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Learning Long-Term Dependencies in 
NARX Recurrent Neural Networks 

Tsungnan Lin, Bill G. Horne, Member, IEEE, Peter Tiiio, and C. Lee Giles, Senior Member, IEEE 

Abstract- It has recently been shown that gradient-descent 
learning algorithms for recurrent neural networks can perform 
poorly on tasks that involve long-term dependencies, i.e., those 
problems for which the desired output depends on inputs pre- 
sented at times far in the past. We show that the long-term 
dependencies problem is lessened for a class of architectures 
called Nonlinear AutoRegressive models with exogenous (NARX) 
recurrent neural networks, which have powerful representa- 
tional capabilities. We have previously reported that gradient 
descent learning can be more effective in NARX networks than 
in recurrent neural network architectures that have “hidden 
states” on problems including grammatical inference and nonlin- 
ear system identification. Typically, the network converges much 
faster and generalizes better than other networks. The results 
in this paper are consistent with this phenomenon. We present 
some experimental results which show that NARX networks 
can often retain information for two to three times as long as 
conventional recurrent neural networks. We show that although 
NARX networks do not circumvent the problem of long-term 
dependencies, they can greatly improve performance on long- 
term dependency problems. We also describe in detail some of 
the assumption regarding what it means to latch information 
robustly and suggest possible ways to loosen these assump- 
tions. 

I. INTRODUCTION 

ECURRENT neural networks (RNN’s) are capable of R representing arbitrary nonlinear dynamical systems 1301, 
[32], [331. However, learning simple behavior can be quite 
difficult using gradient descent. For example, even though 
these systems are Turing equivalent, it has been difficult to 
get them to successfully learn small finite-state machines from 
example strings encoded as temporal sequences. Recently, it 
has been demonstrated that at least part of this difficulty can 
be attributed to long-term dependencies, i.e., when the desired 
output of a system at time T depends on inputs presented 
at times t << T .  This was noted by Mozer who reported 
that RNN’s were able to learn short-term musical structure 
using gradient based methods [21], but had difficulty capturing 
global behavior. These ideas were recently formalized by 
Bengio et al. [2], who showed that if a system is to latch 
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information robustly, then the fraction of the gradient due to 
information n time steps in the past approaches zero as n 
becomes large. 

Several approaches have been suggested to circumvent 
the problem of vanishing gradients. For example, gradient- 
based methods can be abandoned completely in favor of 
alternative optimization methods [2], [25 1. However, the al- 
gorithms investigated so far either perform just as poorly 
on problems involving long-term dependencies, or, when 
they are better, require far more computational res’ources [2]. 
Another possibility is to modify conventional gradient-descent 
by more heavily weighing the fraction of the gradient due 
to information far in the past, but there is no guarantee that 
such a modified algorithm would converge to a minimum 
of the error surface being searched [2]. As an alternative to 
using different learning algorithms, one suggestion has been to 
alter the input data so that it represents a reduced (description 
that makes global features more explicit and more readily 
detectable 1211, [28], 1291. However, this approach may fail if 
short-term dependencies are equally as important. Hochreiter 
also proposes a specific architectural approach which utilizes 
high-order units [141. Finally, it has been suggested that a 
network architecture that operates on multiple time scales 
might be useful for tackling this problem [12], [13]. 

In this paper, we also propose an architectural approach to 
deal with long-term dependencies. We focus on a class of 
architectures based upon Nonlinear AutoRegressive models 
with exogenous inputs (NARX models), and are therefore 
called NARX recurrent neurul networks [3] ,  [22]. (However, 
there is no reason that this method cannot be extended to 
other recurrent architectures.) This is a powerful class of 
models which has recently been shown to be computationally 
equivalent to Turing machines [31]. It has been demonstrated 
that they are well suited for modeling nonlinear systems such 
as heat exchangers [3], waste water treatment plants [34], 
1351, catalytic reforming systems in a petroleum refinery [35] ,  
nonlinear oscillations associated with multilegged !locomotion 
in biological systems [36], time series [4], and various ar- 
tificial nonlinear systems [31, [22], [26]. Furthermore, we 
have previously reported that gradient-descent learning is more 
effective in NARX networks than in recurrent neural network 
architectures with “hidden states” when applied to problems 
including grammatical inference and nonlinear system identi- 
fication [ 1 1  1, 1151. Typically, these networks converge much 
faster and generalize better than other networks. ‘The results 
in this paper show the reason why gradient-descent learning 
is better in NARX networks. 
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11. VANISHING GRADIENTS AND LONG-TERM DEPENDENCIES 
Bengio et al. [2]  have analytically explained why learning 

