Deep Learning
Recurrent Networks

10/11/2017

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

by
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = @; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
}
¥
rw->nhame = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
return segtable;

Related math. What is it talking
about?

Proof. Omitted. 0

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = Ox(£L)

Proof. This is an algebraic space with the composition of sheaves F on Xy, we
have
Ox(F) = {morphy xo, (G, F)}

where G defines an isomorphism F — F of O-modules. a
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7. 0

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemmma follows.
Let X be a scheme. Let X be a scheme covering. Let

b X Y Y 5Y 3Y %xx Y 3 X.
be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and r € G the diagram
S
i

gor,

Ox

AN

=0 —s

=a ——a X

l

Spec(Ky) Morsee, d(Ox, S g)

is a limit. Then @G s a finite type and assume S is a flat and F and @ is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

o Oy is a sheaf of rings.

O

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. a

Proof. This is clear that G is a finite presentation, see Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Ox.: = Fr -UOx,) — O510x,(0%,)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O y-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points, O

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

And a Wikipedia page explaining it all

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

The unreasonable effectiveness of
recurrent neural networks..

* All previous examples were generated blindly
by a recurrent neural network..

* http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Modelling Series

* |[n many situations one must consider a series
of inputs to produce an output

— Outputs to may be a series

 Examples: ..

Should | invest..

To invest or not to invest?

2%
-y
i~
00

)

NN

7/03 8/03 9/03 10/03 11/03 12/03 13/03 14/03 15/03

stocks

Stock market

— Must consider the series of stock values in the past several days to decide if it
is wise to invest today

* Ideally consider all of history

Note: Inputs are vectors. Output may be scalar or vector
— Should I invest, vs. should | invest in X

Representational shortcut

A
A

* |nput at each time is a vector
* Each layer has many neurons
— Output layer too may have many neurons

* But will represent everything simple boxes

— Each box actually represents an entire layer with many units

Representational shortcut

A
A

* |nput at each time is a vector
* Each layer has many neurons
— Output layer too may have many neurons

* But will represent everything simple boxes

— Each box actually represents an entire layer with many units

Representational shortcut

* |nput at each time is a vector
* Each layer has many neurons
— Output layer too may have many neurons

* But will represent everything simple boxes

— Each box actually represents an entire layer with many units

Representational shortcut

* |nput at each time is a vector
* Each layer has many neurons
— Output layer too may have many neurons

* But will represent everything simple boxes

— Each box actually represents an entire layer with many units

Stock
vector

The stock predictor

Y(t+3)
t
X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]

The sliding predictor
— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

Stock
vector

The stock predictor

Y(t+4)

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]
The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

Stock
vector

The stock predictor

Y(t+5)

"

T

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]
The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

The stock predictor

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

The stock predictor

Y(t+6)
Stock T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]
* The sliding predictor

— Look at the last few days

— This is just a convolutional neural net applied to series data
* Also called a Time-Delay neural network

Finite-response model

* This is a finite response system

— Something that happens today only affects the
output of the system for N days into the future

* N is the width of the system
Yt — f(Xt'Xt—l' ""Xt—N)

The stock predictor

Y(t+2)
t
—stock T | —
vector .

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* This is a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Yt = f(Xt;Xt—1; ""Xt—N)

The stock predictor

Y(t+3)

Stock .

vector
X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* This is a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Yt = f(Xt;Xt—1; ""Xt—N)

The stock predictor

Y(t+4)
t
Stock r »f
vector
X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time]

* This is a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Yt = f(Xt;Xt—1; ""Xt—N)

The stock predictor

Y(t+5)
Stock T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* This is a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Yt = f(Xt;Xt—1; ""Xt—N)

The stock predictor

Y(t+6)

Stock ./ 1

vector
X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* This is a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Yt = f(Xt;Xt—1; ""Xt—N)

The stock predictor

Y(t+6)
Stock . T
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time
* This is a finite response system

— Something that happens today only affects the output of the
system for N days into the future

* N is the width of the system
Yt = f(Xt;Xt—1; ""Xt—N)

Finite-response model

Y(t+6)

Stock ./ 1

vector
X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Time

* This is a finite response system

— Something that happens today only affects the output
of the system for N days into the future

* N is the width of the system

Y = f(Xt»Xt—l: ---;Xt—N)

Finite-response

Y(t+6)

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)
Time :
* Problem: Increasing the “history” makes the
network more complex

— No worries, we have the CPU and memory

e Ordo we?

Systems often have long-term
dependencies

XRT: SPY SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

222222222 Low 0.447 Close 0453 Volume 0 Chg +0.005 (+1.02%) «

/ Typical seasonal pattern of
relative rally into Thanksgiving

o = o o b
4 & & & &
th o th (=]]

* Longer-term trends —
— Weekly trends in the market
— Monthly trends in the market
— Annual trends

— Though longer history tends to affect us less than more
recent events..

We want infinite memory

"

Time

* Required: Infinite response systems

— What happens today can continue to affect the output
forever

* Possibly with weaker and weaker influence

Yt — f(Xt,Xt_l, ---;Xt—oo)

Examples of infinite response systems

Vi = f(Xe, Yioq)
— Required: Define initial state: Y;_; fort = —1
— Aninput at X, at t = 0 produces Y

— Y, produces Y; which produces Y, and so on until Y, even
ifX{..Xsx areO

* j.e. even if there are no further inputs!

 This is an instance of a NARX network

— “nonlinear autoregressive network with exogenous inputs”

- Y = f(Xo.t, Yot 1)
e Qutput contains information about the entire past

A one-tap NARX network

Y(t)

X(t)

Time

A NARX net with recursion from the output

A NARX network

Y(t) Y

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

"

{

Y(t)

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

:

Y(t)

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

"

{

Y(t)

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

"

{

Y(t)

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

:

Y(t)

X(t)

Time

A NARX net with recursion from the output

A one-tap NARX network

Y(t)

X(t)

Time

A NARX net with recursion from the output

A more complete representation

"

A\ 4

A\ 4

n

"

A\ 4

"

A\ 4

"

A\ 4

"

A\ 4

n

\ 4

X(t
() [ime
Brown boxes show output nodes

Yellow boxes are outputs

A NARX net with recursion from the output
Showing all computations

All columns are identical

An input at t=0 affects outputs forever

Y(t)

A\ 4

Same figure redrawn

-

&

"

"

"

-

v

A\ 4

A\ 4

A\ 4

v

v

A\ 4

X(t >
() ime
Br'own boxes ShOW OUTPUT nOdeS

All outgoing arrows are the same output
* A NARX net with recursion from the output
* Showing all computations
* All columns are identical
* Aninput at t=0 affects outputs forever

more generic NARX network

B R B R

- Sy N
= SN
’T

Y(t)

//%%

[/

o

/1]
/

[l
/
/1)

V.
4//
l// /

'
k

X(t)

Time

* The output Y; at time ¢t is computed from the
past K outputs Y;_1, ..., Ys_g and the current
and past L inputs X, ..., X;_;

A “complete” NARX network

Y(t)

il
/

—

S
_—

~

X(t)

[/

N

L3

AN

b

{

Time

* The output Y; at time t is computed from all
past outputs and all inputs until time t

— Not really a practical model

NARX Networks

* Very popular for time-series prediction
— Weather
— Stock markets
— As alternate system models in tracking systems

* Any phenomena with distinct “innovations”
that “drive” an output

An alternate model for infinite response
systems: the state-space model

he = f(xe, he—q)
Ve = g(ht)

* h; is the state of the network
Need to define initial state h_;

e This is a recurrent neural network

e State summarizes information about the entire
past

The simple state-space model

"4 ;
SEEEEEE
. > _ . > _ _ > _ > _ .

