
Neural Networks:
Optimization Part 2

Intro to Deep Learning, Fall 2017

Quiz 3

Quiz 3

• Which of the following are necessary
conditions for a value x to be a local minimum
of a twice differentiable function f defined
over the reals having gradient g and hessian H
(select all that apply)? Comparison operators
are applied elementwise in this question

➢g(x) ? 0

➢eigenvalues of H(x) ? 0

Quiz 3

• Select all of the properties that are true of the
gradient of an arbitrary differentiable scalar
function with a vector input
➢It is invariant to a scaling transformation of the input

➢It is orthogonal to the level curve of the function

➢It is the direction in which the function is increasing
most quickly

➢The dot product of <g(x), x> gives the instantaneous
change in function value

➢f(y) – f(x) ≥ <g(x), (x – y)>

Quiz 3

• T/F: In a fully connected multi-layer
perceptron with a softmax as its output layer,
every weight in the network influences
every output in the network

• T/F: In subgradient descent, any (negated)
subgradient may be used as the direction of
descent

Quiz 3

• T/F: The solution that gradient descent finds is
not sensitive to the initialization of the
weights in the network

Quiz 3

• In class, we discussed how back propagation with a mean
squared error loss function may not find a solution which
separates the classes in the training data even when the
classes are linearly separable. Which of the following
statements are true (select all that apply)?
➢ Back-propagation can get stuck in a local minimum that does

not separate the data
➢ The global minimum may not separate the data
➢ The perceptron learning rule may also not find a solution which

separates the classes
➢ The back-propagation is higher variance than the perceptron

algorithm
➢ The back-propagation algorithm is more biased than the

perceptron algorithm

Quiz 3

• T/F If the Hessian of a loss function with
respect to the parameters in a network is
diagonal, then QuickProp is equivalent to
gradient descent with optimal step size.

Quiz 3

• Which of the following is True of the RProp algorithm?
➢ It sets the step size in a given component to to either a -1

or 1

➢ It increases the step size for a given component when the
gradient has not changed size in that component

➢When the sign of the gradient has changed in any
component after a step, RProp undoes that step

➢ It uses the sign of the gradient in each component to
determine which parameters in the network will be
adjusted during the update

➢ It uses the sign of the gradient to approximate second
order information about the loss surface

Quiz 3

• When gradient descent is used to minimize a non-convex
function, why is a large step size (e.g. more than twice the
optimal step size for a quadratic approximation) useful for
escaping "bad" local minima (select all that apply)?
➢ A large step size tends to make the algorithm converge to a

global minimum
➢ A large step size tends to make the algorithm diverge when the

function value is changing very quickly
➢ A large step size tends to make the algorithm converge only

where a local minimum is close in function value to the global
minimum

➢ A large step size increases the variance of the parameter
estimates

Quiz 3

• When gradient descent is used to minimize a non-convex function,
why is a large step size (e.g. more than twice the optimal step size
for a quadratic approximation) useful for escaping "bad" local
minima (select all that apply)?
➢ A large step size tends to make the algorithm converge to a global

minimum
➢ A large step size tends to make the algorithm diverge when the

function value is changing very quickly
➢ A large step size tends to make the algorithm converge only where a

local minimum is close in function value to the global minimum
➢ A large step size increases the variance of the parameter estimates:

We’re accepting this answer because it’s open to interpretation:
➢ Increases the variance across single updates
➢ Decreases the variance across runs
➢ Why? We are biasing towards a type of answer

Quiz 3

• When the gradient of a twice differentiable
function is normalized by the Hessian during
gradient descent, this is equivalent to a
reparameterization of the function which _____
(select all that apply)
➢Makes the optimal learning rate the same for every

parameter
➢Makes the function parameter space less eccentric
➢Makes the function parameter space axis aligned
➢Can also be achieved by rescaling the parameters

independently

Recap

• Neural networks are universal approximators

• We must train them to approximate any

function

• Networks are trained to minimize total “error”

on a training set

– We do so through empirical risk minimization

• We use variants of gradient descent to do so

– Gradients are computed through backpropagation

Recap

• Vanilla gradient descent may be too slow or unstable

• Better convergence can be obtained through

– Second order methods that normalize the variation across
dimensions

– Adaptive or decaying learning rates can improve
convergence

– Methods like Rprop that decouple the dimensions can
improve convergence

– TODAY: Momentum methods which emphasize directions
of steady improvement and deemphasize unstable
directions

The momentum methods

• Maintain a running average of all
past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the estimate
swings, the positive and negative
swings will cancel out in the
average

• Update with the running
average, rather than the current
gradient

Momentum Update

• The momentum method maintains a running average of all gradients
until the current step

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

𝑊(𝑘) = 𝑊(𝑘−1) + ∆𝑊(𝑘)

– Typical 𝛽 value is 0.9

• The running average steps

– Get longer in directions where gradient stays in the same sign

– Become shorter in directions where the sign keeps flipping

Plain gradient update With momentum

Training by gradient descent
• Initialize all weights 𝐖1,𝐖2, … ,𝐖𝐾

• Do:

– For all layers 𝑘, initialize 𝛻𝑊𝑘
𝐸𝑟𝑟 = 0

– For all 𝑡 = 1: 𝑇

• For every layer 𝑘:

– Compute 𝛻𝑊𝑘
𝑫𝒊𝒗(𝑌𝑡, 𝑑𝑡)

– Compute 𝛻𝑊𝑘
𝐸𝑟𝑟 +=

1

𝑇
𝛻𝑊𝑘

𝑫𝒊𝒗(𝑌𝑡, 𝑑𝑡)

– For every layer 𝑘:
𝑊𝑘 = 𝑊𝑘 − 𝜂𝛻𝑊𝑘

𝐸𝑟𝑟

• Until 𝐸𝑟𝑟 has converged

17

Training with momentum
• Initialize all weights 𝐖1,𝐖2, … ,𝐖𝐾

• Do:

– For all layers 𝑘, initialize 𝛻𝑊𝑘
𝐸𝑟𝑟 = 0, Δ𝑊𝑘 = 0

– For all 𝑡 = 1: 𝑇

• For every layer 𝑘:

– Compute 𝛻𝑊𝑘
𝑫𝒊𝒗(𝑌𝑡, 𝑑𝑡)

– Compute 𝛻𝑊𝑘
𝐸𝑟𝑟 +=

1

𝑇
𝛻𝑊𝑘

𝑫𝒊𝒗(𝑌𝑡, 𝑑𝑡)

– For every layer 𝑘:
Δ𝑊𝑘 = 𝛽Δ𝑊𝑘 − 𝜂𝛻𝑊𝑘

𝐸𝑟𝑟

𝑊𝑘 = 𝑊𝑘 + Δ𝑊𝑘

• Until 𝐸𝑟𝑟 has converged

18

Momentum Update

• The momentum method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the historical average step

Momentum Update

• The momentum method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the historical average step

Momentum Update

• The momentum method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

• At any iteration, to compute the current step:

– First computes the gradient step at the current location

– Then adds in the scaled previous step
• Which is actually a running average

Momentum Update

• The momentum method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the scaled previous step

• Which is actually a running average

– To get the final step

Momentum update

• Takes a step along the past
running average after walking
along the gradient

• The procedure can be made more
optimal by reversing the order of
operations..

