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Theoretical properties of multilayer feedforward
networks

- universal approximators: standard multilayer
feedforward networks are capable of approximating
any measurable function to any desired degree of
accuracy

- there are no theoretical constraints for the success of
feedforward networks

- lack of success is due to inadequate learning,
insufficient number of hidden units or the lack of a
deterministic relationship between input and target

* rate of convergence as the number of hidden units
grows

* rate of increase of the number of hidden units as the
input dimension increases for a fixed accuracy
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Main Theorems: Cybenko, 1989

Sums of the form

N∑
j=1

αjσ(yTj x+ θj)

where yj ∈ Rn, αj , θj ∈ R, are dense in the space of
continuous functions on the unit cube if σ is any
continuous sigmoidal function.
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Main Theorems: Hornik, 1989

English
Single hidden layer ΣΠ feedforward networks can
approximate any measurable function arbitrarily well
regardless of the activation function Ψ, the dimension of
the input space r, and the input space environment µ.
Math
For every squashing function Ψ, every r and every
probability measure µ on (Rr, Br), both ΣΠr(Ψ) and
Σr(Ψ) are uniformly dense on compacta in Cr and
ρµ-dense in M r∑q

j=1 βjG(Aj(x)), x ∈ Rr, βj ∈ R,Aj ∈ Ar, q ∈ N∑q
j=1 βjΠ

lj
k=1G(Ajk(x)), x ∈ Rr, βj ∈ R,Ajk ∈ Ar, lj ∈ N
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Def: A function Ψ : R −→ [0, 1] is a squashing function
if it is non-decreasing, limλ→∞Ψ(λ) = 1 and
limλ→−∞Ψ(λ) = 0
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indicator function,
ramp function,
cosine squasher (Gallant and White, 1988)
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Main Theorems

English
There is a single hidden layer feedforward network that
approximates any measurable function to any desired
degree of accuracy on some compact set K.
Math
For every function g in M r there is a compact subset K
of Rr and an f ∈

∑r(Ψ) such that for any ε > 0 we have
µ(K) < 1− ε and for every X ∈ K we have
|f(x)− g(x)| < ε, regardless of Ψ, r, or µ.
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Main Theorems

English
Functions with finite support can be approximated
exactly with a single hidden layer.
Math
Let {x1, ..., xn} be a set of distinct points in Rr and let
g : Rr −→ R be an arbitrary function. If Ψ achieves 0 and
1, then there is a function f ∈ Σr(Ψ) with n hidden units
such that f(xi) = g(xi) for all i.
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Main Theorems

Most results stated for a single-dimensional output but
can be extended to multi-output networks.
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Proofs

Stone-Weierstrass Theorem
Let A be an algebra of real continuous functions on a compact
set K. If A separates points in K and if A vanishes at no point
of K, then the uniform closure B of A consists of all real
continuous functions on K (i.e. A is ρK-dense in the space of
real continuous functions on K)

Namely, pick a set {f1, f2, ...} of real continuous functions
defined on a compact set K. Add all fj + fk, fj · fk, and cfj to
form A. If for any x 6= y there exists an f ∈ A such that
f(x) 6= f(y), and for every x there exists an f ∈ A such that
f(x) 6= 0, then for any given real continuous function on K, A
contains a function which approximates it arbitrarily well.
The distance is measured as ρK(f, g) = supx∈K |f(x)− g(x)|
See: An Elementary Proof of the Stone-Weierstrass Theorem”,
Brosowski and Deutsch (1981)
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Proof of Theorem 2.1
Let K ⊂ Rr be any compact set.
For any G, ΣΠr(G) is an algebra on K, because any sum and
product of two elements is in the same form, as are scalar
multiples.
To show that ΣΠr(G) separates points on K, for any x 6= y,
pick A such that A(x) = a, A(y) = b, for two constants a 6= b
such that G(a) 6= G(b). Then, G(A(x)) 6= G(A(y)). This is why
it is important that G be non-constant.
To show that ΣΠr(G) vanishes nowhere on K, pick b ∈ R such
that G(b) 6= 0 and let A(x) = 0 ∗ x+ b. For all x ∈ K,
G(A(x)) = G(b).
By the Stone-Weierstrass Theorem, ΣΠr(G) is ρK-dense in the
space of real continuous functions on K
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Lemma A1:
For any finite measure µ Cr is ρµ-dense in Mr

Recall: ρµ(f, g) = inf{ε > 0 : µ{x : |f(x)− f(y)| > ε} < ε}

Proof Pick an arbitrary f ∈Mr and ε > 0. Need to show that
there is a g ∈ Cr such that ρµ(f, g) < ε. For a sufficiently large
number D,

∫
min{|f · 1{|f |<D} − f |, 1}dµ < ε/2

There exists a continuous g such that∫
|f · 1{|f |<D} − g|dµ < ε/2. Thus,

∫
min{|f − g|, 1}dµ < ε.
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Theorem 2.5
Exact approximation of functions on a finite set in R1

Let {x1, ..., xn} be a set of distinct points in Rr and let
g : Rr −→ R be an arbitrary function. If Ψ achieves 0 and 1,
then there is a function f ∈ Σr(Ψ) with n hidden units such
that f(xi) = g(xi) for all i.

Proof
Let {x1, x2, ..., xn} ⊂ R1 and relabeling so that
x1 < x2 < ... < xn.
Pick M > 0 such that Ψ(−M) = 1−Ψ(M) = 0.
Define A1 as the constant affine functions A1 = M and set
β1 = g(x1).
Set f1(x) = β1 ·Ψ(A1(x)).
Inductively define Ak by Ak(xk−1) = −M and Ak(xk) = M .
Define βk = g(xk)− g(xk−1).
Set fk(x) =

∑k
h=1 βjΨ(Aj(x)). For i ≤ kfk(xi) = gk(xi).

The desired function is fn.
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Universal approximation bounds for superpositions of
sigmoidal functions (Barron, 1993)
“For an artificial neural network with one layer of n sigmoidal
nodes, the integrated squared error of approximation,
integrating on a bounded subset of d variables, is bounded by
cf/n, where cf depends on a norm of the Fourier transform of
the function being approximated. This rate of approximation is
achieved under growth constraints on the magnitudes of the
parameters of the network. The optimization of a network to
achieve these bounds may proceed one node at a time. Because
of the economy of number of parameters, order nd instead of
nd, these approximation rates permit satisfactory estimators of
functions using artificial neural networks even in moderately
high-dimensional problems.”
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