X(t)

t=0

Time

* The state (green) at any time is determined by the input at
that time, and the state at the previous time

* Aninput at t=0 affects outputs forever
e Also known as a recurrent neural net

An alternate model for infinite response
systems: the state-space model

he = f(x¢, he—1)
Ve = g(he)

* h; is the state of the network
* Need to define initial state h_,

* The state an be arbitrarily complex

Single hidden layer RNN

BB EEN.
., f f
. > : . > _ _ g _ > _ .

X(t)

t=0

Time

e Recurrent neural network
 All columns are identical

* Aninput at t=0 affects outputs forever

Multiple recurrent layer RNN

EEEEEEE.
f f
. > _ . > _ _ g _ > _ .

X(t)

t=0

Time

e Recurrent neural network
 All columns are identical

* Aninput at t=0 affects outputs forever

A more complex state

*\ i\

ﬁ*ﬁq.%é
N o N N
%ﬁ %’fi’>< 7= ::>X LS

X(t)

Time

 All columns are identical

* An input at t=0 affects outputs forever

Or the network may be even more
complicated

Y(t)

A A A A A%
A A A A A

X(t)
Time

e Shades of NARX
e All columns are identical

* Aninput at t=0 affects outputs forever

Generalization with other recurrences

“B m n
.k T

X(t)

t=0

Time

e All column (including incoming edges) are
identical

State dependencies may be simpler

Y(t)

SBEEREE.
T: T: > > T

X(t)
Time

e Recurrent neural network

 All columns are identical

* Aninput at t=0 affects outputs forever

Multiple recurrent layer RNN

tEEENN

*\T
.,
& & &G & G

Time

* We can also have skips..

A Recurrent Neural Network

¢ 1
CHD A

* Simplified models often drawn
* The loops imply recurrence

The detailed version of the simplified
representation

A EEEREEREER
.-1 :T =T { :T

X(t)

t=0

Time

Multiple recurrent layer RNN

!

O
&P
BB EEEE.
B > . . > >
X(t)
t=0

Time

Multiple recurrent layer RNN

»

P

L ARomom AR
m A A A A A A
IS AN I

Equations

* Y hgl)(_1) = part of network paW

A 0= (Sn0 e i)
1 J J

X

Yo = £, (Z Wi RO (e + b0,k = 1. M>
J

Note superscript in indexing, which indicates layer of
network from which inputs are obtained

Assuming vector function at output, e.g. softmax
The state node activation, f; () is typically tanh()
Every neuron also has a bias input

Equations

i Y hgl)(—l) = part of network parameters
T hgz)(—l) = part of network parameters
h(2)
D WO = f (Z WX, + Y Wi RO e - 1) + b§1>>
(B (D) J J
1
. P @) = f, (Z wiRD () + z wiZPhP (e - 1) + bi(2)>
J J

Y(©) = fs (Z Wi B2 (0 + bk = 1., M>
J

* Assuming vector function at output, e.g. softmax f3()
* The state node activations, f; () are typically tanh()

* Every neuron also has a bias input

Equations

hlgl)(—l) = part of network parameters

hgz)(—l) = part of network parameters

i hP(t) = (2 wVX, (t)+zw(1 YriD (e — 1)+b§”>

B

Q hgz)(t) = f, (2 W z)h(l)(t) +z (o, z)X () + 2 W(z 2)h(2)(t D+ bi(2)>

Yi(t) = f3< wiPhP (t) + z SO () + b k = 1..M>

Variants on recurrent nets

one to one one to many many to one

Images from
Karpathy

1. Conventional MLP

* 2:Seqguence generation, e.g.image to caption

* 3:Sequence based prediction or classification, e.g. Speech recognition,
text classification

Variants

many to many many to many

Images from
Karpathy

e 2: Sequence to sequence, e.g. stock problem, label prediction
 1: Delayed sequence to sequence
* Etc...

How do we train the network

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
SEENEEE.

A 4

—> 000 —> >

v
v

A A A A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

Back propagation through time (BPTT)

Given a collection of sequence inputs
— (X;,D;), where
- X;=Xi0 0 Xir
— D;=D;o,....D;r
Train network parameters to minimize the error between the output of the

networkY; =Y, ..., Y; r and the desired outputs

— This is the most generic setting. In other settings we just “remove” some of the input or
output entries

Training: Forward pass

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

EEETREE.

—> o000 —» >
A A A A A A

A 4

\ 4
\4

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

* For each training input:

* Forward pass: pass the entire data sequence through the network,
generate outputs

EEETREE.

Training: Computing gradients

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

A 4

—> o000 ——» >

\ 4
\4

A A A A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)
t >

<

For each training input:
Backward pass: Compute gradients via backpropagation
— Back Propagation Through Time

Back Propagation Through Time

Y (0) Y (1) Y(2) Y(T-2) Y(T-1) Y@

AR

X)) X(1) X(2) X(T-2) X(T-1) X

Will only focus on one training instance

All subscripts represent components and not training instance index

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

o R

X)) X(1) X(2) X(T-2) X(T-1) X

* The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

* This is not just the sum of the divergences at individual times
= Unless we explicitly define it that way

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

o R

X)) X(1) X(2) X(T-2) X(T-1) X

: dDIV .
First step of backprop: Compute D) for all i

for all i and t as we will see. This can

: : dDIV
In general we will be required to compute —
i

be a source of significant difficulty in many scenarios.

