
Deep Reinforcement Learning

Spring 2019
RL!

Story so far

• Typical problem in life:
– Agent is in some state
– Agent takes an action

• Chosen according to some policy
– Agent gets a reward
– Environment changes state in response to action

• Objective: Choose policy to maximize long-
term return
– Discounted sum of rewards from start to end

action

Approach: Define values

• Typical sequence

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ

• Value of being any state (expected return) is the expected future
return if you are at that state

గ ௧ ௧

௧ାଵ ௧ାଶ
்ି௧ିଵ

் ௧

• Value of taking an action at any state

గ ௧ ௧ ௧

௧ାଵ ௧ାଶ
்ି௧ିଵ

் ௧ ௧

• These are functions of the policy
• Objective: Choose policy to maximize the return

– The value of every state under the policy

Different settings

action

Given policy, find
the values of all
states (or state-
action pairs):
PREDICTION

Find the optimal
policy:
CONTROL

Have model of how
the environment
will respond to an
action at any state

Do not know how
the environment
will respond to an
action at any state

MODEL BASED PLANNING

MODEL FREE REINFORCEMENT
LEARNING

Different settings

action

Given policy, find
the values of all
states (or state-
action pairs):
PREDICTION

Find the optimal
policy:
CONTROL

Have model of how
the environment
will respond to an
action at any state

Do not know how
the environment
will respond to an
action at any state

MODEL BASED PLANNING
(MARKOV DECISION PROCESS)

MODEL FREE REINFORCEMENT
LEARNING

Bellman Expectation Equations

• For given policy how to compute
– The value of being in any state
– The value of being in any state and taking a particular

action

Bellman Optimality Equations

• How to compute
– The value of being in any state
– The value of being in any state and taking a particular action

under the optimal policy

Solving an MDP

• Prediction: Given a policy find value functions
– Using Bellman expectation equations

• Control: Find the optimal policy
– Using policy iteration

• Directly find optimal policy
– Using value iteration

• Find optimal values
– Bellman optimality equation

• Find policy from optimal values

Different settings

action

Given policy, find
the values of all
states (or state-
action pairs):
PREDICTION

Find the optimal
policy:
CONTROL

Have model of how
the environment
will respond to an
action at any state

Do not know how
the environment
will respond to an
action at any state

MODEL BASED PLANNING

MODEL FREE REINFORCEMENT
LEARNING

Reinforcement Learning

• In real-life problems the transition probabilities wont be
known
– No prior knowledge of how the environment will respond to an

action

• Must still find optimal policy

Recap: Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without
knowing the underlying MDP?
– Model-free control

Solution: Actually run through the
system

• Record many episodes of the kind
–

భ

–
మ

– …

• Use these to estimate values or action
values of states

Recap: Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD

Recap: Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD

Recap: Monte Carlo

• To estimate the value of any state, identify the
instances of that state in the episodes:
–

• Compute the average return from those
instances

…
G1 G2 G3

Monte Carlo: Estimating the Action
Value function

• To estimate the value of any state-action pair,
identify the instances of that state-action pair in
the episodes:
–

• Compute the average return from those instances

…
G1 G2 G3

Recap: Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD

Concept behind TD learning

• If we had the true value or action value
functions, the above equations would be valid

• We can even write

ᇲ ᇲ

ᇲ ᇲ ᇲ

Concept behind TD learning
• If we had the true value or action value functions, the

above equations would be valid

• In practice we wont have the true value functions
• So we use the iterative update

• It will converge to the true value for

ᇲ ᇲ ᇲ

గ
௞ାଵ

గ
௞

గ ௦
௔

௦ᇱ గ గ
௞

గ
௞ାଵ

గ
௞

௦ᇲ ௦
௔

௦ᇲ,௔ᇲ గ
ᇱ ᇱ

గ
௞

Concept behind TD learning
• Problem with this estimator:

– true values and are unknown
– Transition probabilities are unknown, so expectations

cannot be computed

• Instead we bootstrap with the empirical updates

గ
௞ାଵ

గ
௞

గ ௦
௔

௦ᇱ గ గ
௞

గ
௞ାଵ

గ
௞

௦ᇲ ௦
௔

௦ᇲ,௔ᇲ గ
ᇱ ᇱ

గ
௞

Concept behind TD learning
• TD Estimator:

• Generally written as (only shown for action value
estimator)

• is generally referred to as the TD error

Recap: TD(1)
• An “episode” is a run:

