
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014 1553

On the Complexity of Neural Network Classifiers:
A Comparison Between Shallow and

Deep Architectures
Monica Bianchini and Franco Scarselli

Abstract— Recently, researchers in the artificial neural net-
work field have focused their attention on connectionist models
composed by several hidden layers. In fact, experimental results
and heuristic considerations suggest that deep architectures
are more suitable than shallow ones for modern applications,
facing very complex problems, e.g., vision and human language
understanding. However, the actual theoretical results supporting
such a claim are still few and incomplete. In this paper, we
propose a new approach to study how the depth of feedforward
neural networks impacts on their ability in implementing high
complexity functions. First, a new measure based on topological
concepts is introduced, aimed at evaluating the complexity of the
function implemented by a neural network, used for classification
purposes. Then, deep and shallow neural architectures with com-
mon sigmoidal activation functions are compared, by deriving
upper and lower bounds on their complexity, and studying how
the complexity depends on the number of hidden units and the
used activation function. The obtained results seem to support
the idea that deep networks actually implements functions of
higher complexity, so that they are able, with the same number
of resources, to address more difficult problems.

Index Terms— Betti numbers, deep neural networks, function
approximation, topological complexity, Vapnik–Chervonenkis
dimension (VC-dim).

I. INTRODUCTION

IN RECENT years, there has been a substantial growth
of interest in feedforward neural networks with many

layers [1]–[3]. The main idea underlying this research is
that, even if common machine learning models often exploit
only shallow architectures, deep architectures1 are required
to solve complex AI problems as, e.g., image analysis or
language understanding [6]. Such a claim is supported by
numerous evidences coming from different research fields.
For example, in neuroscience, it is well known that the neocor-
tex of the mammalian brain is organized in a complex layered
structure of neurons [7], [8]. In machine learning practice,
complex applications are commonly approached by passing

Manuscript received May 6, 2013; revised October 12, 2013; accepted
November 21, 2013. Date of publication January 2, 2014; date of current
version July 14, 2014.

The authors are with the University of Siena, Siena 53100, Italy (e-mail:
monica@dii.unisi.it; franco@dii.unisi.it).

Digital Object Identifier 10.1109/TNNLS.2013.2293637
1It is worth noting that, in this paper, the terms “deep architectures” and

“deep networks” are completely interchangeable and are used to address the
general class of feedforward networks with many hidden layers, whereas in [4]
and [5] “deep network” identifies a specific model in the above class.

the data through a sequence of stages, e.g., preprocessing,
prediction and postprocessing. In the specific field of artificial
neural networks, researchers have proposed and experimented
several models exploiting multilayer architectures, including
convolutional neural networks [9], cascade correlation net-
works [10], deep neural networks [4], [5], layered graph neural
networks [11], and networks with adaptive activations [12].

In addition, even recurrent/recursive models [13], [14] and
graph neural networks [15], which cannot be strictly defined
deep architectures, actually implement the unfolding mecha-
nism during learning, which, in practice, produces networks
that are as deep as the data they have to model. All the above
mentioned architectures have found in recent years a wide
application to challenging problems in pattern recognition,
such as, for example, in natural language processing [16],
chemistry [17], image processing [18], [19], and web min-
ing [20], [21].

Nevertheless, from a theoretical point of view, the advan-
tages of deep architectures are not yet completely under-
stood. The existing results are limited to neural networks
with boolean inputs and units, implementing logical gates or
threshold activation functions, and to sum-product networks
[22], [23]. In the first case, it has been proved that the imple-
mentation of some maps, for instance, the parity function,
requires a different number of units according to whether a
shallow or a deep architecture is exploited. However, such
results deal only with specific cases and do not provide a
general tool for studying the computational capabilities of deep
neural networks. For sum-product networks, instead, deep
architectures were proven to be more efficient in representing
real-valued polynomials. Anyway, there seems to be no way
to directly extend those results to common neural networks,
with sigmoidal activation functions.

Intuitively, an important actual limitation is that no mea-
sure is available to evaluate the complexity of the functions
implemented by neural networks. In fact, the claim that
deep networks can solve more complex problems can be
reformulated as deep neural networks can implement func-
tions with higher complexity than shallow ones, when using
the same number of resources. Anyway, to the best of our
knowledge, the concept of high complexity function has not
been formally defined yet in the artificial neural network field.
Actually, the complexity measures commonly used are not
useful for our purposes, since they deal with different concepts,

2162-237X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1554 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

Fig. 1. (a) 3-D sphere. (b) Torus.

such as the architectural complexity (number of parameters,
units, and layers) or the generalization capability of a model,
based on the Vapnik–Chervonenkis dimension (VC-dim).2

Here, we want to evaluate the complexity of the implemented
function, independently from other characteristics of the net-
work.

In this paper, we propose to exploit some concepts coming
from topology theory in order to design a measure of function
complexity that can be applied to neural networks, used in the
classification framework. In addition, we will employ such
a measure to compare deep and shallow networks, proving
that the former have some theoretical advantages over the
latter. More precisely, let fN : IRn → IR be the function
implemented by a feedforward neural network N , with n
inputs and a single output. We will measure the complexity
of the function fN by the topological complexity of the set
SN = {x ∈ IRn| fN (x) ≥ 0}. Such an approach is natural
when the network N is used for classification since, in this
case, SN is just the set of inputs scored with a nonnegative
response, i.e., the set of patterns belonging to the positive
class.

We will also exploit the concept of Betti numbers [25], in
order to measure the complexity of the set SN . In algebraic
topology, Betti numbers are used to distinguish spaces with
different topological properties. More precisely, for any subset
S ⊂ IRn , there exist n Betti numbers,3 which, in the following,
will be denoted by bi (S), 0 ≤ i ≤ n − 1. Intuitively, the first
Betti number b0(S) is the number of connected components of
the set S, while the i th Betti number bi (S) counts the number
of (i + 1)-dimensional holes in S. For example, consider
the four subsets SB I , SB , SD , and SI in IR2, representing
the character strings B I , B , D, and I , respectively. All
the subsets are constituted by a single connected component
except for SB I , which has two components. Thus, b0(SB) =
b0(SD) = b0(SI) = 1 and b0(SB I) = 2. In addition,
b1(SB I) = b1(SB) = 2, b1(SD) = 1, and b1(SI) = 0,
because SB I and SB contain two (2-D) holes, SD contains
one hole, and SI has no hole, respectively. For an example, in
a larger dimensional space, let us compare a 3-D sphere, Sπ ,
and a torus, Sτ (Fig. 1). We can observe that both of them
have a single connected component and contain a 3-D hole

2A probabilistic upper bound on the test error of a classification model can
be predicted using the VC–dimension [24].

3Formally, bi (S) is defined for any i ≥ 0, but bi (S) = 0 for i ≥ n.

TABLE I

UPPER AND LOWER BOUNDS ON THE GROWTH OF B(SN) FOR

NETWORKS WITH h HIDDEN UNITS, n INPUTS, AND

l HIDDEN LAYERS. THE BOUND IN THE FIRST ROW

IS A WELL-KNOWN RESULT AVAILABLE IN [26]

(i.e., b0(Sπ) = b2(Sπ) = b0(Sτ) = b2(Sτ) = 1). On the other
hand, the sphere contains a single 2-D hole, defined by any
circle on its surface, whereas the torus has two 2-D holes,
the one in the center and the one in the middle of the “tube”
(i.e., b1(Sπ) = 1, b1(Sτ) = 2).

Thus, Betti numbers capture a topological notion of com-
plexity that can be used to compare subspaces of IRn . In the
examples, we can assert that SB I is more complex than SB ,
because the former is made by two components, SB is more
complex than SD , because SB has more holes than SD , and
the torus is more complex than the sphere, because it has two
2-D holes instead of one.

In this paper, we will evaluate the Betti numbers bi (SN)
of the regions SN , positively classified by feedforward neural
networks, in order to understand how they are affected by
the network architecture, i.e., based on being N deep or not.
Several theorems will be derived, providing both upper and
lower bounds on the sum of the Betti numbers, B(SN) =∑

i bi (SN), varying the architecture and the activation func-
tions exploited by the network. More specifically, considering
a particular class of networks, the existence of a lower bound
L implies that for at least one network N , belonging to
the considered class, B(SN) ≥ L holds, while an upper
bound U is such if B(SN) ≤ U for all the networks in the
class.

Table I summarizes the obtained results. Here, h represents
the number of hidden neurons, n is the number of inputs,
and l is the number of layers in the network. In addition,
the common big O notation is used to describe the limit
behavior of B(SN) with respect to h. Thus, B(SN) ∈ O(f (h))
means that limh→∞ B(SN)/ f (h) < ∞ holds and, similarly,
B(SN) ∈ �(f (h)) means that limh→∞ f (h)/B(SN) < ∞
holds. It is worth mentioning that all the proposed results hold
also if l is replaced by h in the upper bounds, and by 2h, in
the lower bounds.4

Interestingly, a general result seems to emerge from our
analysis, summarized by the following two propositions.

4Indeed, h ≥ l holds, whereas, for lower bounds, theorems are proved by
providing an example of a network with two hidden units per layer.

BIANCHINI AND SCARSELLI: ON THE COMPLEXITY OF NEURAL NETWORK CLASSIFIERS 1555

Proposition 1: For network architectures with a single hid-
den layer, the sum of the Betti numbers, B(SN), grows
at most polynomially with respect to the number of the
hidden units h, i.e., B(SN) ∈ O(hn), where n is the input
dimension.

Proposition 2: For deep networks, B(SN) can grow expo-
nentially in the number of the hidden units, i.e., B(SN) ∈
�(2h).