problems with long-term dependencies is difficult. They argue 
that for many practical applications the goal of the network 
must be to robustly latch information, i.e., the network must 
be able to store information for a long period of time in 
the presence of noise. More specifically, they argue that 
latching of information is accomplished when the states of the 
network stay within the vicinity of a hyperbolic attractor, and 
robustness to noise is accomplished if the states of the network 
are contained in the reduced attracting set that attractor, i.e., if 
the eigenvalues of the Jacobian are contained within the unit 
circle. In the Appendix, we discuss this definition of robustness 
in more detail and describe how some of the assumptions 
associated with it might be loosened. 

In this section we briefly describe some of the key aspects of 
the results in [2]. A recurrent neural network can be described 
in the form 

where x, U; y, and w are column vectors representing the 
states, inputs, outputs, and weights of the network, respec- 
tively. Almost any recurrent neural-network architecture can 
be expressed in this form 1231, where f and g depend on 
the specific architecture. For example, in simple first-order 
recurrent neural networks, f would be a sigmoid of a weighted 
sum of the values x(t) and ~ ( t )  and ,y would simply select 
one of the states as output. 

We define u1,(t), t = 1 . . . T to be an input sequence of 
length T for the network (for simplicity we shall assume that 
all sequences are of the same length), and y P ( T )  to be the 
output of the network for that input sequence. 

In what follows we derive the gradient-descent learning 
algorithm in a matrix-vector format which is slightly more 
compact than deriving it expressly in terms of partial deriva- 
tives, and highlights the role of the Jacobian in the derivation. 

Gradient-descent learning i s  typically based on minimizing 
the sum-of-squared error cost function 

where d, i s  the desired (or target) output for the pth pattern’ 
and y’ denotes transposition of a vector y. Gradient descent 
i s  an algorithm which iteratively updates the weights in 
proportion to the gradient 

a w  = IlV,CI (4) 

where 71 is a learning rate and V, is the row vector operator 

(5) 

By using the chain rule, the gradient can be expanded 

vwc = [ Y P ( ~ )  ~ d,l’Vx(T)y,(T)Vwx(T). (6) 
I’ 

‘We deal only with problems in which the target output is presenied at the 
end of the sequence. 

We can expand this further bq assuming that the weights 
at different time indexes are independent and computing the 
partial gradient with respect to these weight>, which i s  the 
methodology used to derive algorithms such as backpropaga- 
tion through time (BPTT) (271, [38]. The total gradient is then 
equal to the sum of these partial gradients. Specifically 

r~ 1 

P I 
(7) 

Another application of the chain rule to (7) gives 

VWC = c [YJT)  ~ dTlI/vx(T)!/m 
P 

r [z Jx(T. T ~ T ) R % , T , X ( T )  

where Jx(T. T - T )  = T x ( T ) ~ ( T )  denotes the Jacobian of (1)  
expanded over T - 7 time steps. 

Bengio et crl. [ 2 ]  showed that if the network satisfies their 
definition of robustly latching information, i.e.. if the Jacobian 
at each time step has all of its eigenvalues inside the unit circle. 
then Jx(T. n) is an exponentially decreasing function of n. 
so that limrz+x .Jx(T. n )  = 0. This implies that the portion 
of V,C due to information at times 7 << T i s  insignificant 
compared to the portion at times near T. This effect is called 
the problem of variishing gradient, or ,forgetting behavior [9]. 
Bengio et al. claim that the problem of vanishing gradients 
is the essential reason why gradient-descent methods are not 
sufficiently powerful to discover a relationship between target 
outputs and inputs that occur at a much earlier time, which 
they term the problem of long-term dependencies. 

111. NARX NETWORKS 
An important class of discrete-time nonlinear systems is the 

NARX model’ 131, 1191; [20] ,  [34]. [ 3 S ]  

y(t)  = , f [ . U ( t  - oil); ’ ’ ’ .  Z l ( t  - 1). ‘ U ( t )  

(9) 

where u( t )  and g ( t )  represent input and output of the network 
at time t .  Dt,. and D ,  are the input and output order, and the 
function ,f i s  a nonlinear function. When the function f can be 
approximated by a multilayer perceptron (MLP). the resulting 
system i s  called a NARX recurrent neural 71entork 131, [22].  