• For all Initialize:
• For every episode

– For every time
• గ ௧ గ ௧ ௧ାଵ గ ௧ାଵ గ ௧

• There’s a “lookahead” of one state, to know
which state the process arrives at at the next time

• But is otherwise online, with continuous updates

TD(1) with action-values
• For all , initialize:

• For every episode
– For every time

Recap: TD(N) with lookahead

• Where

• is the TD error with N step lookahead

•

Recap: TD(l)

• Combine the predictions from all lookaheads
with an exponentially falling weight
– Weights sum to 1.0

Recap: TD(l)

• Maintain an eligibility trace for every state

• Computes total weight for the state until the
present time

Recap: TD(l)

• At every time, update the value of every state
according to its eligibility trace

• Any state that was visited will be updated
– Those that were not will not be, though

Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without
knowing the underlying MDP?
– Model-free control

Value vs. Action Value

• Simply knowing the value function is
insufficient to find the optimal policy

• We must compute the optimal action value
functions to find the optimal policy
– Optimal policy in any state : Choose the action

that has the largest optimal action value

Value vs. Action Value

• Given only value functions, the optimal policy must be
estimated as:

ᇲ

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

• This is model free (no need for knowledge of model
parameters)

TD(1) with action-values
• For all , initialize:

• For every episode
– For every time

TD(l) with action-values
For all , initialize:

• For every episode
– For every time

Optimal Policy: Control

• We learned how to estimate the state value
functions for an MDP whose transition
probabilities are unknown for a given policy

• How do we find the optimal policy?

Problem of optimal control
• From a series of episodes of the kind:

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

– Can also find empirical returns ate each time for the episode

• Find the optimal action value function
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy from ongoing

experience

Problem of optimal control
• From a series of episodes of the kind:

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

– Can also find empirical returns ate each time for the episode

• Find the optimal action value function
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy from ongoing

experience

G1 G2 G3

Control: Greedy Policy

• Recall the steps in policy iteration:
– Start with any policy
– Iterate (… convergence)

• Find the value function (ೖ) using DP
• Find the greedy policy

(ೖ)

• Can we adapt this for model-free control?

Control: Greedy Policy

• Our proposed algorithm:
– Start with any policy
– Iterate (… convergence)

• Estimate the action-value function (ೖ) using
TD-learning

• Find the greedy policy

(ೖ)

• Let’s see if this works…

Gridworld Example

• States: Location on a 5x5 grid of cells

• Actions: Move up, down, left or right

• The game starts on the top right corner and ends on the
lower left corner. State transitions are deterministic.

Gridworld: Iteration 1

• Initialize with a uniform random policy and collect sample
episodes. Use TD-learning to estimate action-values.

• Find the greedy policy

Ignore state-action pairs that
haven’t been visited when
performing argmax.

We’re getting close. Nice!

True optimal route:

Gridworld: Iteration 2

• Use the previous policy and collect sample episodes. Use TD-
learning to estimate action-values.

• Find the greedy policy

Err… what just happened?True optimal route:

Exploration vs. Exploitation
• The original policy iteration algorithm can update the values

of all states because all the rewards and transition
probabilities are known.

• Our model-free control algorithm gathers sample data by
following a policy.
– Can’t learn about state-action pairs that weren’t encountered

– Will never learn about alternate policies that may turn out to be better

• Solution: Follow our current policy of the time
– But choose a random action of the time

– The “epsilon-greedy” policy

GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy
• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat

GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy
• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat

On-line version of GLIE: SARSA

• Bootstrap: Replace with an estimate
• TD(1) or TD(l)

– Just as in the prediction problem

• TD(1)  SARSA

SARSA
• Initialize for all
• Start at initial state
• Select an initial action
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧

SARSA
• Initialize for all
• Start at initial state
• Select an initial action
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧

Similar to our proposed algorithm!
Though here, we’re making the greedy
update to our policy after each action.

This means we no longer need to
explicitly store (a|s); we can infer it
using the Q-values.

SARSA(l)

• Again, the TD(1) estimate can be replaced by a TD(l) estimate
• Maintain an eligibility trace for every state-action pair:

଴

௧ ௧ିଵ ௧ ௧

• Update every state-action pair visited so far

௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

௧ ௧

SARSA(l)

• For all initialize
• For each episode

– For all initialize
– Initialize ଵ ଵ

– For
• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ using policy obtained from

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧

• For all
– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝜆𝛾𝐸(𝑠, 𝑎)

Closer look at SARSA
• SARSA: From any state-action , accept

reward , transition to next state ,
choose next action

• Use TD rules to update:

• Problem: what’s the best policy to use to
choose ?