More precisely, the above propositions have been proved
for networks exploiting some specific activation functions,
namely, the inverse tangent, arctan(a) = tan−1(a), the hyper-
bolic tangent,5 tanh(a) = (ea − e−a)/(ea + e−a), and poly-
nomials. In fact, by simplifying the bounds in Table I, it can
be easily seen that both the claims are proved for polynomial
activation functions of degree r : B(SN) ∈ O(rn), for networks
with a unique hidden layer, and it ranges between �(2h) and
O(r2hn) for deep networks. In addition, both claims are also
demonstrated for networks using the arctangent; the sum of the
Betti numbers ranges between �((h/n)n) and O((n + h)n+2)

in shallow networks, and between �(2h) and O(4h2
(nh)n+2h)

in deep networks. On the other hand, Proposition 2 holds for
generic sigmoid activation functions (i.e., monotone increas-
ing, functions having left and right limits); in this case, the
lower bound is �(2h).

For the sake of clarity, it is worth pointing out that we
do not know whether the two propositions hold for all the
commonly used activation functions, and that the presented
results are nonconclusive and leave open interesting avenues
of investigation for future work. For instance, Proposition 1
has not been proved for networks with the hyperbolic tangent
function. Interestingly, we will clarify that the extension of
such results may require some significant advancements in
algebraic topology, since they are related to some important
and still unsolved problems.

Finally, from a practical point of view, both propositions
suggest that deep networks have the capability of implement-
ing more complex sets than shallow ones. This is particularly
interesting if compared with current results on VC-dim of
multilayer perceptrons. Actually, the available bounds on VC-
dim with respect to the number of network parameters6 do
not depend on whether deep or shallow architectures are
considered. Since the VC-dim is related to generalization,
the two results together seem to suggest that deep networks
allow to largely increase the complexity of the classifiers
implemented by the network without significantly affecting its
generalization behavior. This paper includes also an intuitive
and preliminary discussion on the peculiarities that an applica-
tion domain should have to take advantage of deep networks.

This paper is organized as follows. In Section II, the
notation is introduced. Section III collects the main results. In
Section IV, such results are discussed and compared with the
state-of-the-art achievements. Finally, conclusions are drawn
in Section V.

5It is worth mentioning that all the presented results for the hyperbolic
tangent apply also to the logistic sigmoid logsig(a) = 1/(1+e−a), which can
be obtained by translations and dilations from tanh(·).

6Current bounds range from O(p log p) to O(p4), according to the used
activation function, being p the number of the network parameters.

II. NOTATION

A. Multilayer Perceptron Networks

In this paper, we consider multilayer perceptron networks
with ridge activation functions and a unique output. Formally,
since it is assumed that the network is composed of neurons
(units) organized in layers, each neuron is uniquely identified
by a pair (k, l), where l is the layer it belongs to, and k is the
sequential position it occupies within the layer. In addition,
it is also assumed that the layers are fully connected, i.e.,
there is a link from any neuron of a layer to any neuron of
the next layer, but no link exists between units of the same
layer or among nonconsecutive layers (in other words, there
are no shortcut connections). The network parameters collect
the weights assigned to the links and the biases related to each
unit; in particular, with wl

k,i ∈ IR we will denote the weight of
the connection from neuron (i, l −1) to neuron (k, l), whereas
bl

k ∈ IR will represent the bias of the (k, l) unit.
The network implements a function by activating each neu-

ron, starting from the first layer, which actually “passes” the
input, to the last layer, which returns the calculated function,
fN (x) : IRn → IR. The activation of each neuron produces
a real value, ok,l , called output. More precisely, the outputs
of the neurons in the first layer, i.e., layer 0, are set to the
components of the input x ∈ IRn , i.e., ok,0 = xk , 1 ≤ k ≤ n.
For the following layers, l > 0, the output is computed based
on the outputs of the units in the previous layer l − 1, as

ol
k = σ

⎛

⎝
hl−1∑

i=1

wl
k,i o

l−1
i + bl

k

⎞

⎠

where σ : IR → IR is the activation function, and h0 = n.
We assume here that the activation function of the unique

neuron in the output (last) layer is the identity function, i.e.,
σ(a) = a.7 On the other hand, for the activation function of
the hidden layers, four common cases will be studied: 1) the
inverse tangent function, i.e., σ(y) = arctan(y) = tan−1(y);
2) the hyperbolic tangent function, i.e., σ(y) = tanh(y) =
(ey − e−y)/(ey + e−y); 3) polynomial activation functions,
i.e., σ(y) = p(y), where p is a polynomial; and 4) sigmoid
functions, i.e., σ is a limited monotone increasing function, for
which there exist lσ , rσ ∈ IR such that limy→−∞ σ(y) = lσ
and limy→∞ σ(y) = rσ .

Finally, the network output is given by the output of the
neuron in the last layer. Thus, the function fN , implemented
by a three-layer network N (one hidden layer), with n inputs
and h1 hidden units, may be expressed in the form

fN (x) = b2
1 +

h1∑

i1=1

w2
1,i1σ

⎛

⎝b1
i1 +

n∑

i0=1

w1
i1,i0 xi0

⎞

⎠ . (1)

On the other hand, a four-layer network with, respectively,
h1 and h2 units in the first and in the second hidden layer,

7In common applications, output neurons with linear or sigmoidal activation
functions are usually employed. In this paper, the analysis is carried out only
for the former case, but most of the presented results can easily be extended
to the latter.

1556 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

implements the function

fN (x) = b3
1 +

h2∑

i2=1

w3
1,i2

× σ

⎛

⎝b2
i2 +

h1∑

i1=1

w2
i2,i1σ

⎛

⎝b1
i1 +

n∑

i0=1

w1
i1,i0 xi0

⎞

⎠

⎞

⎠

and so on.

B. Betti Numbers and Pfaffian Functions

Formally, the kth Betti number, bk(S), is defined as the
rank of the kth homology group of the space S. The reader
is referred to text books on algebraic topology for a wider
introduction to homology [25], [27]. Here, it suffices to say
that the homology theory realizes a link between topological
and algebraic concepts, and provides a theoretical framework
that allows to compare objects according to their forms.

Homology theory starts from the observation that two
topological spaces can be distinguished looking at their holes,
and provides a formal mathematical tool for determining
different types of holes. Actually, homology is also defined
to be based on cycles. In fact, a k-dimensional compact hole
can be identified by its (k − 1)-dimensional cyclic border.
For example, the border of the 3-D hole inside a sphere is
the surface of the sphere itself; a torus has two 2-D holes,
corresponding to the cyclic paths around the inside (of the
“donut”) and around the tube, respectively (Fig. 1). The kth
homology group of a space S, intuitively, collects a coding
of all the different types of (k + 1)-dimensional holes/cycles
contained in S. Thus, the kth Betti number provides a sort of
signature to recognize similar objects, by counting the number
of (k + 1)-dimensional holes.

The homology theory plays a fundamental role in many dis-
ciplines, including, for instance, physics [28], image process-
ing [29], and sensor networks [30].

A sequence (f1, . . . , f�) of real analytic functions in IRn

is a Pfaffian chain on the connected component U ⊆ IRn , if
there exists a set of polynomials Pi, j such that for each x ∈ U
∂ fi

∂x j
= Pi, j (x, f1(x), . . . , fi (x)), 1 ≤ i ≤ �, 1 ≤ j ≤ n (2)

holds. A Pfaffian function in the chain (f1, . . . , f�) is a map f ,
expressed as a polynomial P in x and fi (x), i = 1, . . . , �

f (x) = P(x, f1(x), . . . , f�(x)).

The complexity (or the format) of the Pfaffian function f is
defined by a triplet (α, β, �), where α is the degree of the
chain, i.e., the maximum degree of the polynomials Pi, j , β is
the degree of the Pfaffian function, i.e., the degree of P , and
� is the length of the chain.

The class of Pfaffian maps is very wide and includes most of
the functions commonly used in engineering and computer sci-
ence applications. Actually, most of the elementary functions
are Pfaffian, e.g., the exponential, the trigonometric functions,8

8More precisely, sin(·) and cos(·) are Pfaffian within a period. For instance,
sin(·) and cos(·) are Pfaffian in [0, 2π].

the polynomials, and all the algebraic functions. In addition,
the compositions and the inverses of Pfaffian functions are
Pfaffian. Therefore, the natural logarithm, ln(x), is Pfaffian,
being the inverse of the exponential function ex , and the
logistic sigmoid logsig(x) = 1

(1+e−x)
is Pfaffian, since it is

an algebraic function of Pfaffian functions.

III. THEORETICAL RESULT

In this section, we collect some theoretical results on
function complexity, which can be applied to neural networks
used in the classification framework, in order to compare deep
and shallow architectures. Actually, in Sections III-A and B,
results on upper and lower bounds, evaluated for different
activation functions (threshold, polynomials, and sigmoidal),
are, respectively, reported. For the theorems’ proofs, the reader
is referred to the Appendix, that also contains a discussion on
possible extensions to the presented results.

A. Upper Bounds

The first theorem we propose provides an upper bound on
the sum of the Betti numbers of the positive set realized by
three-layer networks with arctan(·) activation function.

Theorem 1: Let N be a three-layer neural network with
n inputs and h hidden neurons, with arctangent activation in
the hidden units. Then, for the set SN = {x ∈ IRn | fN (x) >
0}, B(SN) ∈ O((n + h)n+2) holds.

Thus, B(SN) grows at most polynomially in the number of
hidden neurons. Interestingly, a similar result can be obtained
for analogous shallow architectures having a single hidden
layer of polynomial units.