Nestorov’s Accelerated
Gradient

• Change the order of operations

• At any iteration, to compute the current step:

– First extend by the (scaled) historical average

– Then compute the gradient at the resultant
position

– Add the two to obtain the final step

Nestorov’s Accelerated
Gradient

• Change the order of operations

• At any iteration, to compute the current step:

– First extend the previous step

– Then compute the gradient at the resultant
position

– Add the two to obtain the final step

Nestorov’s Accelerated
Gradient

• Change the order of operations

• At any iteration, to compute the current step:

– First extend the previous step

– Then compute the gradient step at the resultant
position

– Add the two to obtain the final step

Nestorov’s Accelerated
Gradient

• Change the order of operations

• At any iteration, to compute the current step:

– First extend the previous step

– Then compute the gradient step at the resultant
position

– Add the two to obtain the final step

Nestorov’s Accelerated Gradient

• Nestorov’s method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) − 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘) + 𝛽∆𝑊(𝑘−1)

𝑊(𝑘) = 𝑊(𝑘−1) + ∆𝑊(𝑘)

Nestorov’s Accelerated Gradient

• Comparison with momentum

(example from Hinton)

• Converges much faster

Moving on: Topics for the day

• Incremental updates

• Revisiting “trend” algorithms

• Generalization

• Tricks of the trade

– Divergences..

– Activations

– Normalizations

The training formulation

• Given input output pairs at a number of
locations, estimate the entire function

Input (X)

output (y)

Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the
training points

Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the
training points

Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the
training points

Gradient descent

• Start with an initial function

• Adjust its value at all points to make the outputs closer to the required
value

– Gradient descent adjusts parameters to adjust the function value at all points

– Repeat this iteratively until we get arbitrarily close to the target function at the
training points

Effect of number of samples

• Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points

– We must process all training points before making a single
adjustment

– “Batch” update

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch”
update

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch”
update

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch”
update

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch”
update

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time

– Keep adjustments small

– Eventually, when we have processed all the training points, we will
have adjusted the entire function

• With greater overall adjustment than we would if we made a single “Batch”
update

Incremental Update: Stochastic
Gradient Descent

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇

• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾

• Do:

– For all 𝑡 = 1: 𝑇

• For every layer 𝑘:

– Compute 𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– Update

𝑊𝑘 = 𝑊𝑘 − 𝜂𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Until 𝐸𝑟𝑟 has converged
43

Caveats: order of presentation

• If we loop through the samples in the same

order, we may get cyclic behavior

Caveats: order of presentation

• If we loop through the samples in the same

order, we may get cyclic behavior

• We must go through them randomly

Caveats: order of presentation

• If we loop through the samples in the same

order, we may get cyclic behavior

Caveats: order of presentation

• If we loop through the samples in the same

order, we may get cyclic behavior

Caveats: order of presentation

• If we loop through the samples in the same

order, we may get cyclic behavior

Caveats: order of presentation

• If we loop through the samples in the same order,

we may get cyclic behavior

• We must go through them randomly to get more

convergent behavior

Caveats: learning rate

• Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances

– Correcting the function for individual instances will lead to
never-ending, non-convergent updates

– We must shrink the learning rate with iterations to prevent this

• Correction for individual instances with the eventual miniscule
learning rates will not modify the function

Input (X)

output (y)

Incremental Update: Stochastic
Gradient Descent

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾; 𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For all 𝑡 = 1: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer 𝑘:

– Compute 𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– Update

𝑊𝑘 = 𝑊𝑘 − 𝜂𝑗𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Until 𝐸𝑟𝑟 has converged
51

Incremental Update: Stochastic
Gradient Descent

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾; 𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For all 𝑡 = 1: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer 𝑘:

– Compute 𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– Update

𝑊𝑘 = 𝑊𝑘 − 𝜂𝑗𝛻𝑊𝑘
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Until 𝐸𝑟𝑟 has converged
52

Randomize input order

Learning rate reduces with j

Stochastic Gradient Descent

• The iterations can make multiple passes over
the data

• A single pass through the entire training data
is called an “epoch”

– An epoch over a training set with 𝑇 samples
results in 𝑇 updates of parameters

When does SGD work
• SGD converges “almost surely” to a global or local minimum for most

functions

– Sufficient condition: step sizes follow the following conditions

෍

𝑘

𝜂𝑘 = ∞

• Eventually the entire parameter space can be searched

෍

𝑘

𝜂𝑘
2 < ∞

• The steps shrink

– The fastest converging series that satisfies both above requirements is

𝜂𝑘 ∝
1

𝑘
• This is the optimal rate of shrinking the step size for strongly convex functions

– More generally, the learning rates are optimally determined

• If the loss is convex, SGD converges to the optimal solution

• For non-convex losses SGD converges to a local minimum

Batch gradient convergence

• In contrast, using the batch update method, for
strongly convex functions,

𝑊(𝑘) −𝑊∗ < 𝑐𝑘 𝑊(0) −𝑊∗

– Giving us the iterations to 𝜖 convergence as 𝑂 𝑙𝑜𝑔
1

𝜖

• For generic convex functions, the 𝜖 convergence is

𝑂
1

𝜖

• Batch gradients converge “faster”

– But SGD performs 𝑇 updates for every batch update

SGD convergence

• We will define convergence in terms of the number of iterations taken to
get within 𝜖 of the optimal solution

– 𝑓 𝑊(𝑘) − 𝑓 𝑊∗ < 𝜖

– Note: 𝑓 𝑊 here is the error on the entire training data, although SGD itself
updates after every training instance

• Using the optimal learning rate 1/𝑘, for strongly convex functions,

𝑊(𝑘) −𝑊∗ <
1

𝑘
𝑊(0) −𝑊∗

– Giving us the iterations to 𝜖 convergence as 𝑂
1

𝜖

• For generically convex (but not strongly convex) function, various proofs

report an 𝜖 convergence of
1

𝑘
using a learning rate of

1

𝑘
.