DIV

T

f f f f f f
Div(0) Div(1) Div(2) Div(T — 2)Div(T — 1) Div(T)
’ I I H B B
Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y(T)

oY EEE

X)) X(1) X(2) X(T-2) X(T-1) X

Special case, when the overall divergence is a simple combination of local
divergences at each time:

Must compute Will usually get
dDIV for alli for all T aniv. dDiv(t)
v > T dv,(6) ~dY,(t)

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

o R

X)) X(1) X(2) X(T-2) X(T-1) X

First step of backprop: Compute WV for all i

ay(T)

Vector output activation

dDIV _ dDIV d%,(T)| . [dDIV _ N dDIv dy(T)
dz;(T) _ dY;(T)dZ;(T) dZ;(T) £adY;(T)dZ(T)
]

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

chEE R

X)) X(1) X(2) X(T-2) X(T-1) X

dDIV Z dp1v dz;7(T) z 1y dDIV
= W
dhi(T) & dz (1) dhi(T) g dz:(T)

Back Propagation Through Time

DIV
D(1..T)

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

ohEE YR

X)) X(1) X(2) X(T-2) X(T-1) X

dDIV Z 1y dDIV
W
dh;(T)

Y dZ(l) (T)

Back Propagation Through Time

DIV
D(1..T)

f f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

ohEE YR

X)) X(1) X(2) X(T-2) X(T-1) X

dDIV__ dDIV dhy(T)
azm dh(M) az® (1)

Back Propagation Through Time

Y(O) Y(l) Y(Z)

Mt

X(0) XD X(2)

DIV

D(1..T)

f

Y(T-2) Y(T-1) Y()

.

hﬁ

X(T-2) X(T-1) X

Back Propagation Through Time

DIV
D(1..T)

Y(O) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

S - D

X)) X(1) X(2) X(T-2) X(T-1) X

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

NI

X)) X(1) X(2) X(T-2) X(T-1) X

Vector output activation

dDIV dDlv — dY,(T — 1) DIV dplv dy(T — 1)
dizOT -1 (T -DazO1 -1 dzP(r-1) &LdGT-DazPr-1)

Back Propagation Through Time

DIV
D(L..T)
YEO) Y(1) Y(Z) Y(T—-2) Y(T-1) Y(T)
h_l ‘\ +/\+ o000
J A
X)) X(1) X(2) X(T-2) X(T-1) X
dDIV dDIV dDIV
_ (1) (11) @rIvV
dhy(T—1) Z JdzM(T-1) * z "ij dz® (1)

Back Propagation Through Time

DIV
D(L..T)
YIO) Y(1) Y(Z) Y(T—-2) Y(T-1) Y(T)
h_l ‘\ +/\+ ecoo
J f N A
X)) X(1) X(2) X(T-2) X(T-1) X
dblV__ " w__dDIV an dDIV
dhy(T—1) Z JdzM(T-1) * z "ij dz® (1)

Back Propagation Through Time

DIV
D(L..T)
YIO) Y(l) Y(Z) Y(T—-2) Y(T-1) Y(T)
h_l i\ +/\+ o000 E
/
X)) X(1) X(2) X(T-2) X(T-1) X

dDlV_ dDIV dh (T — 1)
azOc-1) AT =D azOc - 1)

Back Propagation Through Time

DIV
D(L..T)
Y(O) Y(l) Y(Z) Y(T—-2) Y(T-1) Y(T)
%
X)) X(1) X(2) X(T-2) X(T-1) X

Note the addition

Back Propagation Through Time

DIV
D(1..T)
Y(O) Y(1) Y(Z) Y(T—-2) Y(T-1) Y
At -
/ A
X)) X(1) X(2) X(T-2) X(T-1) X

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(2) Y(T-2) Y(T-1) Y()

o EE R

X)) X(1) X(2) X(T-2) X(T-1) X

dDIV_Z 11y AdDIV

dh_,; tj (1)
1 > dz;~(0)

Back Propagation Through Time

DIV
D(1..T)

f

Y (0) Y(1) Y(Z) Y(T-2) Y(T-1) Y()

o EE R

X)) X(1) X(2) X(T-2) X(T-1) X

dDIV &« dDIV (ki) ADIV
©) 2 Wij oD, T Z Wi)
dh® (1) A0 dz®P(t + 1)

Not showing derivatives abiv = abiy fx (Z.(k)(t))

at output neurons dZi(k) (t) dhl(k) (1)

Back Propagation Through Time

DIV
D(L..T)
YIO) Y(1) Y(Z) Y(T—-2) Y(T-1) Y(T)
h_l ‘\ +/\+ o000 E
J N A
X)) X(1) X(2) X(T-2) X(T-1) X
DIV _ 2 11 dDIV
dh_1 - ; U dz(l) (0)
aDIv aDIVv dDIV dDIV
Xi t = —N; —1
d l(]O) Z de(O) (t) ®) dWi(jll) Z de(O) () h;(t)

nnnnnnnnn

e to one one to many

* I

t t ot

+ § Iﬁﬂ

A GO O
i
DRGD . -

* Can be generalized to any architecture

Extensions to the RNN: Bidirectional

RNN
Bidirectional RNN (BRNN)

Output Layer olv-y f f f
wb wb wb
e 4 b
Backward Layer
Y w\S o\ S e\ S s Must learn weights w2,
wi wd wé w3, w4 & wb; in addition to
w3 w3 w3 w1 & wé.
Forward Layer QZ f W2 f w2 f w2

. 5

Alex Graves, “Supervised Sequence Labelling with Recurrent Neural Networks”

14

e RNN with both forward and backward recursion

— Explicitly models the fact that just as the future can be predicted
from the past, the past can be deduced from the future

Bidirectional RNN

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)
" R .
B 4 4 A s ecee - A A
hf(_l) A A AL A A 7[!
X(0) X(1) X(2) X(T-2) \ X(T-1) X(T)
NN NN

< < <4+— 000 <«— < < 4—.

X(0) X(1)

A

X(T-2)

A forward net process the data from t=0 to t=T

A backward net processes it backward from t=T down to t=0

Bidirectional RNN: Processing an input
string

B . s —+ eeee — . >

A A A A A A

(1) o =

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

 The forward net process the data from t=0 to t=T
— Only computing the hidden states, initially

Bidirectional RNN: Processing an input
string

A A A

X(0) X(1) X(2)

4—

000 <«— <

X(T-2)

X(T-1)

4

A

—l

h,(inf)

X(T)

—

The backward nets processes the input data in reverse time, end to beginning

Initially only the hidden state values are computed

— Clearly, this is not an online process and requires the entire input data

Note: This is not the backward pass of backprop.

