identically
initialized will never diverge

— Practice makes man perfect



Setting up a problem

Obtain training data
— Use appropriate representation for inputs and outputs
Choose network architecture

— More neurons need more data
— Deep is better, but harder to train

Choose the appropriate divergence function
— Choose regularization

Choose heuristics (batch norm, dropout, etc.)

Choose optimization algorithm
— E.g. Adagrad

Perform a grid search for hyper parameters (learning rate, regularization
parameter, ...) on held-out data

Train

— Evaluate periodically on validation data, for early stopping if required



In closing

* Have outlined the process of training neural
networks

— Some history

— A variety of algorithms

— Gradient-descent based techniques
— Regularization for generalization

— Algorithms for convergence

— Heuristics

* Practice makes perfect..