SGD Convergence: Loss value

If:

• 𝑓 is 𝜆-strongly convex, and

• at step 𝑡 we have a noisy estimate of the
subgradient ො𝑔𝑡 with 𝔼 ො𝑔𝑡

2 ≤ 𝐺2 for all 𝑡,

• and we use step size 𝜂𝑡 = Τ1 𝜆𝑡

Then for any 𝑇 > 1:

𝔼 𝑓 𝑤𝑇 − 𝑓(𝑤∗) ≤
17𝐺2(1 + log 𝑇)

𝜆𝑇

SGD Convergence

• We can bound the expected difference between the
loss over our data using the optimal weights, 𝑤∗, and

the weights at any single iteration, 𝑤𝑇, to 𝒪
log(𝑇)

𝑇
for

strongly convex loss or 𝒪
log(𝑇)

𝑇
for convex loss

• Averaging schemes can improve the bound to 𝒪
1

𝑇

and 𝒪
1

𝑇

• Smoothness of the loss is not required

SGD example

• A simpler problem: K-means

• Note: SGD converges slower

• Also note the rather large variation between runs

– Lets try to understand these results..

Recall: Modelling a function

• To learn a network 𝑓 𝑋;𝑾 to model a function 𝑔(𝑋) we
minimize the expected divergence

෢𝑾 = argmin
𝑊

න
𝑋

𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋 𝑃(𝑋)𝑑𝑋

= argmin
𝑊

𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋
61

𝑌 = 𝑓(𝑋;𝑾) 𝑔(𝑋)

Recall: The Empirical risk

• In practice, we minimize the empirical error

𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 =
1

𝑁
෍

𝑖=1

𝑁

𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

෢𝑾 = argmin
𝑊

𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋

• The expected value of the empirical error is actually the expected divergence

𝐸 𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋
62

Xi

di

Recap: The Empirical risk

• In practice, we minimize the empirical error

𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 =
1

𝑁
෍

𝑖=1

𝑁

𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

෢𝑾 = argmin
𝑊

𝐸𝑟𝑟 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋

• The expected value of the empirical error is actually the expected error

𝐸 𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋 63

Xi

di

The empirical error is an unbiased estimate of the expected error
Though there is no guarantee that minimizing it will minimize the
expected error

Recap: The Empirical risk

• In practice, we minimize the empirical error

𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 =
1

𝑁
෍

𝑖=1

𝑁

𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

෢𝑾 = argmin
𝑊

𝐸𝑟𝑟 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋

• The expected value of the empirical error is actually the expected error

𝐸 𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋 64

Xi

di

The variance of the empirical error: var(Err) = 1/N var(div)
The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that
minimizes the empirical error will differ significantly from the W that
minimizes the expected error

The empirical error is an unbiased estimate of the expected error
Though there is no guarantee that minimizing it will minimize the
expected error

SGD

• At each iteration, SGD focuses on the divergence

of a single sample 𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

• The expected value of the sample error is still the

expected divergence 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋 65

Xi

di

SGD

• At each iteration, SGD focuses on the divergence

of a single sample 𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

• The expected value of the sample error is still the

expected divergence 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋 66

Xi

di

The sample error is also an unbiased estimate of the expected error

SGD

• At each iteration, SGD focuses on the divergence

of a single sample 𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

• The expected value of the sample error is still the

expected divergence 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋 67

Xi

di

The variance of the sample error is the variance of the divergence itself: var(div)
This is N times the variance of the empirical average minimized by batch update

The sample error is also an unbiased estimate of the expected error

Explaining the variance

• The blue curve is the function being approximated

• The red curve is the approximation by the model at a given 𝑊

• The heights of the shaded regions represent the point-by-point error

– The divergence is a function of the error

– We want to find the 𝑊 that minimizes the average divergence

𝑓(𝑥)

𝑔(𝑥;𝑊)

𝑥

Explaining the variance

• Sample estimate approximates the shaded area with the
average length of the lines of these curves is the red curve
itself

• Variance: The spread between the different curves is the
variance

𝑥

𝑓(𝑥)

𝑔(𝑥;𝑊)

Explaining the variance

• Sample estimate approximates the shaded area

with the average length of the lines

• This average length will change with position of

the samples

𝑥

𝑓(𝑥)

𝑔(𝑥;𝑊)

Explaining the variance

• Having more samples makes the estimate more

robust to changes in the position of samples

– The variance of the estimate is smaller

𝑥

𝑓(𝑥)

𝑔(𝑥;𝑊)

Explaining the variance

• Having very few samples makes the estimate

swing wildly with the sample position

– Since our estimator learns the 𝑊 to minimize this

estimate, the learned 𝑊 too can swing wildly

𝑥

𝑓(𝑥)

𝑔(𝑥;𝑊)

With only one sample

Explaining the variance

• Having very few samples makes the estimate

swing wildly with the sample position

– Since our estimator learns the 𝑊 to minimize this

estimate, the learned 𝑊 too can swing wildly

𝑥

𝑓(𝑥)

𝑔(𝑥;𝑊)

With only one sample

Explaining the variance

• Having very few samples makes the estimate

swing wildly with the sample position

– Since our estimator learns the 𝑊 to minimize this

estimate, the learned 𝑊 too can swing wildly

𝑥

𝑓(𝑥)

𝑔(𝑥;𝑊)

With only one sample

SGD example

• A simpler problem: K-means

• Note: SGD converges slower

• Also has large variation between runs

SGD vs batch

• SGD uses the gradient from only one sample
at a time, and is consequently high variance

• But also provides significantly quicker updates
than batch

• Is there a good medium?

Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of
points

– Keep adjustments small

– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the
training data

Incremental Update: Mini-batch
update

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾; 𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For 𝑡 = 1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:

– ∆𝑊𝑘 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻𝑊𝑘
𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡)

» ∆𝑊𝑘 = ∆𝑊𝑘 + 𝛻𝑊𝑘
𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡)

• Update
– For every layer k:

𝑊𝑘 = 𝑊𝑘 − 𝜂𝑗∆𝑊𝑘

• Until 𝐸𝑟𝑟 has converged 78

Incremental Update: Mini-batch
update

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾; 𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For 𝑡 = 1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:

– ∆𝑊𝑘 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻𝑊𝑘
𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡)

» ∆𝑊𝑘 = ∆𝑊𝑘 + 𝛻𝑊𝑘
𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡)

• Update
– For every layer k:

𝑊𝑘 = 𝑊𝑘 − 𝜂𝑗∆𝑊𝑘

• Until 𝐸𝑟𝑟 has converged 79

Mini-batch size

Shrinking step size

Mini Batches

• Mini-batch updates compute and minimize a batch error

𝐵𝑎𝑡𝑐ℎ𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 =
1

𝑏
෍

𝑖=1

𝑏

𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

• The expected value of the batch error is also the expected divergence

𝐸 𝐵𝑎𝑡𝑐ℎ𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋
80

Xi

di

Mini Batches

• Mini-batch updates computes an empirical batch error

𝐵𝑎𝑡𝑐ℎ𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 =
1

𝑏
෍

𝑖=1

𝑏

𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

• The expected value of the batch error is also the expected divergence

𝐸 𝐵𝑎𝑡𝑐ℎ𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋
81

Xi

di

The batch error is also an unbiased estimate of the expected error

Mini Batches

• Mini-batch updates computes an empirical batch error

𝐵𝑎𝑡𝑐ℎ𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 =
1

𝑏
෍

𝑖=1

𝑏

𝑑𝑖𝑣 𝑓 𝑋𝑖;𝑊 , 𝑑𝑖

• The expected value of the batch error is also the expected divergence

𝐸 𝐵𝑎𝑡𝑐ℎ𝐸𝑟𝑟 𝑓 𝑋;𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋;𝑊 , 𝑔 𝑋
82

Xi

di

The variance of the batch error: var(Err) = 1/b var(div)
This will be much smaller than the variance of the sample error in SGD

The batch error is also an unbiased estimate of the expected error

Minibatch convergence

• For convex functions, convergence rate for SGD is 𝒪
1

𝑘
.