Theorem 2: Let p be a polynomial of degree r . Let
N be a three-layer neural network with n inputs, and h hidden
neurons, having p as activation function. Then, for the set
SN = {x ∈ IRn| fN (x) > 0}, it holds that

B(SN) ≤ 1

2
(2 + r)(1 + r)n−1.

In addition, when the network has only one input and the
activation function is the arctangent, the problem of defining a
bound on B(SN) becomes simpler. In fact, if n = 1, then SN is
a set of intervals in IR and the only nonnull Betti number is the
first one, i.e., b0(SN), which counts the number of intervals
where fN (x) is nonnegative. In this case, as proved in the
following theorem, the bound on b0(SN) is linear.

Theorem 3: Let N be a three-layer neural network with one
input and h hidden neurons. If the activation function used in
the hidden units is the arctangent, then it holds that

b0(SN) ≤ h.

Finally, we derive some upper bounds for deep networks,
which can have any number of hidden layers.

Theorem 4: Let N be a network with n inputs, one output,
l hidden layers, and h hidden units with activation σ . If σ is
a Pfaffian function such that the polynomials Pi, j , defining its
chain, do not depend on the input variable x (see Eq.(2)), σ
has complexity (α, β, �), and n ≤ h�, then

B(SN) ≤ 2(h�(h�−1))/2

×O
(
(n((α + β − 1 + αβ)l + β(α + 1)))n+h�

)

BIANCHINI AND SCARSELLI: ON THE COMPLEXITY OF NEURAL NETWORK CLASSIFIERS 1557

holds. In addition, if σ = arctan(·) and n ≤ 2h, then

B(SN) ≤ 2h(2h−1)O
(
(nl + n)n+2h

)
,

and if σ = tanh(·) and n ≤ h

B(SN) ≤ 2(h(h−1))/2O
(
(nl + n)n+h

)
.

It is worth noting that the hypothesis n ≤ h� (n ≤ 2h,
n ≤ h) is not restrictive for our purposes, since we are
interested in the asymptotic behavior of deep architectures,
with the number of hidden layers (and, therefore, the number
of hidden units) tending to infinity. Similarly, the assumption
on Pi, j , defining the chain of σ , is satisfied by common
activation functions and represents just a technical hypothesis
added to simplify the proof of Theorem 4 (see the Appendix,
for more details).

Finally, for deep networks with polynomial activation func-
tions, the upper bound of Theorem 4 can be improved as
follows.

Corollary 1: Let fN (x) be the function implemented by a
neural network with n inputs, one output, and l hidden layers,
composed by neurons with a polynomial activation function
of degree r . Then, it holds that

B(SN) ≤ 1

2
(2 + r l)(1 + r l)n−1.

B. Lower Bounds

In the following, we present some results on lower bounds
of B(SN), for both deep and shallow networks. In particular,
we study the growth of B(SN) when the number of layers
is progressively increased. Actually, the presented results con-
cern b0(SN). However, since B(SN) > b0(SN), they also
hold for B(SN).

In the next theorem, we prove that for networks of growing
depth, B(SN) can actually become exponential with respect to
the number of the hidden neurons. In fact, Theorem 5 provides
an exponential lower bound on b0(SNl), for deep networks
with hidden neurons having sigmoid activation.

Theorem 5: For any positive integers l, n, and any sigmoid
activation function, there exists a multilayer network Nl with
n inputs, a unique output, l hidden layers, and two neurons
per layer, such that

b0(SNl) ≥ 2l−1 + 1.

Interestingly, Theorem 5 can be extended to networks with
nonlinear continuously differentiable activation functions.

Theorem 6: Let σ ∈ C3 be a nonlinear function in an
open interval U ⊆ IR. Then, for any positive integers l, n,
there exists a multilayer network Nl , with n inputs, a unique
output, l hidden layers, and two neurons in each layer, with
activation σ , such that

b0(SNl) ≥ 2l−1 + 1.

Notice that even if both Theorems 5 and 6 can be applied
to the common activation functions tanh(·) and arctan(·), they
deal with slightly different classes of functions. In particular,
Theorem 5 copes with general sigmoidal activation func-
tions, including, e.g., piecewise continuous functions, whereas

Theorem 6 deals with nonlinear C3 activations, a class that
includes all the polynomials with degree larger than one.

On the other hand, the obtained results are not useful for
networks with a fixed number of layers, since, in this case, the
bound becomes a constant. In the following, a lower bound
for the complexity of three-layer networks is devised, varying
the number of hidden neurons. More precisely, in the next
theorem, we show that b0(SN) can grow as ((h − 1)/2n)n

for three-layer networks with sigmoid activation functions.
Interestingly, the lower bound is �(hn), and it is optimal
for networks with arctan(·) function, since it equals the upper
bound devised in Theorem 1. It is also optimal for networks
with threshold activation (see [26], [31]).

Theorem 7: For any positive integers n, m, and any sig-
moidal activation function σ , there exists a three-layer net-
work N , with n inputs and h = n(2m − 1) hidden units, for
which

b0(SN) ≥
(

h − 1

2n

)n

.

It is worth mentioning that a tighter lower bound b0(SN) ≥
(h/n)n can be obtained by assuming that the activation func-
tion is nonpolynomial and analytic at some point.9 (see the
theorem’s proof, for more details).

Instead, Theorem 7 cannot be extended to three-layer net-
works with polynomial activations, since they are not universal
approximators. Actually, it can easily be seen that, in this case,
fN is a polynomial having at most the degree of the activation
function, independently of the number of hidden units. In fact,
also the upper bound in Theorem 2 does not depend on the
number of hidden neurons, but only on the degree of the
activation function and on the input space dimension.

IV. RELATED LITERATURE AND DISCUSSION

This paper belongs to the wide class of studies whose intent
has been that of characterizing the peculiarities of the functions
implemented by artificial neural networks. In the early 90s,
the capacity of multilayer networks—with sigmoidal, RBF,
and threshold activation functions—of approximating any con-
tinuous map up to any degree of precision was established
[32]–[35]. Such seminal studies have been subsequently
extended in several ways, considering networks with very
generic neurons (e.g., with analytic activation functions),
expanding the class of approximable maps (e.g., to integrable
functions [36]), or studying nonstatic networks (e.g., recurrent,
recursive, and graph neural networks [37]–[39]). Unfortu-
nately, those results do not allow to distinguish between deep
and shallow architectures, since they are based on common
properties instead of on distinguishing features.

On the other hand, researchers in the field of logic networks
have actually pursued the goal of defining the effect of
the network depth on the amount of resources required to
implement a given function. In this ambit, it has been shown
that there exist boolean functions, whose realization requires a
polynomial number of logic gates (AND, OR, and NOT) using

9A function is analytic at a given point if its Taylor series, computed with
respect to such a point, converges.

1558 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

a network with l layers, whereas an exponential number of
gates is needed for a smaller number of layers [40], [41].
A well-known function of this class is the parity function,10

which requires an exponential number of gates (in the number
of inputs), if the network has two layers, whereas it can be
implemented by a linear number of logic gates, if a logarithmic
number of layers (in the input dimension) are employed. It is
worth mentioning that it has been also proved that most of the
boolean functions require an exponential number of gates to
be computed with a two-layer network [42].

In addition, in [22], deep and shallow sum-product net-
works11 were compared, using two classes of functions. Their
implementation by deep sum-product networks requires a
linear number of neurons with respect to the input dimension n
and the network depth l, whereas a two-layer network needs
at least O(2

√
n) and O((n − 1)l) neurons, respectively.

Finally, similar results were obtained for weighed threshold
circuits.12 For example, it has been proved that there are
monotone functions13 fk that can be computed with depth k
and a linear number of logic (AND, OR) gates, but they require
an exponential number of gates to be computed by a weighed
threshold circuit with depth k − 1 [44].

The above mentioned results, however, cannot be applied
to common Backpropagation neural networks. In this sense,
as far as we know, the theorems reported in this paper are the
first attempt to compare deep and shallow architectures, which
exploit the common tanh(·) and arctan(·) activation functions.
Interestingly, the presented theorems are also related to those
on VC-dim, both from a mathematical and a practical point
of view. An exhaustive explanation of such mathematical
relationship would require the introduction of tools that are out
of the scope of this paper. Here, it suffices to say that some of
the results obtained for the VC-dim can be derived using the
same theory, on Betti numbers and Pfaffian functions, that we
will use in our proofs (see [45]). On the other hand, in order
to clarify practical relationships, it is worth pointing out that
the VC-dim provides a way of measuring the generalization
capability of a classifier. Current available results show
that the VC-dim is O(p2), for networks with arctan(·) or
tanh(·) activation, where p is the number of parameters
[45]–[47]. In addition, for generic sigmoidal activation
functions,14 a lower bound �(p2) has been devised, so that
the upper bound O(p2) for arctan(·) and tanh(·) is optimal.
Thus, the VC-dim is polynomial with respect to the number
of parameters and, as a consequence, it is polynomial also in
the number of hidden units. These bounds do not depend on
the number of layers in the network, thus suggesting that, in

10The parity function, f : {0, 1}n → {0, 1}, is defined as f (x) = 1,
if

∑n
i=1 xi is odd, and f (x) = 0, if

∑n
i=1 xi is even.

11A sum-product network consists of neurons that either compute the
product or a weighed sum of their inputs.

12Thresholds circuits are multilayer networks with threshold activation func-
tions, i.e., σ(a) = 1, if a ≥ 0, and σ(a) = 0, if a < 0. Interestingly, threshold
circuits are more powerful than logic networks and allow to implement the
parity function by a two–layer network with n threshold gates [43].