Closer look at SARSA
• SARSA: From any state-action , accept reward

, transition to next state , choose next action

• Problem: which policy do we use to choose
• If we choose the current judgment of the best action at

S’ we will become too greedy
– Fail to explore the space of possibilities

• If we choose a sub-optimal policy to follow, we will
never find the best policy
– E.g. We don’t want to be -greedy at test-time!

Generalization of SARSA

• Pick a random initial policy .
• Repeatedly create episodes.

– For each time step in the current episode:
• Start at state ௧ (S)
• Carry out action ௧ ௧ (A)
• Get reward ௧ାଵ (R)
• Reach state ௧ାଵ (S)
• Estimate optimal future action ௌ೟శభ

∗ (A)
• Estimate optimal future return ௧ାଵ ௌ೟శభ

∗

• Update using ௧ାଵ and ௧ାଵ ௌ೟శభ

∗

• Update the current policy

Generalization of SARSA

• Pick a random initial policy .
• Repeatedly create episodes.

– For each time step in the current episode:
• Start at state ௧ (S)
• Carry out action ௧ ௧ (A)
• Get reward ௧ାଵ (R)
• Reach state ௧ାଵ (S)
• Estimate optimal future action ௌ೟శభ

∗ (A)
• Estimate optimal future return ௧ାଵ ௌ೟శభ

∗

• Update using ௧ାଵ and ௧ାଵ ௌ೟శభ

∗

• Update the current policy

 Used to explore the environment
Are there any reasons to choose ௧

to be the optimal action?

Used to estimate optimal return 
Are there any reasons to make ௌ೟శభ

∗

the same as ௧ାଵ?

On-policy vs. Off-policy
• It’s possible learn to what the best actions should be, even

if we don’t always follow those actions.
– E.g. learning by observation

• We learn by following a more exploratory policy
• In the process, we look for a hypothetical optimal

policy…the one that we’d want to follow at test-time.

మ య

• The actions we actually follow to get samples (e.g.) are
not the same as our best estimates of the optimal actions
(e.g.

೟
)

– Hence this is an “off-policy” method

Solution: Off-policy learning
• Use data to improve your choice of actions, but follow

different (“off-policy”) actions to collect data.

మ య

• E.g. Use
೟శభ

• But, actually follow the epsilon-greedy policy
– The hypothetical action is better than the one you actually

took, but you still explore (non-greedy)

• This is the basis for the most popular RL algorithm, Q-
Learning

Q-Learning (TD-1)

• Pick initial values for .
• Repeatedly create episodes.

– For each time step in the current episode:
• Start at state ௧

• Carry out action ௧ ఢ−୥୰ୣୣୢ୷ ௧

• Get reward ௧ାଵ

• Reach state ௧ାଵ

• Estimate optimal future action
ௌ೟శభ

∗
௔ ௧ାଵ

• Estimate optimal future return ௧ାଵ ௌ೟శభ

∗

• Update ௧ ௧

௧ ௧ ௧ାଵ ௧ାଵ ௌ೟శభ

∗
௧ ௧

The Q-learning algorithm generalizes to TD(λ) too

Off-policy vs. On-policy

• Optimal greedy policy:

• Exploration policy

• Ideally should decrease with time

Scaling up the problem..

• We’ve assumed a discrete set of states
• And a discrete set of actions

• Value functions can be stored as a table
– One entry per state

• Action value functions can be stored as a table
– One entry per state-action combination

• Policy can be stored as a table
– One probability entry per state-action combination

• None of this is feasible if
– The state space grows too large (e.g. chess)
– Or the states are continuous valued

Continuous State Space

• Tabular methods won’t work if our state space is
infinite or huge

• E.g. position on a [0, 5] x [0, 5] square, instead of a
5x5 grid.

4.4 4.5 4.8 5.3 5.9

3.9 4.0 4.4 4.9 5.6

3.2 3.4 3.8 4.0 5.1

2.2 2.4 3.0 3.7 4.6

0 1.0 2.0 3.0 4.0

The graphs show the
negative value function

Parameterized Functions

• Instead of using a table of Q-values, we use a
parametrized function

• Instead of writing values to the table, we fit
the parameters to minimize the prediction
error of the “Q function”

Parameterized Functions

• Instead of using a table of Q-values, we use a
parametrized function

• This can be a simple linear function…

Parameterized Functions

• Or a massive convolutional network…

Target Q

What is ?