• For mini-batch updates with batches of size 𝑏, the

convergence rate is 𝒪
1

𝑏𝑘
+

1

𝑘

– Apparently an improvement of 𝑏 over SGD

– But since the batch size is 𝑏, we perform 𝑏 times as many
computations per iteration as SGD

– We actually get a degradation of 𝑏

• However, in practice

– The objectives are generally not convex; mini-batches are more
effective with the right learning rates

– We also get additional benefits of vector processing

SGD example

• Mini-batch performs comparably to batch
training on this simple problem

– But converges orders of magnitude faster

Measuring Error

• Convergence is generally
defined in terms of the
overall training error

– Not sample or batch error

• Infeasible to actually measure the overall training error
after each iteration

• More typically, we estimate is as

– Divergence or classification error on a held-out set

– Average sample/batch error over the past 𝑁
samples/batches

Training and minibatches

• In practice, training is usually performed using mini-

batches

– The mini-batch size is a hyper parameter to be optimized

• Convergence depends on learning rate

– Simple technique: fix learning rate until the error plateaus,

then reduce learning rate by a fixed factor (e.g. 10)

– Advanced methods: Adaptive updates, where the learning

rate is itself determined as part of the estimation

Training and minibatches

• In practice, training is usually performed using mini-

batches

– The mini-batch size is a hyper parameter to be optimized

• Convergence depends on learning rate

– Simple technique: fix learning rate until the error plateaus,

then reduce learning rate by a fixed factor (e.g. 10)

– Advanced methods: Adaptive updates, where the learning

rate is itself determined as part of the estimation

Recall: Momentum

• The momentum method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) + 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

• Updates using a running average of the gradient

Momentum and incremental updates

• The momentum method

∆𝑊(𝑘) = 𝛽∆𝑊(𝑘−1) + 𝜂𝛻𝑊𝐸𝑟𝑟 𝑊(𝑘−1)

• Incremental SGD and mini-batch gradients tend
to have high variance

• Momentum smooths out the variations

– Smoother and faster convergence

Nestorov’s Accelerated Gradient

• At any iteration, to compute the current step:

– First extend the previous step

– Then compute the gradient at the resultant position

– Add the two to obtain the final step

• This also applies directly to incremental update methods

– The accelerated gradient smooths out the variance in the
gradients

More recent methods

• Several newer methods have been proposed that
follow the general pattern of enhancing long-
term trends to smooth out the variations of the
mini-batch gradient
– RMS Prop

– ADAM: very popular in practice

– Adagrad

– AdaDelta

– …

• All roughly equivalent in performance

Variance-normalized step

• In recent past

– Total movement in Y component of updates is high

– Movement in X components is lower

• Current update, modify usual gradient-based update:

– Scale down Y component

– Scale up X component

• A variety of algorithms have been proposed on this premise

– We will see a popular example
96

RMS Prop

• Notation:
– Updates are by parameter

– Sum derivative of divergence w.r.t any individual
parameter 𝑤 is shown as 𝜕𝑤𝐷

– The squared derivative is 𝜕𝑤
2𝐷 = 𝜕𝑤𝐷

2

– The mean squared derivative is a running estimate of the
average squared derivative. We will show this as 𝐸 𝜕𝑤

2𝐷

• Modified update rule: We want to
– scale down updates with large mean squared derivatives

– scale up updates with small mean squared derivatives
97

RMS Prop

• This is a variant on the basic mini-batch SGD algorithm

• Procedure:

– Maintain a running estimate of the mean squared value of
derivatives for each parameter

– Scale update of the parameter by the inverse of the root mean
squared derivative

𝐸 𝜕𝑤
2𝐷 𝑘 = 𝛾𝐸 𝜕𝑤

2𝐷 𝑘−1 + 1 − 𝛾 𝜕𝑤
2𝐷 𝑘

𝑤𝑘+1 = 𝑤𝑘 −
𝜂

𝐸 𝜕𝑤
2𝐷 𝑘 + 𝜖

𝜕𝑤𝐷

98

RMS Prop (updates are for each
weight of each layer)

• Do:

– Randomly shuffle inputs to change their order

– Initialize: 𝑘 = 1; for all weights 𝑤 in all layers, 𝐸 𝜕𝑤
2𝐷 𝑘 = 0

– For all 𝑡 = 1: 𝐵: 𝑇 (incrementing in blocks of 𝐵 inputs)

• For all weights in all layers initialize 𝜕𝑤𝐷 𝑘 = 0

• For 𝑏 = 0: 𝐵 − 1
– Compute

» Output 𝒀(𝑿𝒕+𝒃)

» Compute gradient
𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕+𝒃),𝒅𝒕+𝒃)

𝒅𝒘

» Compute 𝜕𝑤𝐷 𝑘 +=
𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕+𝒃),𝒅𝒕+𝒃)

𝒅𝒘

• update:

𝑬 𝝏𝒘
𝟐𝑫

𝒌
= 𝜸𝑬 𝝏𝒘

𝟐𝑫
𝒌−𝟏

+ 𝟏 − 𝜸 𝝏𝒘
𝟐𝑫

𝒌

𝒘𝒌+𝟏 = 𝒘𝒌 −
𝜼

𝑬 𝝏𝒘
𝟐𝑫 𝒌 + 𝝐

𝝏𝒘𝑫

• 𝑘 = 𝑘 + 1

• Until 𝐸(𝑾 1 ,𝑾 2 , … ,𝑾 𝐾)has converged
99

Visualizing the optimizers: Beale’s Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

101

Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

102

Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

103

Story so far

• Gradient descent can be sped up by incremental

updates

– Convergence is guaranteed under most conditions

– Stochastic gradient descent: update after each

observation. Can be much faster than batch learning

– Mini-batch updates: update after batches. Can be more

efficient than SGD

• Convergence can be improved using smoothed updates

– RMSprop and more advanced techniques

Topics for the day

• Incremental updates

• Revisiting “trend” algorithms

• Generalization

• Tricks of the trade

– Divergences..