» t

Bidirectional RNN: Processing an input
string

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

" 58 B

B 4 4 A s eecee 4 A5
X(0) X(1) X(2) X(T-2) \ X(T-1) X(T)

NN N NN N
< < . +— 000 <«— . < . < Ad—.
1 —— h,(inf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

» t

 The computed states of both networks are
used to compute the final output at each time

Backpropagation in BRNNSs

Y(0) Y(1) Y(2) Y(T-2) Y(T-1)

Y(T)

"

— =

. /= | 4 /: | —> o0 o000 | /: |
X(0) X(1) X(2) X(T-2) X(T-1)

< '

X(T)
NN N NN N
< < <4+— 000 <«— < < 4—.
— —— hy(inf)
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

» t

 Forward pass: Compute both forward and

backward networks and final output

Backpropagation in BRNNSs

\Y

4 4

Y(T-1* Y(
al
/ /

he(-1)

Y(0) Y(I# Y(Z* Y(T-i
A A

A

< X(0) < X(1) <X(2) X(T-2) <X(T-1)

[
»

A

:

T*
A

AN

NN N

AN

A

+— 000 <—

A

P
<«

A A A A

X(0) X(1) X(2) X(T-2)

A

A

X(T-1)

Backward pass: Define a divergence from the desired output

Backpropagation in BRNNSs

\Y

Y(Oﬁ Y(1ﬁ Y(Zﬁ

Y(T-ﬂ Y(T-1ﬁ Y(Tﬁ

. > > —> o000 —» > o
he(-1)]]
X(0) X(1) X(2) X(T-2) X(T-1) X(T)

t

* Backward pass: Define a divergence from the desired output

* Separately perform back propagation on both nets
— From t=T down to t=0 for the forward net

Backpropagation in BRNNSs

Div

Y(O) Y(l) Y(2) Y(T 2

Y(T 1

Y(T

((((((

\ \ \ \

A
A

+— 000 <«—

A

\

A

A A A A

X(0) X(1) X(2) X(T-2)

A

X(T-1)

* Backward pass: Define a divergence from the desired output

* Separately perform back propagation on both nets
— From t=T down to t=0 for the forward net
— From t=0 up to t=T for the backward net

RNNs..

* Excellent models for time-series analysis tasks
— Time-series prediction
— Time-series classification
— Sequence prediction..

So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

So how did this happen

Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom

of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known

in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal

and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],

that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.

ctm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,

was starting to signing a major tripad of aid exile.]]

More on this later..

RNNs..

* Excellent models for time-series analysis tasks
— Time-series prediction
— Time-series classification
— Sequence prediction..

— They can even simplify some problems that are
difficult for MLPs

Recall: A Recurrent Neural Network

" b - -
1 * 1 * * * * 1

X(t)

MLPs vs RNNSs

10101011110

1

MLP

1 1

1000110010 1100101100

* The addition problem: Add two N-bit numbers to produce a N+1-
bit number
— Input is binary
— Will require large number of training instances

* Qutput must be specified for every pair of inputs
* Weights that generalize will make errors

— Network trained for N-bit numbers will not work for N+1 bit numbers

MLPs vs RNNSs

1
1

Previous

carry — RNN unit +—
/A
1 0

Carry
out

* The addition problem: Add two N-bit
numbers to produce a N+1-bit number

* RNN solution: Very simple, can add two

numbers of any size

MLP: The parity problem

1

1

MLP

1

1000110010

 |sthe number of “ones” even or odd

 Network must be complex to capture all patterns
— At least one hidden layer of size N plus an output neuron
— Fixed input size

RNN: The parity problem

Previous
1

output 1
1
RNN unit

0

* Trivial solution
* Generalizes to input of any size

RNNs..

* Excellent models for time-series analysis tasks
— Time-series prediction
— Time-series classification
— Sequence prediction..

— They can even simplify problems that are difficult
for MLPs

e But first —a problem..

The vanishing gradient problem

e A particular problem with training deep
networks..

— The gradient of the error with respect to weights
is unstable..

Some useful preliminary math: The
problem with training deep networks

[nput Hidden Output

* A multilayer perceptron is a nested function

Y =fy (WN—1fN—1(WN—sz—2(--- WOX)))

» W, is the weights matrix at the k" layer

e The error for X can be written as

Div() = D (fy (Wiv-sfu-s (Wi 2o o))

Training deep networks

* Vector derivative chain rule: for any f(Wg(X)):

df(Wg(X)) df(Wg(X))dwg(X)dg(X)
ax - dWg(X) dg(X) dX

Poor notation

Vxf = Vzf . W.Vxg
* Where
- Z=Wg(X)
— V,f is the jacobian matrix of f(Z)w.rt Z

* Using the notation I, f instead of /(z) for consistency

Training deep networks

For
Div(X) =D (fN (WN—lfN—l(WN—sz—z(--- WOX))))

We get:
kaDiv —_ VD VfN WN—l' VfN—l' WN—Z ka+1Wk

Where
— V¢, Divis the gradient Div(X) of the error w.r.t the output of the

kth layer of the network
* Needed to compute the gradient of the error w.r.t Wj,_4

— Vf, isjacobian of fy () w.r.t. to its current input

— All blue terms are matrices

The Jacobian of the hidden layers

* Y fr1(21) 0 0
y vhey=|) JeE)
CD 0 0 fin(w).

SR CEIACRIO)

* Vf:() is the derivative of the output of the (layer of)
hidden recurrent neurons with respect to their input

— A matrix where the diagonal entries are the derivatives of the
activation of the recurrent hidden layer

hlgl)(t):fl (Zi(l)(t)) The JaCOblan

* Y fr1(21) 0 0
Bl Vii(z) = 0 & E(ZZ) O
D 0 0 fiaw,

X

* The derivative (or subgradient) of the activation function is
always bounded
— The diagonals of the Jacobian are bounded

* There is a limit on how much multiplying a vector by the
Jacobian will scale it

The derivative of the hidden state
activation

fe1(21)
vh) =|

0

 Most common activation functions, such as sigmoid, tanh() and RELU

0
fla(z2)

0

0
0

fZNtZN)_

1

08

06

04 +

02 +

02 F

04 r

06 r

08 r

-1

0 .‘....;;;-eﬁ”"":"

-3 -2 -1 0 1 2 3

have derivatives that are always less than 1

e The most common activation for the hidden units in an RNN is the tanh()

— The derivative of tanh()is always less than 1

* Multiplication by the Jacobian is always a shrinking operation

Training deep networks

DI (D

i!':‘ ! hEn — £ %
N

e g
R f’?.’?’fff;%_.ﬂ\"ﬁ‘%,

7S
i s ;
W

kaDiv - VD VfN WN—l' VfN—l' WN—Z ka+1Wk
<

* As we go back in layers, the Jacobians of the
activations constantly shrink the derivative

— After a few instants the derivative of the divergence at
any time is totally “forgotten”

What about the weights

kaDiv — VD VfN WN—l' VfN—l' WN—Z ka+1Wk

* |In a single-layer RNN, the weight matrices are
identical

* The chain product for V¢, Div will

— Expand VD along directions in which the singular values
of the weight matrices are greater than 1

— Shrink VD in directions where the singular values ae less
than 1

— Exploding or vanishing gradients

Exploding/Vanishing gradients

kaDiv — VD VfN WN—l' VfN—l' WN—Z ka+1Wk

* Every blue term is a matrix

* VD is proportional to the actual error

— Particularly for L, and KL divergence

* The chain product for V; Div will

— Expand VD in directions where each stage has singular
values greater than 1

— Shrink VD in directions where each stage has singular
values less than 1

Gradient problems in deep networks

e ...-.r-..:'f.
SN

i, S o i T \ output layer
7 NN }

A

:t%*;%ﬁ () Wk vz W wy e @
"f-'."}.f..--;-." e :'3\},!‘:{_’4_% GHEATT SR P! O R i
3 e .-"-*:3‘-"1&-',# RN S o X :
2 P g o ; Faigia v R N W g L
i i O » o "-‘ s
ﬂf ! .:i_'.lift-*'!] : 4

-l :‘..'_.
Rl =27 L7558
A NN T
SR "-ﬁ;-"fﬁiﬁlﬁﬁi? ;g‘*‘%&éiw,
R T e T W o, o N
N @ #\ g 75\ ,//
i - i -

4 :

R e
I e RN
RSN

.-.-_f}

= -

kaDiv - VD VfN WN—]_' VfN—l' WN—Z ka+1Wk

* The gradients in the lower/earlier layers can explode or
vanish
— Resulting in insignificant or unstable gradient descent updates
— Problem gets worse as network depth increases

Vanishing gradient examples..