13See [44] for a definition of monotone function, in this case.
14More precisely, this result holds if the activation function σ has left and

right limits and it is differentiable at some point a, where also σ ′(a) �= 0
holds.

practice, the depth of a network has a larger impact on the
complexity of the implemented function than on its gener-
alization capability. In other words, using the same amount
of resources, deep networks are able to face more complex
applications without loosing their generalization capability.

Let us now discuss the limits of the presented theorems.
Further limits will be discussed in Subsection I of the
Appendix. First, as mentioned in Section I, the claim that
the sum of the Betti numbers related to sets implemented
by common multilayer networks grows exponentially in the
number of neurons if the network is deep, whereas it grows
polynomially for a three-layer architecture, has been proved
only for some activation functions. The most evident limitation
of our results lies in the lack of a tight and polynomial
upper bound for three-layer networks with hyperbolic tangent
activation (Table I). Such a limitation may appear surprising,
since a bound has been derived for the arctan(·) function,
which is, intuitively, very similar to tanh(·). Actually, the
difference between arctan(·) and tanh(·) is more technical than
fundamental. In the Appendix, it will be explained how the
problem of devising a tighter bound for three-layer networks
with tanh(·) activation is strictly related to a well known and
unsolved problem on the number of the solutions of poly-
nomial systems. Also in that context, it will be deepen how
the general goal of improving the bounds reported in Table I
is related to unsolved challenging problems in mathematics
as well.

In addition, we have considered only networks with Pfaffian
activation functions. Though this is a general feature for the
activations commonly used in Backpropagation networks,
such an assumption is fundamental and cannot be easily
removed, because it ensures that the Betti numbers of the set
implemented by the network are finite. Actually, in [48], it has
been shown that the VC-dim is infinite for networks with one
input, and two hiddens, with activation function σ(a) = π−1

arctan(a) + (α(1 + a2))−1 cos(a) + 1/2, where α > 2π .
In fact, the presence of the sinusoidal component allows to
construct a single input network N for which fN has an
infinite number of roots. Obviously, in this case, also B(Sn) is
infinite. However, such a degenerate behavior is not possible
when the activation function is Pfaffian, since a system of
n Pfaffian equations in n variables has a finite number of
solutions [49].

Also, one may wonder whether there are alternatives to the
sum of the Betti numbers, B(SN) = ∑

i bi (SN), for mea-
suring the complexity of the regions realized by a classifier.
Actually, it is easy to see that other measures exist and we
must admit that our choice of using B(SN) is due both to
the availability of mathematical tools suitable to derive a set
of useful bounds and to the fact that it provides a reasonable
way of distinguishing topological complexity details. Actually,
b0(SN) (the number of connected regions of SN) is a possible
alternative to B(SN), even if it captures less information on
the set SN ,15 while we are not aware of any tighter bound that

15For example, using B(SN), we can recognize that the region representing
the character B is more complex than the region D, which, in turn, is more
complex than the region I , whereas all the regions have the same complexity
according to b0(SN).

BIANCHINI AND SCARSELLI: ON THE COMPLEXITY OF NEURAL NETWORK CLASSIFIERS 1559

Fig. 2. Plots of the set S f , for f = g (top left), f = g ◦ t (top right),
f = g ◦ t2 (bottom left), and f = g ◦ t3 (bottom right), where g = 1 − ‖x‖2,
t (x) = [1 − 2x2

1 , 1 − 2x2
2], t2 = t ◦ t , and t3 = t ◦ t ◦ t hold.

can be derived using b0. On the other hand, it is not difficult
to design a measure that captures the fact that the character M
looks more complex than the character I, a difference which
is not recognized by B(SN), but then it becomes challenging
to derive useful bounds using such a measure.

Finally, it may help to provide an intuitive explanation of the
possible advantages of deep architectures. First, notice that the
kth hidden layer of a feedforward network realizes a function
that correlates the outputs of the neurons in layer k − 1 with
the inputs of the neurons in layer k + 1. Such a correlation
can be represented as a map, so that the global function
implemented by a deep network results in a composition of
several maps, whose number depends on the number of its
hidden layers. On the other hand, the function composition
mechanism intuitively allows to replicate the same behavior
on different regions of the input space. Without providing
a formal definition of such a statement, let us illustrate this
concept with an example. Consider the composition f = g ◦ t ,
with g : D → IR, t : D → D, defined on the domain
D ⊆ IRn . In addition, let us assume that there exist m sets,
A1, . . . , Am ⊆ D, such that t (Ai) = D, 1 ≤ i ≤ m. We can
observe that the number of connected regions b0(S f) of the
set S f = {x | f (x) ≥ 0} is at least m times b0(Sg), where
Sg = {x | g(x) ≥ 0}. In fact, intuitively, f behaves on each
Ai as g behaves on the whole domain D. In addition, this
argument can be extended to the case when g is composed
with t several times, i.e., f = g ◦ tk , where tk = t ◦ t ◦ . . . ◦ t
for k occurrences of t . In this case, the ratio b0(S f)/b0(Sg)
is at least mk . For example, Fig. 2 shows the set Sg◦t , when
g = 1 − ‖x‖2, t (x) = [1 − 2x2

1 , 1 − 2x2
2], and D = {x | − 1 ≤

x1 ≤ 1,−1 ≤ x2 ≤ 1}. Since t maps four distinct regions
to D, then Sg is composed of a single connected region,
Sg◦t of four connected regions, Sg◦t2 of 16 regions, Sg◦t3 of
64 regions, and so on.

Therefore, we can intuitively conclude that deep networks
are able to realize, with few resources, functions that replicate

a certain behavior in different regions of the input space.
Obviously, here the concept of replicating a behavior must
be interpreted in a very broad sense, since the hidden layers
of a deep network can approximate any function.

V. CONCLUSIONS

In this paper, we proposed a new measure, based on
topological concepts, to evaluate the complexity of functions
implemented by neural networks. The measure has been used
for comparing deep and shallow feedforward neural networks.
It has been shown that, with the same number of hidden units,
deep architectures can realize maps with a higher complexity
with respect to shallow ones. The above statement holds
for networks with both arctangent and polynomial activation
functions. This paper analyzes the limits of the obtained results
and describes technical difficulties, which prevented us from
extending them to other commonly used activation functions.
An informal discussion on the practical differences between
deep and shallow networks is also included.

Interestingly, the proposed complexity measure provides a
tool that allows us to study connectionist models from a new
perspective. Actually, it is a future matter of research the appli-
cation of the proposed measure to more complex architectures,
such as convolutional neural networks [9], recurrent neural
networks [13], [50], and neural networks for graphs [14], [15].
Hopefully, this analysis will help in comparing the peculiar-
ities of different models and in disclosing the role of their
architectural parameters.

APPENDIX

In this appendix, we collect the proofs of the presented
theorems along with some comments on future research,
aimed at improving the given bounds. Such proofs exploit an
important property of Pfaffian functions, according to which
the solutions of systems of equalities and inequalities based
on Pfaffian functions define sets whose Betti numbers are
finite, and can be estimated by the format of the functions
themselves. Therefore, let us start this section by introducing
some theoretical properties of Pfaffian varieties.

Formally, a Pfaffian variety is a set V ⊂ IRn defined by a
system of equations based on Pfaffian functions g1, . . . , gt ,
i.e., V = {x ∈ U | g1(x) = 0, . . . , gt (x) = 0}, where
U ⊂ IRn is the connected component on which g1, . . . , gt

are defined. A semi-Pfaffian variety S on V is a subset
of V defined by a set of sign conditions (inequalities or
equalities) based on Pfaffian functions f1, . . . , fs , i.e., S =
{x ∈ U | f1(x)R10, . . . , fs(x)Rs0}, where, for each i , Ri

represents a partial order relation in {<,>,≤,≥,=}. For our
purposes, we will use the following theorem, due to Zell [51].

Theorem 8: Let S be a compact semi-Pfaffian variety in
U ⊂ IRn , given on a compact Pfaffian variety V , of dimen-
sion n′, defined by s sign conditions on Pfaffian functions.
If all the functions defining S have complexity at most
(α, β, �), then the sum of the Betti numbers satisfies

B(S) ∈ sn′
2(�(�−1))/2O

(
(nβ + min(n, �)α)n+�

)
. (3)

1560 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

Notice that the constraint on the compactness of U and
V can actually be removed without affecting the bound, as
clarified in [52]. In addition, in this paper, Theorem 8 will be
used with U = IRn being the input domain of the network,16

and with S being the positive set defined by the network, i.e.,
S = SN = {x | fN (x) ≥ 0}. In this case, the term sn′

in (3)
can be ignored, since s = 1.

Finally, it is worth noting that a bound is available also for
the sum of the Betti numbers of semialgebraic sets, i.e., sets
defined by inequalities involving polynomials [53].

Theorem 9: Let S be the set defined by s inequalities,
q1(x) ≥ 0, . . ., qs(x) ≥ 0, where the qi are polynomials in
n real variables. Let d be the sum of the degrees of the qi .
Then

B(S) ≤ 1

2
(2 + d)(1 + d)n−1 (4)

holds.
In the following, the proofs of the theorems are reported,

together with some lemmas that are functional to such proofs.

A. Proof of Theorem 1

The next lemma defines the exact format of the func-
tion implemented by a three-layer network with arctangent
activation.

Lemma 1: Let N be a three-layer neural network, having
one output and h hidden neurons, with arctangent activation.
Then, the function fN (x), implemented by N , is Pfaffian,
with complexity (2h, 2, 2).