– Activations

– Normalizations

Tricks of the trade..

• To make the network converge better

– The Divergence

– Dropout

– Batch normalization

– Other tricks

• Gradient clipping

• Data augmentation

• Other hacks..

Training Neural Nets by Gradient Descent:
The Divergence

• The convergence of the gradient descent

depends on the divergence

– Ideally, must have a shape that results in a

significant gradient in the right direction outside

the optimum

• To “guide” the algorithm to the right solution

107

Total training error:

𝐸𝑟𝑟 =
𝟏

𝑻
෍

𝒕

𝐷𝑖𝑣(𝒀𝒕, 𝒅𝒕;𝐖1,𝐖2, … ,𝐖𝐾)

Desiderata for a good divergence

• Must be smooth and not have many poor local optima

• Low slopes far from the optimum == bad
– Initial estimates far from the optimum will take forever to

converge

• High slopes near the optimum == bad
– Steep gradients

108

Desiderata for a good divergence

• Functions that are shallow far from the optimum will result in very small steps during optimization

– Slow convergence of gradient descent

• Functions that are steep near the optimum will result in large steps and overshoot during
optimization

– Gradient descent will not converge easily

• The best type of divergence is steep far from the optimum, but shallow at the optimum

– But not too shallow: ideally quadratic in nature

109

Choices for divergence

• Most common choices: The L2 divergence and
the KL divergence 110

Desired output: Desired output:

L2

KL

𝐷𝑖𝑣 = 𝑦 − 𝑑 2

𝑦

𝑑 [0,0, … , 1, … , 0]

𝐷𝑖𝑣 = 𝑑 log 𝑦 + (1 − 𝑑) log 1 − 𝑦

1 2 3 4 0

Softmax

𝐷𝑖𝑣 =෍

𝑖

𝑦𝑖 − 𝑑𝑖
2

𝐷𝑖𝑣 =෍

𝑖

𝑑𝑖log(𝑦𝑖)

L2 or KL?

• The L2 divergence has long been favored in
most applications

• It is particularly appropriate when attempting
to perform regression

– Numeric prediction

• The KL divergence is better when the intent is
classification

– The output is a probability vector

111

L2 or KL

• Plot of L2 and KL divergences for a single perceptron, as
function of weights

– Setup: 2-dimensional input

– 100 training examples randomly generated
112

The problem of covariate shifts

• Training assumes the training data are all similarly distributed

– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution

– A “covariate shift”

• Covariate shifts can affect training badly

The problem of covariate shifts

• Training assumes the training data are all similarly distributed

– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution

– A “covariate shift”

– Which may occur in each layer of the networkg badly

The problem of covariate shifts

• Training assumes the training data are all similarly distributed

– Minibatches have similar distribution

• In practice, each minibatch may have a different distribution

– A “covariate shift”

• Covariate shifts can be large!

– All covariate shifts can affect training badly

• “Move” all batches to have a mean of 0 and unit
standard deviation

– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard”
location

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation

– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation

– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation

– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation

– Eliminates covariate shift between batches

Solution: Move all subgroups to a “standard”
location

• “Move” all batches to have a mean of 0 and unit
standard deviation

– Eliminates covariate shift between batches

– Then move the entire collection to the appropriate location

Batch normalization

• Batch normalization is a covariate adjustment unit that happens
after the weighted addition of inputs but before the application of
activation

– Is done independently for each unit, to simplify computation

• Training: The adjustment occurs over individual minibatches

+

+

+

+

+

𝑋1

𝑋2

𝑌

1 1 1

𝜎𝐵𝑁
2

Batch normalization

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑧 =෍

𝑗

𝑤𝑗𝑖𝑗 + 𝑏

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵
𝜎𝐵

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

Covariate shift to
standard position

Shift to right
position

Neuron-specific terms

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑧 =෍

𝑗

𝑤𝑗𝑖𝑗 + 𝑏

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑧 =෍

𝑗

𝑤𝑗𝑖𝑗 + 𝑏

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

Minibatch size Minibatch mean

𝑢

Batch normalization

Minibatch standard deviation

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization: Training

• BN aggregates the statistics over a minibatch and normalizes the
batch by them

• Normalized instances are “shifted” to a unit-specific location

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑧 =෍

𝑗

𝑤𝑗𝑖𝑗 + 𝑏

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

Normalize minibatch to
zero-mean unit variance

Shift to right
position

𝑢

Batch normalization

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization:
Backpropagation

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧
= 𝑓′ Ƹ𝑧

𝑑𝐷𝑖𝑣

𝑑𝑦

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization:
Backpropagation

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧
= 𝑓′ Ƹ𝑧

𝑑𝐷𝑖𝑣

𝑑𝑦

𝑑𝐷𝑖𝑣

𝑑𝛾
= 𝑢

𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧

𝑑𝐷𝑖𝑣

𝑑𝛽
=
𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧
Parameters to be
learned

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization:
Backpropagation

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧
= 𝑓′ Ƹ𝑧

𝑑𝐷𝑖𝑣

𝑑𝑦

𝑑𝐷𝑖𝑣

𝑑𝑢
= 𝛾

𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧

𝑑𝐷𝑖𝑣

𝑑𝛾
= 𝑢

𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧

𝑑𝐷𝑖𝑣

𝑑𝛽
=
𝑑𝐷𝑖𝑣

𝑑 Ƹ𝑧
Parameters to be
learned

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization:
Backpropagation

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 =෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
𝑧𝑖 − 𝜇𝐵 ⋅

−1

2
(𝜎𝐵

2 + 𝜖) ൗ−3
2

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

Batch normalization:
Backpropagation

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 =෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
𝑧𝑖 − 𝜇𝐵 ⋅

−1

2
(𝜎𝐵

2 + 𝜖) ൗ−3
2

𝜎𝐵
2𝜎𝐵
2

𝑢1

𝑢2

𝑢𝐵

𝐷𝑖𝑣

Influence diagram

Batch normalization:
Backpropagation

+ 𝑧

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

𝑢

Batch normalization

𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 =෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
𝑧𝑖 − 𝜇𝐵 ⋅

−1

2
(𝜎𝐵

2 + 𝜖) ൗ−3
2

𝜕𝐷𝑖𝑣

𝜕𝜇𝐵
= ෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
⋅

−1

𝜎𝐵
2 + 𝜖

+
𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 ⋅

σ𝑖=1
𝐵 −2 𝑧𝑖 − 𝜇𝐵

𝐵

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑓 Ƹ𝑧 𝑦
Ƹ𝑧

Batch normalization:
Backpropagation

+ 𝑧 𝑓 Ƹ𝑧 𝑦
Ƹ𝑧

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

𝑢

Batch normalization

𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 =෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
𝑧𝑖 − 𝜇𝐵 ⋅