In this paper we shall consider NARX networks with 
zero input order and a one-dimensional output, i.e., those 
networks which have feedback from the output only. However 
there i s  no reason why our results could not be extended 
to networks with higher input orders. Thus; the operation of’ 
NARX networks with zero input order is defined by 

(10) 

where the function 9 is the mapping performed by the MLP, 
as shown in Fig. 1 .  The weight links in the figure can be 
adjusted or fixed; it depends on the application. 

y(t) = Q [ [ ? L ( t ) .  : y ( t  - I). . ’ .  . g ( t  ~ D ) ]  

2The terminology as how to properly describe this architecture in the liter- 
ature is conflicting. We chose the term NARX based o n  previous references. 
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I 
u(t) m(t) x(t) xz(t) x1(t) 

Fig. 1. A NARX network with four output delays. 

From a system perspective, it is preferrable to put equations 
into a state-space form [ 161. In this form the Jacobian can be 
examined and derived [17]. Since the stater of a discrete-time 
dynamical system can always be associated with the unit-delay 
elements in the realization of the system, we can then describe 
such a network in the following state-space form: 

and 

Y ( t )  = T1 (t  + I). (12) 

NARX networks are not immune to the problem of long- 
term dependencies. The Jacobian of the state-space map (1 I )  
is given by 

Jx(t + 1, 1) 

= VX(,)X(t + 1) 

If the Jacobian at each time step has all of its eigenvalues 
inside the unit circle, then the states of the network will be 
in the reduced attracting set of some hyperbolic attractor, 
and thus the system will be robustly latched at that time. 
As with any other recurrent neural network, this implies that 
limn+m Jx(t. n)  = 0. Thus, NARX networks will also suffer 
from vanishing gradients and the long-term dependencies 
problem. 

IV. AN INTUITIVE EXPLANATION 
OF NARX NETWORK BEHAVIOR 

In the previous section we saw that NARX networks also 
suffer from the problem of vanishing gradients, and thus are 
also prone to the problem of long-term dependencies. How- 
ever, we find in the simulation results that follow that NARX 
networks are often much better at discovering long-term 
dependencies than conventional recurrent neural networks. 

An intuitive reason why output delays can help long-term 
dependencies can be found by considering how gr a d' ients are 
calculated using the BPTT algorithm. BPTT involves two 
phases: unfolding the network in time and backpropagating the 
error through the unfolded network. When a NARX network 
is unfolded in time, the output delays will appear as jump- 
ahead connections in the unfolded network. Intuitively, these 
jump-ahead connections provide a shorter path for propagating 
gradient information, thus reducing the sensitivity of the 
network to long-term dependencies. However, one must keep 
in mind that this intuitive reasoning is only valid if the total 
gradient through these jump-ahead pathways is greater than 
the gradient through the layer-to-layer pathways. 

Another intuitive explanation is that since the delays are 
cascaded together, the propagation of information does not 
necessarily have to pass through a nonlinearity at each time 
step, and thus the gradient is not modified by the derivative of 
the nonlinearity, which is often less than one in magnitude. 

It is possible to derive analytical results for some simple 
toy problems to show that NARX networks are indeed less 
sensitive to long-term dependencies. Here we give one such 
example, which is based upon the latching problem described 
in 121. 

Consider the simple one-node autonomous recurrent net- 
work described by 

~ ( t )  = tanh [wz(t  - l ) ]  (14) 

where 'w = 1.25, which has two stable fixed points at 10.710 
and one unstable fixed point at zero. The following one-node 
autonomous NARX network (no internal inputs): 

r ( t )  = tanh [wlr(t - I) 4- w 2 r ( t  - 2) + . . . +wg2(t  - D ) ]  
(15) 

with D output delays has the same fixed points as long as 

Assume the state of the network has reached equilibrium at 
the positive stable fixed point. In this case we can derive the 
exact gradient. For simplicity, we only consider the Jacobian 
J ( f ,  n )  = 3z ( t ) /dx ( t  - n) ,  which will be a component of 
the gradient V,C. Fig. 2 shows plots of J ( t ,  n)  with respect 
to n for D = 1, D = 3 ,  and D = 6 with w, = w/D. These 
plots show that the effect of output delays is to flatten out the 
curves and place more emphasis on the gradient due to terms 
farther in the past. Note that the gradient contribution due to 
short term dependencies is deemphasized. In Fig. 3 we show 
plots of the ratio 

D 
U] ,  = w. 

which illustrates the percentage of the total gradient that can be 
attributed to information n time steps in the past. These plots 
show that this percentage is larger for the network with output 
delays, and thus one would expect that these networks would 
be able to more effectively deal with long-term dependencies. 