ELU activation, Batch gradients

Input layer

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, than
— Each layer is 1024 layers wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log||7WneumnE where W, euron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Vanishing gradient examples..

RELU activation, Batch gradients

Input layer

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, than
— Each layer is 1024 layers wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log||7WneumnE where W, euron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Vanishing gradient examples..

Sigmoid activation, Batch gradients

Input layer

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, than
— Each layer is 1024 layers wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log||7WneumnE where W, euron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Vanishing gradient examples..

Tanh activation, Batch gradients

Input layer

Output layer

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, than
— Each layer is 1024 layers wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log||7WneumnE where W, euron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Vanishing gradient examples..

ELU activation, Individual instances

* 19 layer MNIST model
— Different activations: Exponential linear units, RELU, sigmoid, than
— Each layer is 1024 layers wide
— Gradients shown at initialization
* Will actually decrease with additional training

* Figure shows log||7WneumnE where W, euron is the vector of incoming weights to each neuron

— l.e. the gradient of the loss w.r.t. the entire set of weights to each neuron

Vanishing gradients

* ELU activations maintain gradients longest

 Butin all cases gradients effectively vanish
after about 10 layers!

— Your results may vary

* Both batch gradients and gradients for
individual instances disappear

— In reality a tiny number may actually blow up.

Recurrent nets are very deep nets

Y(Tﬁ

—> o000 —»

X(0)

<

kaDiv — VD VfN WN—l' VfN—l' WN—Z ka+1Wk
* The relation between X(0) and Y (T) is one of a very deep

network

— Gradients from errors at t = T will vanish by the time they’re

propagatedtot =0

Y(0)

S Ay
Y

X(0)

Vanishing stuff..

Y(1) Y(Z)

T

"

XD X(2)

Y(T-2) Y(T-1) Y

-

v

N

X(T-2) X(T-1) X

* Not merely during back propagation

* Stuff gets forgotten in the forward pass too
— Otherwise outputs would saturate or blow up
— Typically forgotten in a dozen or so timesteps

The long-term dependency problem

1

I

PATTERNL [.coiiiiiiiieinier e,] PATTERN 2

Jane had a quick lunch in the bistro. Then she..

* Any other pattern of any length can happen between
pattern 1 and pattern 2

— RNN will “forget” pattern 1 if intermediate stuff is too long
— “Jane” - the next pronoun referring to her will be “she”

* Can learn such dependencies in theory; in practice will not

— Vanishing gradient problem

Exploding/Vanishing gradients

kaDiU —_ VD VfN WN—]_' VfN—l' WN—Z ka+1Wk

* Can we replace this with something that doesn’t
fade or blow up?

* Ve, Div =VDCoyCoy_1C ...0%

Enter — the constant error carousel

h(t+1 h(t + 2 h(t +3
h(t)—qX} () :® ():® () :® :h(t+4)

o(t + 1)] o(t + 2){ o(t + 3)] o(t + 4){

v

Time
t+1 t+2

D

t+3 t+

e History is carried through uncompressed
— No weights, no nonlinearities

— Only scaling is through the o “gating” term that captures other
triggers

— E.g. “Have | seen Pattern2”?

Enter — the constant error carousel

- h(t + 1) :2 h(t+2):f h(t +3) :2 h(t +4)

h(®) Ra Ra &
o(t + 1) o(t + 2) o(t + 3) o(t+4)
O—0
Xt+1) X(t+2) X(t+3) X(t+4)

» Time

e Actual non-linear work is done by other
portions of the network

Enter — the constant error carousel

- h(t + 1) :2 h(t+2):f h(t +3) :2 h(t +4)

h(®) g g pa
o(t+1) o(t +2) a(t + 3) o(t+4)
B
Other / /
Wit e+ 1) X(t+2) X(t+3) X(t +4)

» Time

e Actual non-linear work is done by other
portions of the network

Enter — the constant error carousel

h(t+1 éht+2 éht+3 é
X ():>9 ():\><J ():X :h(t+4)

h(t) . \7 VaY,
o(t+1) o(t +2) a(t + 3) o(t+4)
4/) 4/)
Other
Wit vt 4+ 1) X(t+2) X(t+3) X(t +4)

» Time

e Actual non-linear work is done by other
portions of the network

Enter — the constant error carousel

- h(t + 1) :2 h(t+2):f h(t +3) :2 h(t +4)

- & & &
o(t + 1) o(t + 2) o(t + 3) o(t+4)
i
Other
Wit e+ 1) X(t+2) X(t+3) X(t +4)

» Time

e Actual non-linear work is done by other
portions of the network

Enter the LSTM

Long Short-Term Memory

Explicitly latch information to prevent decay /
blowup

Following notes borrow liberally from

nttp://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Standard RNN

A

A

| |
&) ® &

Recurrent neurons receive past recurrent outputs and current input as
inputs

©
e (J’

Processed through a tanh() activation function

— As mentioned earlier, tanh() is the generally used activation for the hidden
layer

Current recurrent output passed to next higher layer and next time instant

Long Short-Term Memory

W ® ®

A
~ T\ ~ N T\
> ——— > >
ALl A
\l)* 4 >\I J_>
&)) &)

* The a() are multiplicative gates that decide if
something is important or not

e Remember, every line actually represents a vector

LSTM: Constant Error Carousel

& ®) 6.)
s T\ - I - T
A LEsL A
© ® ©

 Key component: a remembered cell state

LSTM: CEC

Ci_1

* (C; is the linear history carried by the constant-error
carousel

e Carries information through, only affected by a gate
— And addition of history, which too is gated..