−1

2
(𝜎𝐵

2 + 𝜖) ൗ−3
2

𝜕𝐷𝑖𝑣

𝜕𝜇𝐵
= ෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
⋅

−1

𝜎𝐵
2 + 𝜖

+
𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 ⋅

σ𝑖=1
𝐵 −2 𝑧𝑖 − 𝜇𝐵

𝐵

𝜎𝐵
2

𝑢1

𝑢2

𝑢𝐵

𝐷𝑖𝑣

Influence diagram

𝜇𝐵

Batch normalization:
Backpropagation

+ 𝑧

𝜇𝐵 =
1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝜎𝐵
2 =

1

𝐵
෍

𝑖=1

𝐵

𝑧𝑖 − 𝜇𝐵
2

𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵

𝜎𝐵
2 + 𝜖

𝑢

Batch normalization

𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 =෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
𝑧𝑖 − 𝜇𝐵 ⋅

−1

2
(𝜎𝐵

2 + 𝜖) ൗ−3
2

𝜕𝐷𝑖𝑣

𝜕𝜇𝐵
= ෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
⋅

−1

𝜎𝐵
2 + 𝜖

+
𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 ⋅

σ𝑖=1
𝐵 −2 𝑧𝑖 − 𝜇𝐵

𝐵

𝜕𝐷𝑖𝑣

𝜕𝑧𝑖
=
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
⋅

1

𝜎𝐵
2 + 𝜖

+
𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 ⋅

2 𝑧𝑖 − 𝜇𝐵
𝐵

+
𝜕𝐷𝑖𝑣

𝜕𝜇𝐵
⋅
1

𝐵

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑓 Ƹ𝑧 𝑦
Ƹ𝑧

Batch normalization:
Backpropagation

+ 𝑧

𝑖1

𝑖2

𝑖𝑁

𝑖𝑁−1

𝑢

Batch normalization

𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 =෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
𝑧𝑖 − 𝜇𝐵 ⋅

−1

2
(𝜎𝐵

2 + 𝜖) ൗ−3
2

𝜕𝐷𝑖𝑣

𝜕𝜇𝐵
= ෍

𝑖=1

𝐵
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
⋅

−1

𝜎𝐵
2 + 𝜖

+
𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 ⋅

σ𝑖=1
𝐵 −2 𝑧𝑖 − 𝜇𝐵

𝐵

𝜕𝐷𝑖𝑣

𝜕𝑧𝑖
=
𝜕𝐷𝑖𝑣

𝜕𝑢𝑖
⋅

1

𝜎𝐵
2 + 𝜖

+
𝜕𝐷𝑖𝑣

𝜕𝜎𝐵
2 ⋅

2 𝑧𝑖 − 𝜇𝐵
𝐵

+
𝜕𝐷𝑖𝑣

𝜕𝜇𝐵
⋅
1

𝐵

𝑓 Ƹ𝑧 𝑦
Ƹ𝑧

The rest of backprop continues from
𝜕𝐷𝑖𝑣

𝜕𝑧𝑖

Batch normalization: Inference

• On test data, BN requires 𝜇𝐵 and 𝜎𝐵
2.

• We will use the average over all training minibatches

𝜇𝐵𝑁 =
1

𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍

𝑏𝑎𝑡𝑐ℎ

𝜇𝐵(𝑏𝑎𝑡𝑐ℎ)

𝜎𝐵𝑁
2 =

𝐵

(𝐵 − 1)𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠
෍

𝑏𝑎𝑡𝑐ℎ

𝜎𝐵
2(𝑏𝑎𝑡𝑐ℎ)

• Note: these are neuron-specific
– 𝜇𝐵(𝑏𝑎𝑡𝑐ℎ) and 𝜎𝐵

2(𝑏𝑎𝑡𝑐ℎ) here are obtained from the final converged network
– The 𝐵/(𝐵 − 1) term gives us an unbiased estimator for the variance

+ 𝑧
𝑓 Ƹ𝑧 𝑦

Ƹ𝑧

𝑖2

𝑖𝑁

𝑖𝑁−1 𝑢𝑖 =
𝑧𝑖 − 𝜇𝐵𝑁

𝜎𝐵𝑁
2 + 𝜖

Ƹ𝑧 𝑖 = 𝛾𝑢𝑖 + 𝛽

𝑢

Batch normalization

Batch normalization

• Batch normalization may only be applied to some layers

– Or even only selected neurons in the layer

• Improves both convergence rate and neural network performance

– Anecdotal evidence that BN eliminates the need for dropout

– To get maximum benefit from BN, learning rates must be increased
and learning rate decay can be faster

• Since the data generally remain in the high-gradient regions of the activations

– Also needs better randomization of training data order

+

+

+

+
+

𝑋1

𝑋2

𝑌

1 1 1

Batch Normalization: Typical result

• Performance on Imagenet, from Ioffe and Szegedy, JMLR
2015

The problem of data
underspecification

• The figures shown so far were fake news..

Learning the network

• We attempt to learn an entire function from just

a few snapshots of it

General approach to training

• Define an error between the actual network output for
any parameter value and the desired output

– Error typically defined as the sum of the squared error over
individual training instances

Blue lines: error when
function is below desired
output

Black lines: error when
function is above desired
output

𝐸 =෍

𝑖

𝑦𝑖 − 𝑓(𝐱𝑖 ,𝐖) 2

Overfitting

• Problem: Network may just learn the values at

the inputs

– Learn the red curve instead of the dotted blue one

• Given only the red vertical bars as inputs

Data under-specification

• Consider a binary 100-dimensional input

• There are 2100=1030 possible inputs

• Complete specification of the function will require specification of 1030 output
values

• A training set with only 1015 training instances will be off by a factor of 1015

143

Data under-specification in learning

• Consider a binary 100-dimensional input

• There are 2100=1030 possible inputs

• Complete specification of the function will require specification of 1030 output
values

• A training set with only 1015 training instances will be off by a factor of 1015

144

Find the function!

Need “smoothing” constraints

• Need additional constraints that will “fill in”
the missing regions acceptably

– Generalization

Smoothness through weight
manipulation

• Illustrative example: Simple binary classifier

– The “desired” output is generally smooth

– The “overfit” model has fast changes

x

y

Smoothness through weight
manipulation

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends

– An unconstrained model will model individual instances
instead

x

y

The unconstrained model

• Illustrative example: Simple binary classifier
– The “desired” output is generally smooth

• Capture statistical or average trends

– An unconstrained model will model individual instances
instead

x

y

Why overfitting

x

y

These sharp changes happen because ..