1332 

0.9 

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL I, KO 6, NOVEMBER 1996 

1 

1 I I I I I :I:~ 
0.8 - - D=6 

- 
! 

- 

- 

- 

- 

- 

- 

- 

I - .  
. -  . _  - . -  - .  - .  

, . . .  ' . .  . 
" '  , .  . .  . .  

, , .,. , , ,  

V. EXPERIMENTAL RESULTS 

Simulations were performed to compare the performance 
of leaming long-term dependencies on networks with dif- 
ferent number of feedback delays. We tried two different 
problems: the latching problem and a grammatical inference 
problem. 

A. The Latching Problem 

We explored a slight modification on the latching problem 
described in [2]. This problem is a minimal task designed as 
a test that must necessarily be passed in order for a network 
to latch information robustly. Bengio et al. describe the task 
as one in which the input values are to be learned. Here we 
give an alternative description of the problem, which allows 
us to reexpress the problem as one in which only weights are 
to be learned. 

In this task, there are three inputs u l ( t ) ,  uz(t), and a noise 
input e ( t ) ,  and a single output y ( t ) .  Both u l ( t )  and uz(t )  are 
zero for all times t > 1. At time t 1; ul(1) = 1, and 
uz(1) = 0 for samples from class 1 ,  and ul(1) = 0 and 
7 & ( 1 )  = 1 for samples from class 2. The noise input e ( t )  is 
given by 

where U(-b ,  b )  are samples drawn uniformly from [-b: b ] .  

This network used to solve this problem is a NARX network 
consisting of a single neuron 

where the parameters h,: are adjustable and the recurrent 
weight w is fixed. In our simulations, we used L = 3.  The 
network is shown in Fig. 4. 

Note that the problem as stated is identical to the problem 
stated by Bengio et al. except that here we are using uniform 
instead of Gaussian random noise. In our formulation the 
values hi are weights which are connected to tapped delay 
lines on the input of the network, while Bengio et al. describe 
them as learnable input values. 

In our simulation, we fixed the recurrent feedback weight 
to w = 1.25, which gives the autonomous network two stable 
fixed points at 2~0.710 and one unstable fixed point at zero, as 
described in Section IV. It can be shown [SI that the network 
is robust to perturbations in the range [-0.155, 0.1551. Thus, 
the uniform noise in e ( t )  was restricted to this range. Note 
that if Gaussian random noise is used, then there is some 
nonzero probability that the error would be outside of this 
range regardless of the variance, and thus it is possible for the 
network to fail to correctly classify all training values due to 
Gaussian noise. We felt that such effects should be avoided 
in order to exclusively test the sensitivity of the network to 
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that defines e ( t ) .  For strings from class one, a target value of 
0.8 was chosen, for class two -0.8 was chosen. 

The network was run using a simple BPTT algorithm with 
a learning rate of 0.1 for a maximum of 100 epochs. (We h: hi h', 

r 

h: hi h2j 
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Fig. 3. 
that the portion of the gradient due to information ) i  time steps in the past is a greater fraction of the overall gradient as D becomes larger. 

Plots of the ratio . J ( f ;  n ) /  Cy=, .7(t. T) as a function of n for different number of output delays ( D  = 1, D = 3 ,  and D = 6). These curves show 
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( D  = 1. D = 3.  and D = 6) 

Plots of percentage ol' successful simulations as a function of T ,  the length of the input strings, for different number of output delays 

Fig. 6. A five-state tree automaton. 

dependencies, in which the output will depend on input values 
far in thc past. 

In this experiment we compared Elman's simple recurrent 
network [7] against NARX networks. Each network had six 
hidden nodes. Since the output if each hidden node in an Elman 
network is fed back, there were six delay elements (states) in 
the network. The NARX network had six feedback delays from 
the output node. Thus, the two architectures have the exact 
same number of weights, hidden nodes, and states. The initial 
weights were randomly distributed in the range 1-0.5, 0.51. 

For each simulation, we randomly generated a training set 
and an independent testing set, each consisting of 500 strings 
of length T such that there were an equal number of positive 
and negative strings. We varied T from 10 to 30. For the 

accepted strings, a target value of 0.8 was chosen, for the 
rejected strings -0.8 was chosen. 

The network was trained using a simple BPTT algorithm 
with a learning rate 0.01 for a maximum of 200 epochs. If the 
simulation exceeded 200 epochs and did not correctly classify 
all strings i n  the training set, then the simulation was ruled a 
failure. We found that when the network learned the training 
set perfectly, then it consistently performed perfectly on the 
testing set as well. For each value of T, we ran 80 simulations. 