Proof: Since d(arctan(a))/da = 1/(1 + a2)

∂ fN (x)

∂xk
=

h∑

i1=1

w2
1,i1

w1
i1,k

1 +
(

n∑

i0=1
wi1,i0 xi0 + b1

i1

)2 = Q(x)

T (x)

where Q and T are polynomials in x1, . . . , xn , of degree
smaller than 2(h − 1) and 2h, respectively.17

Let us now consider the sequence (f1, f2), with f1(x) = Q(x)
and f2(x) = 1/T (x), which is a Pfaffian chain, with degree
α = 2h and length � = 2. Actually, f1 is straightforwardly
Pfaffian, since it is a polynomial, whereas for f2 the following
equation holds:

∂ f2(x)

∂x j
= − Tj (x)

T (x)2 = −Tj (x) · (f2(x))2

being Tj the partial derivative of T with respect to x j .
Finally, since ∂ fN (x)/∂xk can be computed as a polynomial
in f1(x) and f2(x), namely ∂ fN (x)/∂xk = f1(x) · f2(x), then
fN is a Pfaffian function with complexity (2h, 2, 2).

Proof of Theorem 1: Theorem 1 is a direct consequence of
Theorem 8, which provides a bound for Pfaffian functions, and
Lemma 1.

16Formally, IRn is the special variety U = {x| 0 = 0}.
17Actually, Q = ∑h

t=1 Nt (x)
∏

j �=t D j (x) and T = ∏h
j=1 D j (x), where

Nt (x) = w2
1,t w

1
t,k , D j (x) = 1 + (

∑n
i0=1 w j,i0 xi0 + b1

j)
2 hold.

B. Proof of Theorem 2

By Eq. (1), it can be easily verified that if the activation
function of a three-layer network is a polynomial of degree
r , also the function fN (x), implemented by the network, is
a polynomial with the same degree. Thus, Theorem 9 can be
applied to fN (x), with d = r , proving the thesis.

C. Proof of Theorem 3

The first Betti number b0(SN) equals the number of inter-
vals in IR where fN (x) is nonnegative. Thus, b0(SN) can
be computed from the number of the roots of fN and, in
turn, according to the intermediate value theorem, from the
number of extreme points (maxima and minima) of fN . More
precisely, fN (x) has at most r + 1 roots, which define r + 2
intervals where fN (x) has constant sign. Since, the number
of intervals where fN (x) is nonnegative is at most a half of
the total number of intervals, then

b0(SN) ≤
⌈

r + 2

2

⌉

(5)

holds, where �·� is the ceil operator. On the other hand, from
Lemma 1, ∂ fN (x)/∂x = Q(x)/T (x), where Q has degree at
most r = 2(h −1). Thus, fN (x) has at most 2(h −1) extreme
points, which, along with Eq. (5), proves the thesis.

D. Proof of Theorem 4

The strategy used to prove Theorem 4 is similar to that
adopted for Theorem 1 and requires to first compute the
bounds on the complexity of the Pfaffian function implemented
by a multilayer perceptron.

Lemma 2: Let σ : IR → IR be a function for which there
exist a Pfaffian chain c = (σ1, . . . , σ�) and �+ 1 polynomials,
Q and Pi , 1 ≤ i ≤ �, of degree β and α, respectively, such
that

dσi (a)

da
= Pi (a, σ1(a), . . . , σi (a)), 1 ≤ i ≤ � (6)

σ(a) = Q(σ1(a), . . . , σ�(a)). (7)

Let fN (x) be the function implemented by a neural network
with n inputs, one output, l ≥ 1 hidden layers, and h hidden
units with activation σ . Then, fN (x) is Pfaffian with complex-
ity bounded by (ᾱ, β, h�), where ᾱ = (α+β −1+αβ)l +αβ,
in the general case, and ᾱ = (α + β − 1)l + α, if, ∀i , Pi does
not depend directly on a, i.e., Pi = Pi (σ1(a), . . . , σi (a)).

Proof: To prove the lemma, we first show that the activation
level

ad
i =

hd−1∑

j=1

wd
i, j od−1

j + bd
i (8)

of the i th neuron in layer d , is a Pfaffian function in the
chain sd , constructed by applying all the σi , 1 ≤ i ≤ �, on all
the activation levels ak

j (of neuron j in layer k) up to layer
d − 1

sd = (
σ1

(
a1

1

)
, σ2

(
a1

1

)
, . . . , σ�

(
a1

1

)
, . . .

. . . , σ1
(
ad−1

hd−1

)
, σ2

(
ad−1

hd−1

)
, . . . , σ�

(
ad−1

hd−1

))
.

BIANCHINI AND SCARSELLI: ON THE COMPLEXITY OF NEURAL NETWORK CLASSIFIERS 1561

Notice that the above hypothesis straightforwardly implies that
fN (x) is Pfaffian and that its length is h�, since the output
of the network is just the activation level of the unique output
neuron in layer l + 1, i.e., fN (x) = al+1

1 .
In fact, for d ≥ 2, from Eqs. (7) and (8) it follows:

ad
i =

hd−1∑

j=1

wd
i, j Q

(
σ1

(
ad−1

j

)
, . . . , σ�

(
ad−1

j

)) + bd
i (9)

so that ad
i is a polynomial of degree β in the chain sd .

Thus, it remains to prove that sd is a Pfaffian chain, i.e.,
the derivative of each function in sd can be defined as a
polynomial in the previous functions of the chain and in the
input x . Actually, for each i, j, d, k

∂σi (ad
j)

∂xk
= dσi (a)

da

∣
∣
∣
∣
a=ad

j

∂ad
j

∂xk

= Pi
(
ad

j , σ1
(
ad

j

)
, . . . , σi

(
ad

j

))∂ad
j

∂xk
(10)

holds, due to the chain rule. The first term in the right part
of (10) is a polynomial with respect to the elements of the
chain and the input. In fact, based on the previous discussion
on ad

j and on the hypothesis that Pi is a polynomial of degree
α in its variables, it follows that Pi (ad

j , σ1(ad
j), . . . , σi (ad

j))
has degree βα, in the general case, whereas it has degree α
if Pi does not depend directly on ad

j . Let us now expand the
term ∂ad

j /∂xk , by iteratively applying the chain rule

∂ad
j

∂xk
= bd

j +
hd−1∑

r=1

wd
j,r

∂od−1
r

∂xk

= bd
j +

hd−1∑

r=1

wd
j,r

dσ(a)

da

∣
∣
∣
∣
a=ad−1

r

∂ad−1
r

∂xk

= bd
j +

hd−1∑

r=1

wd
j,r

dσ(a)

da

∣
∣
∣
∣
a=ad−1

r

×
⎛

⎝bd−1
r +

hd−2∑

s=1

wd−1
r,s

dσ(a)

da

∣
∣
∣
∣
a=ad−2

s

∂ad−2
s

∂xk

⎞

⎠ .

= · · ·
Therefore, ∂ad

j /∂xk can be considered as a polynomial in the
derivatives dσ(a)/da|a=at

rt
, 1 ≤ t ≤ d−1, where r1, . . . , rd−1

is a sequence of neuron indexes. The highest degree terms of
such a polynomial are in the form of

∏d−1
t=1 dσ(a)/da|a=at

rt
.

In addition

dσ(a)

da

∣
∣
∣
∣
a=ad

j

= d Q(σ1(a), . . . , σ�(a))

da

∣
∣
∣
∣
a=ad

j

=
(

�∑

k=1

∂ Q(y1, . . . , y�)

∂yk
Pi (a, y1, . . . , yi)

)∣
∣
∣
∣
∣ 1 ≤ i ≤ �

yi = σi (a
d
j)

a = ad
j

holds, so that dσ(a)/da|a=ad
j

is polynomial with respect to

the chain sd+1 and the activation level ad
j , which, in turn, is

a polynomial in the chain sd . More precisely, the degree of

dσ(a)/da|a=ad
j

is α+β−1, if, ∀i , Pi does not depend directly
on a, and it is α +β − 1 +αβ, in the general case. Collecting
the results for ∂ad

j /∂xk and dσ(a)/da|a=ad
j
, it follows that

∂ad
j /∂xk is a polynomial (with respect to the chain sd

j and x)
whose degree is (α + β − 1 + αβ)(d − 1), in the general case,
and (α + β − 1)(d − 1), if, ∀i , Pi does not depend directly
on a.
Finally, we can estimate the degree of ∂σi (ad

j)/∂xk in (10),
by the bounds on the degrees of Pi (ad

j , σ1(ad
j), . . . , σi (ad

j))

and ∂ad
j /∂xk . It follows that the degree of ∂σi (ad

j)/∂xk is at
most (α + β − 1 + αβ)(d − 1) + αβ, in the general case, and
(α + β − 1)(d − 1) + α, if Pi does not depend directly on
a. The bound on ᾱ follows, observing that the unique output
neuron belongs to the (l+1)th layer in a network with l hidden
layers.

Proof of Theorem 4: The proof is a direct consequence of
Theorem 8 and Lemma 2. In fact, replacing the format given
by Lemma 2 into the bound defined in (3), it follows that:

B(SN) ≤ 2(h�(h�−1))/2O
(
(nβ + min(n, h�)

× ((α + β − 1 + αβ)l + αβ))n+h�
)

≤ 2(h�(h�−1))/2

×O
(
(n((α + β − 1 + αβ)l + β(α + 1)))n+h�

)
.