LSTM: Gates

®

T

O

e Gates are simple sigmoidal units with outputs in
the range (0,1)

e Controls how much of the information is to be let
through

LSTM: Forget gate

J fo=0Wy-lhi—1, 2] + by)

L

* The first gate determines whether to carry over the history or to
forget it
— More precisely, how much of the history to carry over
— Also called the “forget” gate

— Note, we're actually distinguishing between the cell memory € and
the state h that is coming over time! They’re related though

LSTM: Input gate

| it =0 (Wi-lhi—1,2¢] + ;)
| é’t =tanh(We-|hi—1, 2] + bo)

Lo | [tanh]

hi—1

Ly

 The second gate has two parts

— A perceptron layer that determines if there’s something
interesting in the input

— A gate that decides if its worth remembering

LSTM: Memory cell update

frT it('%% Cy = frx Ciq +ip + Cy

 The second gate has two parts

— A perceptron layer that determines if there’s something
interesting in the input

— A gate that decides if its worth remembering
— If so its added to the current memory cell

LSTM: Output and Output gate

? Ot O'(WO [ht_l,ilft] + bo)

3 hy = oy * tanh (Cy)

I

* The output of the cell

— Simply compress it with tanh to make it lie between 1 and -1

* Note that this compression no longer affects our ability to carry memory
forward

— While we’re at it, lets toss in an output gate

* To decide if the memory contents are worth reporting at this time

LSTM: The “Peephole” Connection

ft =0 (W [Ceoryhi—1,2¢] + by)
it =0 (Wi [Ce—1,he—1, 2] + b;)
-

Ot =0 (WO'[Cta ht—lvxt] + bo)

* Why not just let the cell directly influence the
gates while at it

— Party!!

The complete LSTM unit

Ct—l C)f) /:\ | Ct
. tanh
ft lt_; Ot
C;
G() G() tanh G()
he—q —|— [— > Iy

* With input, output, and forget gates and the
peephole connection..

Backpropagation rules: Forward

Ce1 /rx\ D) , Ci
g :
tanh
ft ‘e Ot
Ce
o0 | |00 | (@] |[e0
hey] T Y hy
Xt

Gates fi=o (Wf'[ct—l,ht—hﬂ?t] + bf)
* Forward rules: i = 0 (Wi [Comt,hi—1, 1] + b;)
O =0 (WO'[Ct)ht—la‘Tt] + bo)

Variables C, = tanh(W¢-[hi—1, 2] + bo)
Ci = fr * Cr1 + 14 ¥ Cy
hy = o4 * tanh (C})

Backpropagation rules: Backward

“Zt
C Ce
Ce-1 /6() P~ > /O P > Cti1
. tan ‘ tanh
ft 't o -
C, C,
a() o0 tanh] |lQ h c(| o0 tanh] |lo()
h 1| —] U t 1| —] _J > h
t—1 > > Ilt4+1
Xt Xt+1

Backpropagation rules: Backward

Ath
Ct
Ci_1 /@ > /Q P > Cri1
. l tanh
ft % _
Ct
c(] [a() o) o] | tant |lc()
h 1| —] ht 1| —] _J > h
t—1 » N1
Xt Xt+1

Ve, Div = Vp, Div o o o tanh'(.)Wy,

Backpropagation rules: Backward

Ath
Ct
Ci_1 /@ > /Q P > Cri1
. l tanh
ft 't _
Ct
c()] (o0 c0f [0 | tann |[lO
h 1| —] ht‘ 1| —] _J > h
t—1 > > Ilt4+1
Xt Xt+1

Ve, Div = Vy, Div o (0, o tanh’()W¢p, + tanh(.) o o' () W,)

Backpropagation rules: Backward

Ath
Ct
Ci_1 /@ : /@ > Cri1
tanh
fe ‘e fee1 X
Ct

c(] [a() a()] 1Q] | tanhl |lc()
h 1| —] ht‘ 1| —] _J > h
t—1 > » N1

Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep, + tanh(.) o o' ()W) +

Vh,Cey1 0 fre1 +

Backpropagation rules: Backward

Ath
Ct
Ce—1 /@ > /%\/ > Cri1
tanh
fe ‘e t+1 (X
Ct

G()_IG() n ()_IG() tanh [lo()
hi_q — : - > Ntiq

Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep, + tanh(.) o o' ()W) +

VhtCt+1 ° (ft+1 + Cp o U'(-)WCf)

Backpropagation rules: Backward

[&

Ce—1 R

¢

-

> Cria

0

tan

Ve, Div = Vy Div o (0, o tanh'()Wep + tanh(.) o o' ()W) +
Vi, Ceyq © (ft+1 + Croo'()Wer + Cey1 © U'(-)Wa‘)

tanh

Xt+1

> Neyq

Backpropagation rules: Backward

K
C
C (
Ce-1 /6() P~ > /O) > Cti1
1 . l tan 1 l tanh|
fe 't 0 _
C, C,
o] 1O tanh] [LoQ) h c()] a0 tanh| |l5()
h 1] |] t I Iy - 1 > h
t—1 > > Ilt4+1
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep + tanh(.) o o' ()W) +
Vi, Ceyq © (ft+1 + Croo'()Wer + Cey1 © 0'(-)Wa‘)

Vi Div =V, DivVy z;

Backpropagation rules: Backward

Zt
Ct—l /f\ mCt |\Ct /

\)‘((| > @ > Cti1
. I tan tanh|
ft Lt 0
CF—
cQf [cQ] | tany |LcO n of)
he_q 1] — [U t L] > Nyyq
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep + tanh(.) o o' ()W) +
Vi, Ceyq © (ft+1 + Croo'()Wer + Cey1 © U'(-)Wa‘)

VhtDiv = VZtDivVhtZt + VhtCHl o Ct o O',(.)th

Backpropagation rules: Backward

Ci_q /@ f:\Ct > Cti1
. l tan tanh|
fe 't 0
CF—
c(] o0 tanh] |lQ
he—1 —[— [- > N1
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep + tanh(.) o o' ()W) +
Vi, Ceyq © (ft+1 + Croo'()Wer + Cey1 © U'(-)Wa‘)

Vn Div =V, DivVy z; + V Copq 0 (Co 0 0" (OWhs + Criq 0 0" (OWhy)

Backpropagation rules: Backward

Ci_q /@ f:\Ct > Cti1
. l tan tanh|
fe 't 0
CF—
c(] o0 tanh] |lQ
he—1 —[— [- > N1
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep + tanh(.) o o' ()W) +
Vi, Ceyq © (ft+1 + Croo'()Wer + Cey1 © U'(-)Wa‘)

VnDiv =V, DivVy z; + Vy Copq 0 (Co 0 0" (IDWhs + Criq 0 0" (OWiy) +
Ve, Divoipyq o tanh'()Wy,

Backpropagation rules: Backward

C
Ce-1 /@ P— > Cri1
. l tan l tanh|
ft 't 0 Ot+1
C
o)_IG(N [tann) |[O of)
he—q — [- = > Npy1
Xt Xt+1

Ve, Div = Vy Div o (0, o tanh'()Wep, + tanh(.) o o' ()W) +
Vi Cey1 © (ft+1 + Croo' ()W + Cey1 © U'(-)Wa‘)