Fig. 7 shows a plot of the percentage of the runs that were 
successful in each case. It is clear from this plot that the NARX 
network performs far better than the Elman network at learning 
long-term dependencies. 

We also wanted to see how the performance varied due to 
different numbers of output delays. We chose three different 
networks in which the size of the output tapped delay line 
was chosen to be either two, four, or six. To make the total 
number of trainable weights comparable, the networks had 11, 
eight, and six hidden nodes, respectively, giving 56, 57, and 
55 weights. 

Fig. 8 shows the result of the experiment. It is clear that 
the sensitivity to the long-term dependencies decreases as the 
number of output delays increases. 

VI. CONCLUSION 

In this paper we considered an architectural approach to 
dealing with the problem of learning long-term dependencies, 
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Fig. 7. Plots of percentage of successful simulations as a function of T ,  the length of input strings, for the Elman networks versus NARX networks 

i.e., when the desired output depends on inputs presented 
at times far in the past, which has been shown to be a 
difficult problem to learn for gradient-based algorithms. We 
explored the ability of a class of architectures called NARX 
recurrent neural networks to solve such problems. We found 
that although NARX networks do not circumvent this problem, 
it is easier to discover long-term dependencies with gradient- 
descent in these architectures than in architectures without 
output delays. This has been observed previously, in the sense 
that gradient-descent learning appeared to be more effective in 
NARX networks than in recurrent neural-network architectures 
that have “hidden states” on problems including grammatical 
inference and nonlinear system identification [ 1 11, [ 151. 

The intuitive explanation for this behavior is that the output 
delays are manifested as jump-ahead connections in the un- 
folded network that is often used to describe algorithms like 
BPTT. Another explanation is that the states do not necessarily 
need to propagate through nonlinearities at every time step, 
which may avoid a degradation in gradient due to the partial 
derivative of the nonlinearity. 

We presented an analytical example that showed that the 
gradients do not vanish as quickly in NARX networks as they 
do in n e t w o r k s  without m u l t i p l e  d e l a y s  w h e n  the n e t w o r k  is 
contained in a fixed point. We also presented two experimental 
problems which show that NARX networks can outperform 
networks with single delays on some simple problems involv- 
ing long-term dependencies. 

We speculate that similar results could be obtained for 
other networks. In particular, we hypothesize that any network 

that uses tapped delay feedback [ 11, [ 181 would demonstrate 
improved performance on problems involving long-term de- 
pendencies. It may also be possible to obtain similar results 
for the architectures proposed in 161, [91, [241, and [371. 

APPENDIX 
A CLOSER LOOK AT ROBUST INFORMATION LATCHING 

In this section, we make a critical examination of the 
definition of robust latching given by Bengio et al. [2]. 
Specifically, they assume that if a network is to be robust to 
noise, then the states must always be in the reduced attracting 
set of the hyperbolic attractor. While such a condition is 
sufficient to latch information robustly, it is not necessary. 
In this section we shqw how robustness may be redefined to 
be both necessary and sufficient. 

First, Bengio et al. assume the existence of a “class- 
determining” subsystem that computes information about the 
class of an input sequence v. If, say, only the first L values in 
the input sequence (to be classified) are relevant for determin- 
ing the class of ‘U, the output of the subsystem is some valuable 
signal of length L, coding the class, whereas the outputs at 
times greater than L are unimportant and can be considered 
minor fluctuations. In their experiments, the fluctuations are 
modeled as a zero-mean Gaussian noise with a small variance. 

The outputs u(t)  of the class-determining subsystem feed a 
latching subsystem 

s : X(t) = M[X( t  - l)] + u(t) .  
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of output delays ( D  = 2 ;  D = 4, D = 6). 

Plots of percentage of successful simulations as a function of T 

It will be useful to consider the corresponding autonomous 
dynamical system 

S, : x(t) = M [ x ( t  - l)]. (20) 

The key role in latching the class information of {x(t)} in S 
is played by the hyperbolic attractors of {x(t)} in SA. It is 
assumed that the important class information is coded in the 
first L time steps of u( t ) ;  inputs at times t > L are unimportant 
and can be considered as noise. Note that this is the key 
reason why Bengio et al. needed to assume the existence of a 
class-determining subsystem, which will somehow “highlight” 
the important information at times t 5 L,  but suppress the 
information in the succeeding time steps. 