On the other hand, the arctan function is Pfaffian in the chain
c = (σ1, σ2), where σ1(a) = (1 + a2)−1 and σ2 are the arctan
itself. In fact, we have

dσ1(a)

da
= −2a(σ1(a))2

dσ2(a)

da
= σ1(a)

so that the format of arctan is (3, 1, 2). Thus, if the network
exploits the arctan function, the format of fN (x) is (6l +
3, 1, 2h). In addition, by Theorem 8

B(SN) ≤ 2(2h(2h−1))/2O
(
(n + (6l + 3) · min(n, 2h))n+2h)

≤ 2h(2h−1)O
(
(6nl + 4n)n+2h)

= 2h(2h−1)O
(
(nl + n)n+2h)

.

Finally, tanh is Pfaffian in the chain c = (σ1), where σ1 is
tanh itself. Actually, we have

d tanh(a)

da
= 1 − (tanh(a))2.

Thus, the format of tanh is (2, 1, 1) and P1 does not depend
directly on a. Then, according to Lemma 2, the complexity of
the function implemented by the network with tanh activation
function is (2l + 2, 1, h). Then, by Theorem 8

B(SN) ≤ 2(h(h−1))/2O
(
(n + (2l + 2) · min(n, h))n+h)

≤ 2(h(h−1))/2O
(
(2nl + 3n)n+h)

= 2(h(h−1))/2O
(
(nl + n)n+h)

.

Interestingly, from the proofs of Lemma 2 and Theorem 4 it
is clear that an upper bound can also be derived for generic
Pfaffian functions (without the hypothesis on the polynomials
defining the chain).

1562 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

E. Proof of Corollary 1

Since a neural network with l hidden layers and a polyno-
mial activation of degree r implements a polynomial map of
degree r l , the proofs straightforwardly follows from (4).

F. Proof of Theorem 5

Intuitively, the proof of this theorem is based on the
observation that the map implemented by a layered network
is the composition of a set of functions, each of which is
realized by a single layer. Hence, the proof is carried out
in two steps: 1) a function g is described such that its
repeated composition produces a map f = g ◦ g ◦ . . . g,
for which B({x ∈ IRn| f (x) ≥ 0}) grows exponentially in
the number of repetitions of g and 2) then, it is proved that
each g can be realized by a single layer in a multilayer
network.

Lemma 3: Let g : IR → IR be a continuous function for
which g(−1) = 1, g(0) = −1, g(1) = 1 hold. Let gk be
the function obtained by the composition of k copies of g,
i.e., g1 = g and, for k > 1, gk = g ◦ gk−1. Then, the set
S = {x ∈ IR| f (x) ≥ 0} contains at least 2k−1+1 disconnected
intervals.

Proof: To prove the lemma, the following assertion is
demonstrated by induction on k. Notice that for each k, there
exist 2k + 1 points, y1, . . . , y2k+1, in [−1, 1] such that:

1) y1, . . . , y2k+1 are arranged in an ascending order, i.e.,
yi < yi+1, for 1 ≤ i ≤ 2k ;

2) gk is alternatively −1 or 1 on such points, i.e., gk(yi) =
1, if i is odd, and gk(yi) = −1, if i is even.

Actually, the above statement directly implies the thesis of the
lemma since, for each odd i1, there exists an interval which
contains yi1 and where gk is positive and, vice versa, for each
even i2 there exists an interval which contains yi2 and where
gk is negative. Thus, the intervals containing the odd indexes,
which are disconnected because they are separated by those
with an even index, are the intervals required by the lemma.
In addition, they are exactly 2k−1 + 1.
The induction hypothesis is straightforwardly proved for k =1,
since g1 = g and y1 = −1, y2 = 0, and y3 = 1. Suppose now
that the induction hypothesis holds for k and prove that it holds
also for k+1. For this purpose, let us consider two consecutive
points yi , yi+1, for any odd index i , and let us study the
behavior of gk+1 on [yi , yi+1]. Notice that on the border
points of the interval, gk+1 is equal to 1, because gk+1(yi) =
g(gk(yi)) = g(1) = 1 and gk+1(yi+1) = g(gk(yi+1)) =
g(−1) = 1 hold. In addition, the behavior of gk+1 on [yi , yi+1]
resembles the behavior of g in [−1, 1], since the image of gk

on the interval [yi , yi+1] is [−1, 1]. Therefore, there must exist
at least another point zi ∈ (yi , yi+1), where gk+1(zi) = −1
holds. Finally, the set of points of the induction hypothesis is
represented, for k +1, by

{
yi , . . . , y2k+1

}∪
(
∪2k

i=1{zi }
)

, which
ends the proof.

Proof of Theorem 5: Let us consider networks with a unique
input neuron. The extension to n inputs is straightforward,
supposing null connection weights between inputs 2, . . . , n to
the hidden neurons. The proof consists of two steps.

Step 1: It is proved that there exists a network N , with one
hidden layer, which implements the function g defined
in Lemma 3.

Step 2: Based on N , a network Nl is constructed, which
implements the composition gl = g ◦ g ◦ . . . g.

To prove (1), notice that a network with one hidden layer,
containing two hidden units, computes the function

g(x) = w1σ(v1x + b1) + w2σ(v2x + b2) + c

where, for simplicity, v1, v2 are the input-to-hidden weights,
w1, w2 are the hidden-to-output weights, and b1, b2, and c are
the biases of the hidden units and the output unit, respectively.
Let us set the weights so that the hypothesis of Lemma 3 holds.
Actually, the hypothesis consists of three equalities g(−1) =
1, g(0) = −1, and g(1) = 1, which can be rewritten as

A

⎡

⎣
w1
w2
c

⎤

⎦ = B (11)

where

A =
⎡

⎣
σ(−v1 + b1) σ (−v2 + b2) 1

σ(b1) σ (b2) 1
σ(v1 + b1) σ (v2 + b2) 1

⎤

⎦ , B = [1,−1, 1] .

Equation (11) is a linear system in the unknowns [w1, w2, c],
which can be uniquely solved if A is a full rank matrix. On
the other hand, it can be easily seen that there exist values
of v1, v2, b1, b2 for which the determinant of A, det (A), is
nonnull. In fact, let us set v1 = v2 = α, b1 = α, and b2 = −α,
for some real value α. In this case

det(A) = σ(0) · σ(−α) + σ(−2α) · σ(2α) + σ(α) · σ(0)

−σ(2α) · σ(−α) − (σ (0))2 − σ(α) · σ(−2α).

In addition, let rσ = limα→∞ σ(α) and lσ = limα→−∞ σ(α)
be the right and the left limit of σ , respectively. Then

lim
α→∞ det(A) = lσ σ (0) + rσ σ (0) − (σ (0))2 − lσ rσ

= (σ (0) − lσ)(rσ − σ(0)) > 0

where the last inequality holds because σ is a monotonic
increasing function. Thus, there must exist values of α for
which det(A) > 0, which completes the proof of Step 1. On
the other hand, let N be the network that implements g and,
for each l, let us construct a new network Ml by concatenating
l copies of N . More precisely, the copies are merged so that
the output unit of the i th copy is just the input unit of the
(i+1)th copy. Thus, by definition, Ml implements the function
gl of Lemma 3. In addition, Ml contains 2l −1 hidden layers,
a half of which (exactly l − 1) exploit the linear activation
function used in the input and output neurons of N , whereas
the remaining layers exploit the sigmoidal function used in
the hidden neurons of N . Interestingly, the layers with the
linear activation function (the even layers) can be removed
and replaced by direct connections between the layers with
sigmoidal activation function (odd layers), without any change
to the function implemented by the network. Actually, the
output of a neuron on an odd layer l, l ≥ 3, can be represented
as a function of the outputs of the units in layer l − 2. Since

BIANCHINI AND SCARSELLI: ON THE COMPLEXITY OF NEURAL NETWORK CLASSIFIERS 1563

layer l−1 adopts a linear activation function, using the notation
of (1), we derive

ol
k = σ(wl

k,1ol−1
1 + wl

k,2ol−1
2 + bl

k)

= σ
(
wl

k,1(w
l−1
1,1 ol−2

1 + wl
1,2ol−2

2 + bl−1
1)

+ wl
k,2(w

l−1
2,1 ol−2

1 + wl
2,2ol−2

2 + bl−1
2) + bl

k

)

= σ
(
(wl

k,1w
l−1
1,1 + wl

k,2w
l−1
2,1)ol−2

1

+ (wl
k,1w

l−1
1,2 + wl

k,2w
l−1
2,2)ol−2

2

+ (wl
k,1bl−1

1 + wl
k,2bl−1

2 + bl
k)

)
.

Thus, the output ol
k does not change if the lth layer is

connected directly to the (l − 2)th layer and the new weights
of the neurons are w̄l

k,1 = wl
k,1w

l−1
1,1 + wl

k,2w
l−1
2,1 , w̄l

k,2 =
wl

k,1w
l−1
1,2 + wl

k,2w
l−1
2,2 , and b̄l

k = wl
k,1bl−1

1 + wl
k,2bl−1

2 + bl
k .

Hence, the network Nl , obtained by removing the linear layers
from Ml , satisfies the hypothesis.

G. Proof of Theorem 6

In this proof, we adopt the same reasoning as that used for
Theorem 5. Actually, it suffices to prove that if σ ∈ C3 in U ,
then there exist v1, v2, b1, b2 such that det(A) in (11)

det (A) = σ(−v1 + b1) · σ(b2) + σ(v1 + b1) · σ(−v2 + b2)

+σ(b1) · σ(v2 + b2) − σ(v1 + b1) · σ(b2)

−σ(−v1 + b1) · σ(v2 + b2) − σ(b1) · σ(−v2 + b2)

is nonnull.
Let b1, b2 ∈ U and suppose that σ ′(b1) �= 0 and σ ′′(b2) �= 0,
where σ ′, σ ′′ denote the first and the second derivative of σ ,
respectively. The existence of b1, b2 with such a property is
ensured by the hypothesis on the nonlinearity of σ . Under
these conditions, we can apply the Taylor’s theorem to obtain

σ(−v1 + b1) = σ(b1) − v1σ
′(b1) + 1

2
v2

1σ ′′(b1) + O
(
v3

1

)

σ(−v2 + b2) = σ(b2) − v2σ
′(b2) + 1

2
v2

2σ ′′(b2) + O
(
v3

2

)

σ(v1 + b1) = σ(b1) + v1σ
′(b1) + 1

2
v2

1σ ′′(b1) + O
(
v3

1

)

σ(v2 + b2) = σ(b2) + v2σ
′(b2) + 1

2
v2

2σ ′′(b2) + O
(
v3

2

)
.