VnDiv =V, DivVy z; + Vy Copr 0 (Co o 0" (IDWhs + Criq 0 0" (OWhy) +
Ve,, Div o opyq o tanh’'()Wy; + Vp, Div o tanh(.) o ' ()W,

Backpropagation rules: Backward

C
Ce-1 /fx\ P— > Cri1
; I tan I tanh
C
50l [o0] (Lant [loO of)
11 18

Not explicitly demvmg the derivatives w.r.t welgh’rs
Left as an exercise

Ve, Div = Vy Div o (0, o tanh'()Wep, + tanh(.) o o' ()W) +
Vi Cey1 © (ft+1 + Croo' ()W + Cey1 © U'(-)Wa‘)

VnDiv =V, DivVy z; + Vy Copr 0 (Co o 0" (IDWhs + Criq 0 0" (OWhy) +
Ve,, Div o opyq o tanh’'()Wy; + Vp, Div o tanh(.) o ' ()W,

Gated Recurrent Units: Lets simplify
the LSTM

hy
hes [\L 2zt =0 (Wy - [he—1, xt))
rt =0 (Wr ' [ht—laiﬁt])

o o tanh ;Lt = tanh (W . [’I“t 3 ht—la Zﬁt])

) ht:(l—zt)*ht_l—i—zt*ﬁt

* Simplified LSTM which addresses some of
your concerns of why

Gated Recurrent Units: Lets simplify

the LSTM
hy
hes [N \L 2 =0 (Wa - [him1,2¢))
A re =0 (W, - [hi—1,x¢])
X ol (s ta:ft he = tanh (W - [ry % hy1, 24])
P ht:(l—zt)*ht_l—i—zt*ﬁt

 Combine forget and input gates

— In new input is to be remembered, then this means
old memory is to be forgotten

 Why compute twice?

Gated Recurrent Units: Lets simplify
the LSTM

e : 6 | > 2 =0 (W, - [h—1,2¢])
(WT . [ht—ljmt])

1 '+ — O
X 2, X]':Lt _
o o tanh ht — tanh (W . [’I“t X ht—la Zﬁt])
) ht:(l—zt)*ht_l—i—zt*ﬁt

Don’t bother to separately maintain compressed and regular
memories

— Pointless computation!

But compress it before using it to decide on the usefulness of the
current input!

LSTM Equations

i: input gate, how much of the new
information will be let through the memory
cell.

f: forget gate, responsible for information
should be thrown away from memory cell.

0: output gate, how much of the information
will be passed to expose to the next time
step.

g: self-recurrent which is equal to standard
RNN

c;. internal memory of the memory cell
s;. hidden state

y. final output

[= a(xtUi + st_lwi)
f= a(xth +St_1Wf)
o= o(x;U°+ s;_W?)

g = tanh(x;U9 + s,_{W?9)
Ct =C—1°f+g ol

sy = tanh(c;) o 0

y = softmax(Vs;)

NET INPUT

LSTM Memory Cell

157

LSTM architectures example

Y(

t)
f * f * * * * f

X(t)
Time

 Each green box is now an entire LSTM or GRU
unit

* Also keep in mind each box is an array of units

Bidirectional LSTM

Y(0) Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

" 58 B

™
™
|

AN
AN
LAN

—> o000
A A A A A A

X(0) X(1) X(2) X(T-2) \ X(T-1) X(T)

NN N N NN

A
A

A
A

AN AN AN AN AN AN
— eeee —

A A A A A A

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

Like the BRNN, but now the hidden nodes are LSTM units.

Can have multiple layers of LSTM units in either direction
— Its also possible to have MLP feed-forward layers between the hidden layers..

The output nodes (orange boxes) may be complete MLPs

Some typical problem settings

* Lets consider a few typical problems
* |ssues:

— How to define the divergence()
— How to compute the gradient
— How to backpropagate

— Specific problem: The constant error carousel..

X(t)

A J

Time
* NARX networks are commonly used for scalar time series prediction

— All boxes are scalar
— Sigmoid activations are commonly used in the hidden layer(s)
Linear activation in output layer
e The network is trained to minimize the L, divergence between desired and actual output
— NARX networks are less susceptible to vanishing gradients than conventional RNNs

— Training often uses methods other than backprop/gradient descent, e.g. simulated annealing or genetic
algorithms

Example of Narx Network

X,

Inputs may use either past

predicted output values, or

past true values or the past
error in prediction

ol =R |

Y,

-

Fig. 1. Chosen structures of the NARX network: closed-loop.

“Solar and wind forecasting by NARX neural networks,” Piazza, Piazza and Vitale,
2016

Data: hourly global solar irradiation (MJ/m2), hourly wind speed (m/s) measured
at two meters above ground level and the mean hourly temperature recorded
during seven years, from 2002 to 2008

Target: Predict solar irradiation and wind speed from temperature readings

Example of NARX Network: Results

- | —Original Targets. |
3 \— Network Predictions| |

2| [[1{] 1111

s | ?

EJZ'l‘ “ |

%31'5 ‘ | { 1|

;51\‘ l “Lm
0.5 1 || I | Y
o_‘l JULL LJJ-_.} Mﬂj\,uu LULLL

9400 9500 9600 9700 9800 9900 10000
Hours [h]

e Used GA to train the net.

* NARX nets are generally the structure of choice
for time series prediction problems

Which open source project?

static int indicate_policy(void)

{

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

by
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = @; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
}
¥
rw->nhame = "Getjbbregs";

bprm_self clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
return segtable;

Language modelling using RNNs

Four score and seven years ???

ABRAHAMLINCOL??

* Problem: Given a sequence of words (or
characters) predict the next one

Language modelling: Representing

words
* Represent words as one-hot vectors

— Pre-specify a vocabulary of N words in fixed (e.g. lexical)
order

* E.g. [A AARDVARD AARON ABACK ABACUS... ZZYP]
— Represent each word by an N-dimensional vector with N-1

zeros and a single 1 (in the position of the word in the
ordered list of words)

* Characters can be similarly represented

— English will require about 100 characters, to include both
cases, special characters such as commas, hyphens,
apostrophes, etc., and the space character

Predicting words

Four score and seven years ??? W1

WTL == f(W_]., Wl' ey Wn—l)

N ;

Nx1 one-hot vectors

S rolb6r oo

s

OO O e

* Given one-hot representations of W;...W,,_4, predict W,

Predicting words

Four score and seven years ??? W1

Wn == f(W_]., Wl' ey Wn—l)

N ;

Nx1 one-hot vectors

S rod&6n oo

S

OO O e

* Given one-hot representations of W;...W,,_4, predict W,

* Dimensionality problem: All inputs W;...W,,_ are both
very high-dimensional and very sparse

The one-hot representation

(1,0,0)

(0,1,0)

v

(0,0,1)