As in TD, use bootstrapping for the target :

And can be L2 distance

DQN (v0)

• Initialize
• For each episode

– Initialize
– For

• Choose action ௧ using –greedy policy obtained from ௧

• Observe ௧ାଵ ௧ାଵ

• Choose action ௧௔௥௚௘௧ ௔ ௧ାଵ ௧

• ௧௔௥ ௧ାଵ ௧ାଵ ௧௔௥௚௘௧

• ௧ାଵ ௧ ఏ ௧௔௥௚௘௧ ௧ ௧ ௧ ଶ
ଶ

Deep Q Network

• Note : does not

consider as depending of (although it
does). Therefore this is semi-gradient descent.

• If your function is a neural network, and the
action set is finite of size , then you can use a

-labels classification network that associates
the probabilities of each action to an input space.

Parameterized Functions

• Fundamental issue: limited capacity
– A table of Q values will never forget any values

that you write into it
– But, modifying the parameters of a Q-function will

affect its overall behavior
• Fitting the parameters to match one pair can

change the function’s output at .
• If we don’t visit for a long time, the function’s

output can diverge considerably from the values
previously stored there.

Tables have full capacity

• Q-learning works well with Q-tables
– The sample data is going to be heavily biased

toward optimal actions , or close
approximations thereof.

– But still, -greedy policy will ensure that we will
visit all state-action pairs arbitrarily many times if
we explore long enough.

– The action-value for uncommon inputs will still
converge, just more slowly.

Limited Capacity of

• The Q-function will fit more closely to more common
inputs, even at the expense of lower accuracy for less
common inputs.

• Just exploring the whole state-
action space isn’t enough. We
also need to visit those states
often enough so the function
computes accurate Q-values
before they are “forgotten”.

Action-replay

• The raw data obtained from Q-learning is:
– Highly correlated: current data can look very

different from data from several episodes ago if
the policy changed significantly.

– Very unevenly distributed: only probability of
choosing suboptimal actions.

• Instead, create a replay buffer holding past
experiences, so we can train the Q-function
using this data.

Action-replay

• Pseudocode:
for B steps:

= make_action()
replay_buffer.add()

TD_update(replay_buffer.sample(B),
q_function)

• We have control over how the experiences are added,
sampled and deleted.
– Can make the samples look independent
– Can emphasize old experiences more
– Can change frequency depending on accuracy

Action-replay

• What is the best way to sample?
– On the one hand, our function has limited

capacity, so we should let it optimize more
strongly for the common case

– On the other hand, our function needs explore
uncommon examples just enough to compute
accurate action-values, so it can avoid missing out
on better policies

• A trade-off!

DQN (with Action-replay)

• Initialize ଴

• Initialize buffer with some random episodes
• For each episode

– Initialize ଵ ଵ

– For
• Choose action 𝐴௧ using 𝜀 –greedy policy obtained from 𝜃௧

• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Add 𝑆௧, 𝐴௧, 𝑅௧ାଵ, 𝑆௧ାଵ to the buffer
• Sample from the buffer a batch of tuples 𝑆, 𝐴, 𝑅, 𝑆௡௘௪

• Choose 𝐴௧௔௥௚௘௧ = 𝑎𝑟𝑔𝑚𝑎𝑥௔𝑓(𝑆୬ୣ௪, 𝑎|𝜃௧)

• 𝑄௧௔௥௚௘௧ = 𝑅 + 𝛾𝑄 𝑆௡௘௪, 𝐴௧௔௥௚௘

• 𝜃௧ାଵ = 𝜃௧ − 𝜂∇ఏฮ𝑄௧௔௥௚௘௧ − 𝑓 𝑆, 𝐴 𝜃௧ ‖ଶ
ଶ

Moving target

• We already have moving targets in online SARSA and
Q-learning, since we’re using the action-values to
compute the updates to the action-values.

• The problem is much worse with Q-functions though.
Optimizing the function at one state-action pair affects
all other state-action pairs.
– The target value is fluctuating at all inputs in the function’s

domain, and all updates will shift the target value across
the entire domain.

Frozen target function

• Solution : Create two copies of the Q-function.
– The “target copy” is frozen and used to compute the target

Q-values.
– The “learner copy” will be trained on the targets.