..the perceptrons in the network are individually capable of sharp changes
in output

The individual perceptron

• Using a sigmoid activation
– As |𝑤| increases, the response becomes steeper

Smoothness through weight
manipulation

x

y

• Steep changes that enable overfitted responses are
facilitated by perceptrons with large 𝑤

• Constraining the weights 𝑤 to be low will force slower
perceptrons and smoother output response

Smoothness through weight
manipulation

x

y

• Steep changes that enable overfitted responses are
facilitated by perceptrons with large 𝑤

• Constraining the weights 𝑤 to be low will force slower
perceptrons and smoother output response

Objective function for neural
networks

• Conventional training: minimize the total error:

𝑌𝑡
Desired output of network: 𝑑𝑡

Error on i-th training input: 𝐷𝑖𝑣(𝑌𝑡 , 𝑑𝑡;𝑊1,𝑊2, … ,𝑊𝐾)

𝑊1, 𝑊2, … ,𝑊𝐾

Batch training error:

𝐸𝑟𝑟 𝑊1,𝑊2, … ,𝑊𝐾 =
1

𝑇
෍

𝑡

𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡;𝑊1,𝑊2, … ,𝑊𝐾)

153

෡𝑊1, ෡𝑊2, … , ෡𝑊𝐾 = argmin
𝑊1,𝑊2,…,𝑊𝐾

𝐸𝑟𝑟(𝑊1,𝑊2, … ,𝑊𝐾)

Smoothness through weight
constraints

• Regularized training: minimize the error while also minimizing the

weights

• 𝜆 is the regularization parameter whose value depends on how

important it is for us to want to minimize the weights

• Increasing l assigns greater importance to shrinking the weights

– Make greater error on training data, to obtain a more acceptable network

154

𝐿 𝑊1,𝑊2, … ,𝑊𝐾 = 𝐸𝑟𝑟 𝑊1,𝑊2, … ,𝑊𝐾 +
1

2
𝜆෍

𝑘

𝑊𝑘 2
2

෡𝑊1, ෡𝑊2, … , ෡𝑊𝐾 = argmin
𝑊1,𝑊2,…,𝑊𝐾

𝐿 𝑊1,𝑊2, … ,𝑊𝐾

Regularizing the weights

𝐿 𝑊1,𝑊2, … ,𝑊𝐾 =
1

𝑇
෍

𝑡

𝐷𝑖𝑣(𝑌𝑡 , 𝑑𝑡) +
1

2
𝜆෍

𝑘

𝑊𝑘 2
2

• Batch mode:

∆𝑊𝑘 =
1

𝑇
෍

𝑡

𝛻𝑊𝑘
𝐷𝑖𝑣 𝑌𝑡 , 𝑑𝑡

𝑇 +𝜆𝑊𝑘

• SGD:
∆𝑊𝑘 = 𝛻𝑊𝑘

𝐷𝑖𝑣 𝑌𝑡 , 𝑑𝑡
𝑇 + 𝜆𝑊𝑘

• Minibatch:

∆𝑊𝑘 =
1

𝑏
෍

𝜏=𝑡

𝑡+𝑏−1

𝛻𝑊𝑘
𝐷𝑖𝑣 𝑌𝜏, 𝑑𝜏

𝑇 +𝜆𝑊𝑘

• Update rule:
𝑊𝑘 ← 𝑊𝑘 − 𝜂∆𝑊𝑘

Incremental Update: Mini-batch
update

• Given 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
• Initialize all weights 𝑊1,𝑊2, … ,𝑊𝐾; 𝑗 = 0

• Do:

– Randomly permute 𝑋1, 𝑑1 , 𝑋2, 𝑑2 ,…, 𝑋𝑇 , 𝑑𝑇
– For 𝑡 = 1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:

– ∆𝑊𝑘 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻𝑊𝑘
𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡)

» ∆𝑊𝑘 = ∆𝑊𝑘 + 𝛻𝑊𝑘
𝐷𝑖𝑣(𝑌𝑡, 𝑑𝑡)

• Update
– For every layer k:

𝑊𝑘 = 𝑊𝑘 − 𝜂𝑗 ∆𝑊𝑘 + 𝜆𝑊𝑘

• Until 𝐸𝑟𝑟 has converged 156

Smoothness through network
structure

• MLPs naturally impose constraints

• MLPs are universal approximators

– Arbitrarily increasing size can give
you arbitrarily wiggly functions

– The function will remain ill-defined
on the majority of the space

• For a given number of parameters deeper networks impose
more smoothness than shallow ones

– Each layer works on the already smooth surface output by the
previous layer

157

• Typical results (varies with initialization)

• 1000 training points Many orders of magnitude more than
you usually get

• All the training tricks known to mankind 158

Even when we get it all right

But depth and training data help

• Deeper networks seem to learn better, for the same
number of total neurons
– Implicit smoothness constraints

• As opposed to explicit constraints from more conventional
classification models

• Similar functions not learnable using more usual
pattern-recognition models!! 159

6 layers 11 layers

3 layers 4 layers

6 layers 11 layers

3 layers 4 layers

10000 training instances

Regularization..

• Other techniques have been proposed to
improve the smoothness of the learned
function

– L1 regularization of network activations

– Regularizing with added noise..

• Possibly the most influential method has been
“dropout”

Dropout

• During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a

Input

Output

Dropout

• During training: For each input, at each iteration,
“turn off” each neuron with a probability 1-a

– Also turn off inputs similarly

Input

Output

X1 Y1

Dropout

• During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a

– In practice, set them to 0 according to the success of a Bernoulli
random number generator with success probability 1-a

Input

Output

X1 Y1

Dropout

• During training: For each input, at each iteration, “turn off”
each neuron (including inputs) with a probability 1-a

– In practice, set them to 0 according to the success of a Bernoulli
random number generator with success probability 1-a

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Input

Output

X3 Y3

Dropout

• During training: Backpropagation is effectively performed only over the remaining
network
– The effective network is different for different inputs

– Gradients are obtained only for the weights and biases from “On” nodes to “On” nodes

• For the remaining, the gradient is just 0

The pattern of dropped nodes
changes for each input
i.e. in every pass through the net

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input

Statistical Interpretation

• For a network with a total of N neurons, there are 2N

possible sub-networks

– Obtained by choosing different subsets of nodes

– Dropout samples over all 2N possible networks

– Effective learns a network that averages over all possible
networks
• Bagging

Input

Output

X1 Y1

Input

Output

X2 Y2

Output

X3 Y3

Input

Output

X1 Y1

The forward pass
• Input: 𝐷 dimensional vector 𝐱 = [𝑥𝑗 , 𝑗 = 1…𝐷]

• Set:
– 𝐷0 = 𝐷, is the width of the 0th (input) layer

– 𝑦𝑗
(0)

= 𝑥𝑗 , 𝑗 = 1…𝐷; 𝑦0
(𝑘=1…𝑁)

= 𝑥0 = 1

• For layer 𝑘 = 1…𝑁
– For 𝑗 = 1…𝐷𝑘

• 𝑧𝑗
(𝑘)

= σ𝑖=0
𝑁𝑘 𝑤𝑖,𝑗

(𝑘)
𝑦𝑖
(𝑘−1)