The important inputs at times t 5 L,  cause the states x ( t )  to 
move to the “vicinity” of a hyperbolic attractor X of SA. If the 
values of u( t )  for i. > L are sufficiently small, then the states 
of S will not move away from X ,  thus latching the information 
coded in u(l), . . . .  u ( L )  for an arbitrary long time. 

Having established this scenario for latching information of 
possibly long input sequences, Bengio et al. discuss what it 
means for the system to be robust. Specifically, they allow the 
input to be noisy but bounded, i.e., Ilu(t)II < b ( t )  such that 
the latching system S initiated in a state from r ( X ) ,  receiving 
additive inputs bounded by b ( t ) ,  will stay in a vicinity of X. 

They conclude that r ( X )  is a subset of the basin of 
attraction p ( X )  of X (in SA), such that for all x E r (X)  
and 1 2 1, the eigenvalues of J x ( t ,  1 )  are contained within 
the unit circle. Such a set is called the reduced attracting 

\ 

’/ 

. .  . .  . . :  . 

20 22 24 26 28 30 
T 

the length of the input strings, for NARX networks with different number 

set of X .  Specific bounds of b ( t )  are given so that x(t)  
are asymptotically guaranteed to stay within a prescribed 
neighborhood of X. 

They point out that if the network is to latch information 
robustly, then it must necessarily suffer from the problem of 
vanishing gradients, i.e., x(t) E r ( X )  implies l i J x ( ~ :  l)il = 

l lVx(T)x (~  + 1)11 < I, for t 5 T < T and therefore when 
t << T ,  we have ~lVx~t)x(T’)l~ + 0. 

While their analysis is valuable for pointing out prob- 
lems associated with learning long-term dependencies using 
gradient-descent methods, their definition of robustness is too 
strong. In the remainder of this section we discuss conditions 
that are both necessary and sufficient for the network to be 
robust to noise. 

Bengio et al. require that r ( X )  be the reduced attracting 
set of X ,  but it is sufficient to find a set of possible states in 
the basin of attraction of X such that the system S ,  fed with 
sufficiently small inputs u( t ) ,  does not diverge from X .  

A useful formalization of this idea in dynamical systems’ 
theory is stated in terms of the shadowing lemma [5] ,  [lo]. 
Given a number b > 0, a b-pseudoorbit of the system SA is 
a sequence {x(t)} such that IIM[%(t)] - x(t  + l)il < b, for 
all t 2 0. Pseudoorbits arise as trajectories of the autonomous 
system SA contaminated by a noise bounded by b. One may 
ask a question to what extent are such “corrupted” state 
trajectories {x(t)} informative about the “real” trajectories 
{x(t)} of the autonomous system SA. It turns out that in 
systems having the so called shadowing property, corrupted 
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state trajectories are “shadowed” by real trajectories within 
a distance depending on the level of the input noise. Bigger 
noise implies looser shadowing of the corrupted trajectory by 
an uncorrupted one. Formally, system SA has a shadowing 
property if for every e > 0, there exists a b > 0, such that any 
b-pseudoorbit {x(t)} is c-approximated by an actual orbit of 
SA initiated in some state x(O), i.e., liX(t) - Mt[x (0 ) ] l /  < E, 
where nilt means the composition of M with itself t times, 
and MO is the identity map. 

It is proved in [lo] that except possibly for small excep- 
tional sets, discrete-time analog neural networks do have the 
shadowing property. In particular, they show that the shadow- 
ing property holds for networks with sigmoidal (i.e., strictly 
increasing, bounded form above and below, and continuously 
differentiable) activation functions. 

As long as S, has the shadowing property, it is sufficient 
to pick arbitrary small t > 0 and start in a point X(0) E 
p ( X )  whose distance from the border of P ( X )  is at least 
t. Then there exists a bound b on additive noise u( t )  such 
that a “corrupted” trajectory {x(t)} of SA (i.e., a trajectory 
of S )  will be “shadowed” by a real trajectory {x(t)> of SA 
originating in some x(0) from the t-neighborhood of X(0). 
Since x(0) E p ( X ) ,  {x(t)} converges to X and so X(t) 

will not move away from X .  Smaller F results in tighter 
bounds b. 

Hence, to achieve a “robust” latch of an information to an 
attractor X ,  it is not strictly necessary for the states to be in 
the reduced attracting set of X .  In fact, for every state x(0) 
from the basin of attraction p ( X )  of X ,  there exists a bound 
on additive inputs u( t )  such that {x(t)) will asymptotically 
stay in an €-neighborhood of X .  
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