Then, by inserting these expansions in det(A) and by simple
algebra, it follows that:

det(A) = v1v
2
2σ ′(b1)σ

′′(b2) +
+v2

1v2σ
′′(b1)σ

′(b2) + O(v3
1) + O(v3

2)

which is positive and nonnull if v1, v2 are sufficiently close
to 0 and v1, v2 have the same sign of σ ′(b1)σ

′′(b2) and
σ ′′(b1)σ

′(b2), respectively.18

18By hypothesis, σ ′(b1)σ ′′(b2) is nonnull. On the other hand, σ ′′(b1)σ ′(b2)
may be zero: in such a case, v2 can be either positive or negative.

H. Proof of Theorem 7

To prove the theorem, the following lemma is required:
it provides a lower bound for the complexity of three-layer
networks, varying the number of their hidden neurons.

Lemma 4: Let n be a positive integer and N ′ be a three-
layer neural network with one input, one output, and h′ hidden
units, having activation function σ . Suppose that fN ′(x) ≤ 1,
for any x ∈ IR, and that there exist 2m−1 consecutive disjoint
intervals U1, . . . , U2m−1 ∈ IR such that, for any i , 1 ≤ i ≤
2m − 1:

1) if i is even, fN ′(x) < −n holds for any x ∈ Ui ;
2) if i is odd, fN ′(x) > 0 holds for any x ∈ Ui .

Then, there exists a network N , with n inputs, one output,
and h = nh′ hidden units, having activation function σ , such
that

b0(SN) ≥ mn

holds.
Proof: Let us consider the network N ′

k obtained by the
introduction into N of n − 1 input neurons, where the kth
input represents the original input neuron of N ′, whereas all
the other inputs are disconnected from the rest of the network.
It can easily be seen that the function computed by such a
network is fN ′

k
(x) = fN ′(xk), where xk is the kth component

of x .
Therefore, the network N can be constructed by merging all
the networks N ′

k , 1 ≤ k ≤ n, where also the corresponding
inputs and outputs are merged, so that only n inputs and one
output are contained in N ; in addition, the sets of the hiddens
of N ′

k are joined into a single set of nh′ hidden units. In this
way, N computes the function

fN (x) =
n∑

k=1

fN ′
k
(x) =

n∑

k=1

fN ′(xk).

For any sequence i1, . . . , in of positive numbers not larger than
2m − 1, let Hi1,...,in = {x |xi ∈ Ui , 1 ≤ i ≤ n} hold. If the
sequence contains only odd numbers and x ∈ Hi1,...,in then,

fN (x) =
n∑

k=1

fN ′(xk) > 0

holds, because, by hypothesis, fN ′(xk) > 0 for any xk ∈ Ui

with odd i . If, on the other hand, the sequence contains at least
one even integer, without loss of generality, let us assume that
such an integer is the first. Then

fN (x) =
n∑

k=1

fN ′(xk) = fN ′(x1) +
n∑

k=2

fN ′(xk)

< −n + n − 1 < 0

because, by hypothesis, fN ′(xk) ≤ 1 for any xk ∈ IR and
fN ′(xk) < −n for any xk ∈ Ui with even index.
Summing up, the function fN is positive in the mn regions
Hi1,...,in that can be defined choosing the indexes i1, . . . , in

among the odd integers in [1, 2m −1]. On the other hand, fN
is negative in the regions Hi1,...,in , where at least an i j is even.
Since, each region Hi1,...,in of the former kind is surrounded

1564 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 8, AUGUST 2014

by regions of the latter kind, it follows that SN contains at
least mn disconnected sets, i.e., b0(SN) ≥ mn holds.

Proof of Theorem 7: The proof consists of defining a three-
layer network, with sigmoidal activation functions, which
satisfies the hypothesis of Lemma 4. More precisely, the
chosen network has 2m − 1 hidden units and approximates
a staircase19 function on a set of 2m open intervals Ui ⊆
[i, i + 1], 1 ≤ i ≤ 2m. The staircase function is discontinuous
on the points i , 1 ≤ i ≤ 2m; it is constant and equal to 1/2
on the intervals Ui for which i is odd, and to −n − 1 on
the intervals for which i is even. Notice that, provided that
the above network can be defined, the thesis directly follows
from Lemma 4, observing that m = (h − 1)/(2n) holds.
Actually, such network can be constructed using the same
reasoning adopted for proving that neural networks with
sigmoidal activation functions are universal approximators
for continuous functions on IR [36]. In fact, we can first
observe that any staircase function with 2m − 1 steps can be
approximated by a three-layer neural network with 2m − 1
hidden nodes, exploiting the Heaviside (step) activation func-
tion, and then that the Heaviside activation function can be
approximated by a sigmoid function.20

It is worth mentioning that a tighter lower bound can be
obtained by using the fact that the properties of function
fN ′ in Lemma 4 can be satisfied also by a polynomial of
degree 2m − 1. In addition, a polynomial of degree 2m − 1
can be approximated on compact intervals by a three-layer
network with m hidden units and any nonpolynomial and
analytic21 activation function [36]. Therefore, by adding the
hypothesis that the activation function is analytic, the lower
bound b0(SN) ≥ (h/n)n is obtained.

I. Further Comments on the Limits of the Presented Results

A discussion on Zell’s bound (3), which has been used in
Theorems 1, 3, and 4, may be of help to understand some
peculiarities and limits of the presented results.

First of all, Zell’s bound (3) is exponential in the number
of inputs n and in the length � of the considered Pfaffian
function. In Lemma 2, it is proved that the length of the
function implemented by a network with a Pfaffian activation
depends linearly on the number of its hidden units. Thus, in
deep networks, the derived upper bounds are exponential in
the number of hidden units and inputs, and, obviously, also
with respect to the network depth. On the other hand, the
function implemented by three-layer networks with arctan(·)
activation has the peculiar property of having a length that does
not depend on the number of inputs (see Lemma 1). Such a
peculiarity allowed us to derive a polynomial upper bound for
such a class of networks. The fact that the peculiarity is not

19A staircase function is a piecewise constant function with discontinuity
points.

20More precisely, in this way we obtain a network N that approximates,
up to any degree of precision, the target staircase function, t : IR → IR, on
the whole IR except on the discontinuity points. The construction is sufficient
for our goal, since the discontinuity points are outside the intervals Ui .

21A function is analytic if its Taylor series converges. A neural network is
a universal approximator, if the activation function of the hidden neurons is
not polynomial and analytic in a neighborhood of some point. The functions
tanh(·) and arctan(·) satisfy such a property.

shared with networks having tanh(·) activation explains why
a polynomial bound was not derived in this case.

A careful inspection of the presented results suggests that
they are prone to be improved, both because most of the upper
bounds are not close to the corresponding lower bounds, and
because the difference between the upper bounds for networks
with arctan(·) and tanh(·) activations are counterintuitive.
However, (3) is probably not tight for general Pfaffian func-
tions, and a completely different technique may be required to
improve our upper bounds. Actually, Zell’s Theorem is based
on Khovanskiı̆ bounds [49] on the number of the solutions of
systems of Pfaffian equations, and it is well known that those
bounds can be significantly larger than the actual ones.

An example can help in explaining the importance of
Khovanskiı̆’s theory and its relationship to the problem we
faced in this paper. Let us consider a system of n equations
of polynomials in n variables, x = [x1, . . . , xn]

p1(x) = 0, . . . , pn(x) = 0 (12)

where the polynomial pi(x) contains mi monomials, i.e.,
pi(x) = ∑mi

j=1 ti, j and ti, j = ai, j
∏n

k=1 x
vi, j,k
i , with parameters

ai, j and exponents vi, j,k both belonging to IR. An important
problem in mathematics consists in defining a bound on the
number of nondegenerated solutions of such a system with
respect to the total number of monomials, m = ∑

i mi . When
n = 1, a tight bound is provided by the Descartes’ rule
of signs, which states that the number of roots is at most
equal to the number of sign changes between consecutive
monomials, when the monomials are sorted by their expo-
nents. In the more general case n > 1, no tight bound is
known. Actually, Khovanskiı̆’s theory [49] provides a bound,
2(m2−3m+2)/2(n + 1)n−1, which is exponential with respect to
m, but some authors claim that the actual bound might be
polynomial. Unfortunately, despite the long time efforts, such
a claim has not been proved, nor a counterexample has been
found, yet (see [54]).

On the other hand, let us consider the function
f (x) = − ∑

i (pi(x))2; the problem of counting the nonde-
generated solutions of the system (12) can be transformed
into the problem of computing the number of the connected
components of the set S = {x | f (x) = 0}, i.e., the first
Betti number b0(S) of S. In addition, notice that, by the
variable substitution yi = exi , each term ti, j = ai, j e

∑
k vi, j,k xi

is equal to the output of a hidden neuron in a three-layer
network, where the activation function is the exponential ex .
By simple algebra, it can be easily shown that, more generally,
f (x) = − ∑

i (pi(x))2 is the output of a three-layer network
with exponential activation functions, and where the number
of hidden neurons is h = ∑

i (2mi +m2
i). Thus, the problem of

bounding the solutions of (12) can be reduced to the problem
of bounding the number of connected components of the set
realized by a three-layer network with a Pfaffian activation
function. As a consequence, if we could find a tighter bound
for B(SN) for networks with generic Pfaffian activation, then
we could also find a solution to another theoretical problem
that has been open for a long time.