• Just need to periodically update the target copy to
match the learner copy.

Fixed target DQN
• Initialize ଴, ∗

଴

• Initialize buffer with some random episodes
• For each episode

– Initialize ଵ ଵ

• For 𝑡 = 1 … 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• If 𝑡%𝑘 = 0 then update 𝜃∗ = 𝜃௧

• Choose action 𝐴௧ using 𝜀 –greedy policy obtained from 𝜃௧

• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Add 𝑆௧, 𝐴௧, 𝑅௧ାଵ, 𝑆௧ାଵ to the buffer
• Sample from the buffer a batch of tuples 𝑆, 𝐴, 𝑅, 𝑆௡௘௪

• Choose 𝐴௧௔௥௚ = 𝑎𝑟𝑔𝑚𝑎𝑥௔𝑓(𝑆୬ୣ௪, 𝑎|𝜃∗)

• 𝑄௧௔௥௚ = 𝑅 + 𝛾𝑓(𝑆୬ୣ௪, 𝐴௧௔௥௚ |𝜃∗)

• 𝜃௧ାଵ = 𝜃௧ − 𝜂∇ఏฮ𝑄௧௔௥௚௘௧ − 𝑓 𝑆, 𝐴 𝜃௧ ‖ଶ
ଶ

Performance

Overestimation of Q-values

• Choose

•

• But what if this action is not optimal ?

• If, in DQN (fixed target or not) in early training
non-optimal actions are attributed higher Q-
values than the optimal action…
– Learning is difficult, due to bias on chosen

actions

Double Q networks
• Solution : Create two Q-functions.

– The “DQN network” compute the target action
– The “target network” is used to compute the Q-value of the

target action.
– The “DQN network” is trained on the targets.

ୈ୕୒ ௧ ௧ ୤୧୲ ௧ାଵ

୲ୟ୰୥ୣ୲ ௧ାଵ ௔ ୈ୕୒ ௧ାଵ

• Each network can play the role of the DQN or target
network : chosen randomly at each step

• Action selections are epsilon-greedy with respect to
the sum of both networks

Double DQN
• Initialize ଴

ଵ, ଴
ଶ

• Initialize buffer with some random episodes
• For each episode

– Initialize ଵ ଵ

• For
• Choose action ௧ using –greedy policy obtained from

௧
ଵ

௧
ଶ , Observe ௧ାଵ ௧ାଵ

• Add ௧ ௧ ௧ାଵ ௧ାଵ to the buffer
• Sample from the buffer a batch of tuples ௡௘௪

• Assign randomly ଴
ଵ, ଴

ଶ ଴
஽ொே, ଴

௧௔௥௚௘௧

• Choose ௧௔௥௚௘௧ ௔ ୬ୣ௪ ௧
஽ொே

• ௧௔௥௚ ୬ୣ ௧௔௥௚ ௧
௧௔௥௚௘௧

• ௧ାଵ
஽ொே

௧
஽ொே ஽ொே

ఏವೂಿ ௧௔௥௚௘௧ ௧
஽ொே

ଶ

ଶ

Other Q-learning optimizations

• Dualing DQN:
– Decompose

• V is the value function, and A is known as the advantage function.

– Easier to learn since you can get good estimates with
and

Direct Policy Estimation

• It’s also possible to make a deep neural
network that directly produces a distribution
over actions given a state
– Also known as a policy network, or the policy

gradient method
– Useful when the action space is also large or

continuous

Policy Network
• Train a neural network to prescribe actions at

each state:

– Input is S, output is probability distribution over A

– Could be deterministic

• Problem : how to train such a network ?

• No golden truth
– Unlike value functions, where there is a target value

for the value at each state
• Against which we can compute a loss

Maximizing return

• Learn policy to maximize expected return!

• Problem: For discrete action space, the return is
not differentiable with respect to policy function
parameters
– Selection is not a differentiable operation

s

A1

A2

AK

Q

select

Q

Q

Solution

• Recast differentiation as an expectation
operation
– Can now be approximated by sampling
– Policy gradient method

• Compute expected returns using an action-
value function approximator
– Actor-critic methods

Solution

• Recast differentiation as an expectation
operation
– Can now be approximated by sampling
– Policy gradient method

• Compute expected returns using an action-
value function approximator
– Actor-critic methods

How to choose policy

• In any run starting at a state we get
–

• The trajectory associated with the run is
–

• The total return over the run (at t=1) is
– G = R2 + gR3 + g2R4 ….