+𝑏𝑗
(𝑘)

• 𝑦𝑗
(𝑘)

= 𝑓𝑘 𝑧𝑗
(𝑘)

• If (𝑘 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 𝑙𝑎𝑦𝑒𝑟) :

– 𝑚𝑎𝑠𝑘 𝑘, 𝑗 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝛼

– If 𝑚𝑎𝑠𝑘 𝑘, 𝑗

» 𝑦𝑗
(𝑘)

= 𝑦𝑗
(𝑘)
/𝛼

– Else

» 𝑦𝑗
(𝑘)

= 0

• Output:

– 𝑌 = 𝑦𝑗
(𝑁)

, 𝑗 = 1. . 𝐷𝑁
167

Backward Pass
• Output layer (N) :

–
𝜕𝐷𝑖𝑣

𝜕𝑌𝑖
=

𝜕𝐷𝑖𝑣(𝑌,𝑑)

𝜕𝑦𝑖
(𝑁)

–
𝜕𝐷𝑖𝑣

𝜕𝑧𝑖
(𝑘) = 𝑓𝑘

′ 𝑧𝑖
(𝑘) 𝜕𝐷𝑖𝑣

𝜕𝑦𝑖
(𝑘)

• For layer 𝑘 = 𝑁 − 1 𝑑𝑜𝑤𝑛𝑡𝑜 0

– For 𝑖 = 1…𝐷𝑘
• If (not dropout layer OR 𝑚𝑎𝑠𝑘(𝑘, 𝑖))

–
𝜕𝐷𝑖𝑣

𝜕𝑦
𝑖
(𝑘) = σ𝑗𝑤𝑖𝑗

(𝑘+1) 𝜕𝐷𝑖𝑣

𝜕𝑧
𝑗
(𝑘+1)

–
𝜕𝐷𝑖𝑣

𝜕𝑧
𝑖
(𝑘) = 𝑓𝑘

′ 𝑧𝑖
(𝑘) 𝜕𝐷𝑖𝑣

𝜕𝑦
𝑖
(𝑘)

–
𝜕𝐷𝑖𝑣

𝜕𝑤
𝑖𝑗
(𝑘+1) = 𝑦𝑗

(𝑘) 𝜕𝐷𝑖𝑣

𝜕𝑧
𝑖
(𝑘+1) for 𝑗 = 1…𝐷𝑘+1

• Else

–
𝜕𝐷𝑖𝑣

𝜕𝑧
𝑖
(𝑘) = 0

168

What each neuron computes

• Each neuron actually has the following activation:

𝑦𝑖
(𝑘)

= 𝐷𝜎 ෍

𝑗

𝑤𝑗𝑖
(𝑘)
𝑦𝑗
(𝑘−1)

+𝑏𝑖
(𝑘)

– Where 𝐷 is a Bernoulli variable that takes a value 1 with probability a

• 𝐷 may be switched on or off for individual sub networks, but over
the ensemble, the expected output of the neuron is

𝑦𝑖
(𝑘)

= a𝜎 ෍

𝑗

𝑤𝑗𝑖
(𝑘)
𝑦𝑗
(𝑘−1)

+𝑏𝑖
(𝑘)

• During test time, we will use the expected output of the neuron

– Which corresponds to the bagged average output

– Consists of simply scaling the output of each neuron by a

Dropout during test: implementation

• Instead of multiplying every output by 𝛼, multiply

all weights by 𝛼

Input

Output

X1 Y1

𝑊𝑡𝑒𝑠𝑡 = 𝛼𝑊𝑡𝑟𝑎𝑖𝑛𝑒𝑑

apply a here (to the output of the neuron) OR..

Push the a to all outgoing weights

𝑦𝑖
(𝑘)

= a𝜎 ෍

𝑗

𝑤𝑗𝑖
(𝑘)
𝑦𝑗
(𝑘−1)

+𝑏𝑖
(𝑘)

= a𝜎 ෍

𝑗

𝑤𝑗𝑖
(𝑘)
a𝜎 ෍

𝑗

𝑤𝑗𝑖
(𝑘−1)

𝑦𝑗
(𝑘−2)

+𝑏𝑖
(𝑘−1)

+𝑏𝑖
(𝑘)

= a𝜎 ෍

𝑗

a𝑤𝑗𝑖
(𝑘)

𝜎 ෍

𝑗

𝑤𝑗𝑖
(𝑘−1)

𝑦𝑗
(𝑘−2)

+𝑏𝑖
(𝑘−1)

+𝑏𝑖
(𝑘)

Dropout : alternate implementation

• Alternately, during training, replace the activation

of all neurons in the network by a−1𝜎 .

– This does not affect the dropout procedure itself

– We will use 𝜎 . as the activation during testing, and not

modify the weights

Input

Output

X1 Y1

Dropout: Typical results

• From Srivastava et al., 2013. Test error for different
architectures on MNIST with and without dropout

– 2-4 hidden layers with 1024-2048 units

Other heuristics: Early stopping

• Continued training can result in severe over
fitting to training data

– Track performance on a held-out validation set

– Apply one of several early-stopping criterion to
terminate training when performance on validation
set degrades significantly

error

epochs

training

validation

Additional heuristics: Gradient
clipping

• Often the derivative will be too high

– When the divergence has a steep slope

– This can result in instability

• Gradient clipping: set a ceiling on derivative value

𝑖𝑓 𝜕𝑤𝐷 > 𝜃 𝑡ℎ𝑒𝑛 𝜕𝑤𝐷 = 𝜃

– Typical 𝜃 value is 5

174

Loss

w

Additional heuristics: Data
Augmentation

• Available training data will often be small

• “Extend” it by distorting examples in a variety of
ways to generate synthetic labelled examples

– E.g. rotation, stretching, adding noise, other distortion

Other tricks

• Normalize the input:

– Apply covariate shift to entire training data to make it 0
mean, unit variance

– Equivalent of batch norm on input

• A variety of other tricks are applied

– Initialization techniques
• Typically initialized randomly

• Key point: neurons with identical connections that are identically
initialized will never diverge

– Practice makes man perfect

Setting up a problem
• Obtain training data

– Use appropriate representation for inputs and outputs

• Choose network architecture
– More neurons need more data

– Deep is better, but harder to train

• Choose the appropriate divergence function
– Choose regularization

• Choose heuristics (batch norm, dropout, etc.)

• Choose optimization algorithm
– E.g. Adagrad

• Perform a grid search for hyper parameters (learning rate, regularization
parameter, …) on held-out data

• Train
– Evaluate periodically on validation data, for early stopping if required

In closing

• Have outlined the process of training neural
networks
– Some history

– A variety of algorithms

– Gradient-descent based techniques

– Regularization for generalization

– Algorithms for convergence

– Heuristics

• Practice makes perfect..