Obviously, the above discussion provides only an
informal viewpoint to understand the difficulty of the

BIANCHINI AND SCARSELLI: ON THE COMPLEXITY OF NEURAL NETWORK CLASSIFIERS 1565

considered problem. In fact, the functions implemented by
neural networks belong to a subclass of the Pfaffian functions,
so that tighter bounds could be more easily obtainable in this
case.

REFERENCES

[1] Y. Bengio, Y. LeCun, R. Salakhutdinov, and H. Larochelle, Proc. Deep
Learn. Workshop, Found. Future Directions NIPS, 2007.

[2] H. Lee, M. Ranzato, Y. Bengio, G. Hinton, Y. LeCun, and A. Ng, Proc.
Deep Learn. Unsupervised Feature Learn. Workshop NIPS, 2010.

[3] K. Yu, R. Salakhutdinov, Y. LeCun, G. E. Hinton, and Y. Bengio, Proc.
Workshop Learn. Feature Hierarchies ICML, 2009.

[4] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer–wise training of deep networks,” in Proc. Adv. NIPS, 2007,
pp. 153–160.

[5] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[6] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[7] T. S. Lee, D. Mumford, R. Romero, and V. A. F. Lamme, “The role
of the primary visual cortex in higher level vision,” Vis. Res., vol. 38,
nos. 15–16, pp. 2429–2454, 1998.

[8] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio,
“A quantitative theory of immediate visual recognition,” Progr. Brain
Res., vol. 165, pp. 33–56, Feb. 2007.

[9] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,
and time series,” in The Handbook of Brain Theory and Neural
Networks, M. Arbib, Ed. Cambridge, MA, USA: MIT Press, 1995,
pp. 255–258.

[10] S. E. Fahlman and C. Lebiere, “The cascade–correlation learning
architecture,” in Advances in Neural Information Processing Systems
2. San Mateo, CA, USA: Morgan Kaufmann, 1990, pp. 524–532.

[11] N. Bandinelli, M. Bianchini, and F. Scarselli, “Learning long–term
dependencies using layered graph neural networks,” in Proc. IJCNN.
2010, pp. 1–8.

[12] I. Castelli and E. Trentin, “Supervised and unsupervised co–training of
adaptive activation functions in neural nets,” in Proc. 1st IAPR Workshop
PSL, 2011, pp. 52–61.

[13] J. L. Elman, “Finding structure in time,” Cognit. Sci., vol. 14, no. 2,
pp. 179–211, 1990.

[14] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adaptive
processing of data structures,” IEEE Trans. Neural Netw., vol. 9, no. 5,
pp. 768–786, Sep. 1998.

[15] F. Scarselli, M. Gori, A.-C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans.Neural Netw., vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[16] C. L. Giles, S. Lawrence, and S. Fong, “Natural language grammatical
inference with recurrent neural networks,” IEEE Trans. Knowl. Data
Eng., vol. 12, no. 1, pp. 126–140, Jan./Feb. 2000.

[17] H.-T. Su, “Identification of chemical processes using
recurrent networks,” in Proc. Amer. Control Conf., 1991, pp. 2311–2319.

[18] M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli, “Recursive neural
networks for processing graphs with labelled edges: Theory and appli-
cations,” Neural Netw., vol. 18, no. 8, pp. 1040–1050, 2005.

[19] M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli, “Recursive neural
networks learn to localize faces,” Pattern Recognit. Lett., vol. 26, no. 12,
pp. 1885–1895, 2005.

[20] A. Pucci, M. Gori, M. Hagenbuchner, F. Scarselli, and A.-C. Tsoi,
“Investigation into the application of graph neural networks to
large–scale recommender systems,” Syst. Sci., vol. 32, no. 4,
pp. 17–26, 2006.

[21] A.-C. Tsoi, M. Hagenbuchner, and F. Scarselli, “Computing customized
page ranks,” ACM Trans. Internet Technol., vol. 6, no. 4, pp. 381–414,
2006.

[22] Y. Bengio and O. Delalleau, “Shallow vs. deep sum–products networks,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 24. 2011, pp. 666–674.

[23] O. Delalleau and Y. Bengio, “On the expressive power of deep archi-
tectures,” in Proc. 22nd Int. Conf. Algorithmic Learn. Theory, 2011,
pp. 18–36.

[24] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Learn-
ability and the Vapnik–Chervonenkis dimension,” J. ACM, vol. 36, no. 4,
pp. 929–965, 1989.

[25] G. E. Bredon, Topology and Geometry, Graduate Texts in Mathematics.
New York, NY, USA: Springer-Verlag, 1993.

[26] R. Rojas, Neural Networks: A Systematic Introduction. New York, NY,
USA: Springer-Verlag, 1996.

[27] A. Hatcher, Algebraic Topology. Cambridge, U.K.: Cambridge Univ.
Press, 2002.

[28] M. Nakahara, Geometry, Topology and Physics, (Graduate Student
Series in Physics), 2nd ed. New York, NY, USA: Taylor & Francis,
2003.

[29] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homol-
ogy, vol. 157. New York, NY, USA: Springer-Verlag, 2004.

[30] R. Ghrist and A. Muhammad, “Coverage and hole–detection in sensor
networks via homology,” in Proc. 4th Int. Symp. Inf. Process. Sensor
Netw., 2005, pp. 254–260.

[31] S. Zimmerman, “Slicing space,” College Math. J., vol. 32, no. 2,
pp. 126–128, 2001.

[32] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314,
1989.

[33] K. I. Funahashi, “On the approximate realization of continuous mappings
by neural networks,” Neural Netw., vol. 2, no. 3, pp. 183–192, 1989.

[34] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[35] J. Park and I. W. Sandberg, “Universal approximation using radial–
basis–function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257,
1991.

[36] F. Scarselli and A.-C. Tsoi, “Universal approximation using feedforward
neural networks: A survey of some existing methods, and some new
results,” Neural Netw., vol. 11, no. 1, pp. 15–37, 1998.

[37] K. I. Funahashi and Y. Nakamura, “Approximation of dynamical systems
by continuous time recurrent neural networks,” Neural Netw., vol. 6,
no. 6, pp. 801–806, 1993.

[38] B. Hammer, “Approximation capabilities of folding networks,” in Proc.
7th ESANN, 1999, pp. 33–38.

[39] F. Scarselli, M. Gori, A.-C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“Computational capabilities of graph neural networks,” IEEE Trans.
Neural Netw., vol. 20, no. 1, pp. 81–102, Jan. 2009.

[40] J. Håstad, “Almost optimal lower bounds for small depth circuits,” in
Proc. 18th ACM Symp. Theory Comput., 1986, pp. 6–20.

[41] A. C. C. Yao, “Separating the polynomial–time hierarchy by oracles,”
in Proc. 26th Annu. Symp. Found. Comput. Sci., 1985, pp. 1–10.

[42] I. Wegener, The Complexity of Boolean Functions. New York, NY, USA:
Wiley, 1987.

[43] H.-K. Fung and L. K. Li, “Minimal feedforward parity networks
using threshold gates,” Neural Comput., vol. 13, no. 2, pp. 319–326,
2001.

[44] J. Håstad and M. Goldmann, “On the power of small–depth
threshold circuits,” Comput. Complex., vol. 1, no. 2, pp. 113–129,
1991.

[45] M. Karpinski, “Polynomial bounds of VC dimension of sigmoidal and
general Pfaffian neural networks,” J. Comput. Syst. Sci., vol. 54, no. 1,
pp. 169–176, 1997.

[46] P. L. Bartlett and W. Maass, “Vapnik–Chervonenkis dimension of neural
nets,” in The Handbook of Brain Theory and Neural Networks, 2nd ed.
M. Arbib, Ed. Cambridge, MA, USA: MIT Press, 2003, pp. 1188–1192.

[47] E. D. Sontag, “VC dimension of neural networks,” in Neural Networks
and Machine Learning, C. M. Bishop, Ed. New York, NY, USA:
Springer-Verlag, 1998, pp. 69–95.

[48] E. D. Sontag, “Feedforward nets for interpolation and classification,” J.
Comput. Syst. Sci., vol. 45, no. 1, pp. 20–48, 1992.

[49] A. G. Khovanskiı̆, Fewnomials. vol. 88. Providence, RI, USA: AMS,
1991.

[50] B. A. Pearlmutter, “Learning state space trajectories in recurrent neural
networks,” Neural Comput., vol. 1, no. 2, pp. 263–269, 1989.

[51] T. Zell, “Betti numbers of semi–Pfaffian sets,” J. Pure Appl. Algebra,
vol. 139, no. 1, pp. 323–338, 1999.

[52] T. Zell, “Quantitative study of semi–Pfaffian sets,” Ph.D. disserta-
tion, School of Math., Georgia Inst. Technol., Atlanta, GA, USA,
2004.

[53] J. Milnor, “On the Betti numbers of real varieties,” Proc. Amer. Math.
Soc., vol. 15, no. 2, pp. 275–280, 1964.

[54] F. Sottile, Real Solutions to Equations from Geometry, vol. 57,
Providence, RI, USA: AMS, 2011.

Authors’ photographs and biographies not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