* The one hot representation uses only N corners of the 2N corners of a unit
cube

— Actual volume of space used =0
* (1,¢,6) has no meaning exceptfore =6 = 0

— Density of points: O (ziN)

* Thisis a tremendously inefficient use of dimensions

Why one-hot representation

(1,0,0)

(0,T;

v

(0,0,1)

* The one-hot representation makes no assumptions about the relative
importance of words

— All word vectors are the same length
* It makes no assumptions about the relationships between words
— The distance between every pair of words is the same

Solution to dimensionality problem

(1,0,0)

v

(0,0,1)

* Project the points onto a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude

* Density of points: 0 (ziM)

Solution to dimensionality problem

(1,0,0)

(0,1,

v

(0,0,1)

* Project the points onto a lower-dimensional subspace
— The volume used is still 0, but density can go up by many orders of magnitude
* Density of points: O (ziM)

— If properly learned, the distances between projected points will capture semantic relations
between the words

* This will also require linear transformation (stretching/shrinking/rotation) of the subspace

The Projected word vectors

o
Four score and seven years ??? W, | p
1
Wn — f(PW:[) PWZ; ""PWn—l) :8:
W, |i|—| P g
2 —>
; fO ||
. 0
(1,0,0) .
1
0
Who1 A P

v

* Project the N-dimensional one-hot word vectors into a lower-dimensional space

Replace every one-hot vector W; by PW;
Pisan M X N matrix
PW; is now an M-dimensional vector

Learn P using an appropriate objective
* Distances in the projected space will reflect relationships imposed by the objective

“Projection”

N
W, |:
1
W, = f(PWL PW,, ""PWn—l) o]
.
W, | ;
. o fO — || W
0
1
0
Wh-1 ;
0

* Pisasimple linear transform
* Asingle transform can be implemented as a layer of M neurons with linear activation

* The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with
tied weights

Predicting words: The TDNN model

v

* Predict each word based on the past N words
— “Aneural probabilistic language model”, Bengio et al. 2003
— Hidden layer has Tanh() activation, output is softmax

* One of the outcomes of learning this model is that we also learn low-dimensional
representations PW of words

Alternative models to learn

projections
we] Wo] (Wil

*

\ Mean pooling \

Color indicates
shared parameters

Wil wa| (W Ws| We| (W

* Soft bag of words: Predict word based on words in
immediate context

— Without considering specific position
e Skip-grams: Predict adjacent words based on current
word

e More on these in a future lecture

Generating Language: The model

Wi

AN AR AR ARIARTARIARTA
TILILE

—>

P P P P P P P P P

AR ANANZARIANARTZ2NIARIA

 The hidden units are (one or more layers of) LSTM units
* Trained via backpropagation from a lot of text

Generating Language: Synthesis

l

v

* Ontrained model : Provide the first few words
— One-hot vectors
* After the last input word, the network generates a probability distribution over words

— Outputs an N-valued probability distribution rather than a one-hot vector

Generating Language: Synthesis

l

v

On trained model : Provide the first few words
— One-hot vectors

After the last input word, the network generates a probability distribution over words
— Outputs an N-valued probability distribution rather than a one-hot vector

Draw a word from the distribution
— And set it as the next word in the series

Generating Language: Synthesis

W, W
EENB
| A R A |

Feed the drawn word as the next word in the series

— And draw the next word from the output probability distribution

Generating Language: Synthesis

Wyl Ws| (Wel Wy W [Wo [Wig

EEENEEE N
t !ttt

A 4
\4

v
A 4
v
v

Feed the drawn word as the next word in the series
— And draw the next word from the output probability distribution
Continue this process until we terminate generation
— In some cases, e.g. generating programs, there may be a natural termination

Which open source project?

static int indicate_policy(void)

int error;
if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else
ret = 1;
goto bail;

by
segaddr = in_SB(in.addr);
selector = seg [/ 16;
setup_works = true;
for (i = @; 1 < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;

if (fd) {
current = blocked;
}
¥
rw->nhame = "Getjbbregs";

bprm_self_clearl(&iv->version);

regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON

return segtable;

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

Composing music with RNN

%

310N

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/

Speech recognition using Recurrent
Nets

EEREEE.

_

_—

X(t)

t=0

Time
* Recurrent neural networks (with LSTMSs) can be
used to perform speech recognition
— Input: Sequences of audio feature vectors
— Output: Phonetic label of each vector

Speech recognition using Recurrent

v Nets .
- RN

v
\4
\ 4
v
A 4

v
\4
\ 4
v
A 4

X(t)

t=0

Time

* Alternative: Directly output phoneme, character or word sequence

* Challenge: How to define the loss function to optimize for training
— Future lecture
— Also homework

CNN-LSTM-DNN for speech recognition

i
e
T e Ensembles of RNN/LSTM, DNN, & Conv
" Nets (CNN) :
------5;-:-;_;-:-_;_41-_-_-_:::::-_-_-_-_5 T. Sainath, O. Vinyals, A. Senior, H. Sak.
L Q “Convolutional, Long Short-Term Memory,
@ | s 1 Fully Connected Deep Neural Networks,”
; ~) ICASSP 2015.
-
1 - e
[Ity ?; t |
I ey

Fig. 1. CLDNN Architecture

Translating Videos to Natural Language Using Deep
Recurrent Neural Networks

Input Video Convolutional Net Recurrent Net Output
CNN — % —/ LsTM | LSTM | — 4
CNN — | LSTM |— LSTM |— hoy
ob |
S|~ LST™M — LST™M |—is
§ } |

CNN c LSTM |— LSTM |— playing
:

CNN — LSTM |— LSTM |— 4

CNN —| LSTM |—| LSTM |— ball
U

Translating Videos to Natural Language Using Deep Recurrent Neural Networks
Subhashini Venugopalan, Huijun Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko
North American Chapter of the Association for Computational Linguistics, Denver, Colorado, June 2015.

\ L < /\ | e S \
‘man in black shirt is playin ‘construction worker in orange “two young girls are playing with ‘boy is doing backflip on

guitar.” safety vest is working on road.” lego toy.’ wakeboard."

"a young boy is holding a "a cat is sitting on a couch witha ~ "a woman holding a teddy bearin ~ "a horse is standing in the middle
baseball bat." remote control.” front of a mirror.” of aroad.’

Summary

* Recurrent neural networks are more powerful than MLPs

— Can use causal (one-direction) or non-causal (bidirectional) context to make
predictions

— Potentially Turing complete

* LSTM structures are more powerful than vanilla RNNs
— Can “hold” memory for arbitrary durations

 Many applications
— Language modelling
* And generation
— Machine translation
— Speech recognition
— Time-series prediction
— Stock prediction
— Many others..

Not explained

e Can be combined with CNNs

— Lower-layer CNNs to extract features for RNN

* Can be used in tracking

— Incremental prediction