• The choice of in will modify the
trajectory and thereby the return

The objective
• The probability of a trajectory is a function of

and hence of
–

• The probability of a return is a function of the
trajectory
–

• Objective: to maximize expected return

Gradient of the objective

்

ఏ ఏ

்

• A simple trick:

ఏ
ఏ

ఏ

ఏ ఏ

்

ఏ ்~௉ ்;ఏ ఏ

Gradient of the objective

்

ఏ ఏ

்

• A simple trick:

ఏ
ఏ

ఏ

ఏ ఏ

்

ఏ ்~௉ ்;ఏ ఏ

The trajectory

• The trajectory is

ଵ ଵ ଶ ଶ ଷ ଷ

• The probability of , under the policy function is

ଵ ଵ ଵ ଶ ଵ ଵ ଶ ଶ

• Taking logs

ଵ ௧ାଵ ௧ ௧ ௧ ௧

௧

௧

• Giving us the deriviative

ఏ ఏ ௧ ௧

௧

Gradient of the objective

• This is a simple expectation that can be
approximated by sampling!

A simple extension

• Better to compute the above instead as follows

• This too can be estimated by sampling

Policy Gradients

• Record an episode (or episodes)

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes

Policy Gradients

• Episode

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes

Policy Gradients

• Episode

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes

ଵ ଵ ଶ ଶ ଷ ଷ

Policy Gradients

• Episode

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes

ଵ ଵ ଶ ଶ ଷ ଷ

Policy Gradients

• Episode

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes

ଵ ଵ ଶ ଶ ଷ ଷ

Its like Maximum Likelihood
• The gradient actually looks like the derivative of a

log likelihood function

• Can be written as

• Maximization increases the probability of
trajectories with greater return
– If you see a trajectory you increase its probability

Its like Maximum Likelihood
• The gradient actually looks like the derivative

of a log likelihood function

• Maximization increases the probability of all
seen actions
– At the cost of the probability of unseen actions

– Usual ML estimator

Merely seeing a trajectory isn’t good

• We want to emphasize trajectories with high
return and reduce the probability of low-
return trajectories

• If an action results in more returns than the
current average return for the state, we must
improve its probability
– If it results in less, we must decrease it

Its like Maximum Likelihood
• Subtract the expected return for the current state

• is the advantage function
– How much advantage the current action has over the

average

• Train to maximize advantage

– Typically approximate by ᇲ

Reinforce
• Initialize
• For each episode

– Initialize ଵ ଵ

– For
• Choose action ௧ using –greedy policy obtained from
• Observe ௧ାଵ ௧ାଵ

– Compute the returns ௧ then the advantages ௧

– Compute ଵ

் ఏ ௧ ௧ ௧

௧

–  ఏ

Solution

• Recast differentiation as an expectation
operation
– Can now be approximated by sampling
– Policy gradient method

• Compute expected returns using an action-
value function approximator
– Actor-critic methods

Instability

• In Reinforce, the estimator for the expected return has
high variance : rewards on one episode act as
estimates for state value functions.

ᇲ
ᇲ

ᇲ

• It also requires entire runs of episodes
– Not online

• It can be made more stable through function
approximation of the value function

Actor-Critic

• In actor-critic methods, two networks are used :
• The actor is the policy network : ௔ ఏೌ

and is used
to predict the next action

• The critic is a state value network : ௖ ఏ೎
and is used to

guide the optimization direction of the actor

• To estimate the expected return based on an episode, we use N-
step lookahead :

௧
௞

௧ା௞ାଵ

଴ஸ௞ஸேିଵ

ே
ఏ೎ ௧ାே

Advantage Actor Critic (A2C)

Rethink the advantages

The critic can also be used as the “baseline” when
computing the advantages :

೎

The trajectory’s probability is improved if it is better than
the trajectories previously followed.

The critic is trained on how well it predicted the return.

A2C
• Initialize ௔ ௖

• For each episode
– Initialize 𝑆ଵ, 𝐴ଵ

– For 𝑡 = 1 … 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• Choose action 𝐴௧ using 𝜀 –greedy policy obtained from 𝜃௔

• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

– Compute the returns 𝐺 𝑆௧ = ∑ 𝛾௞𝑅௧ା௞ାଵ

଴ஸ௞ஸேିଵ + 𝛾ே𝑉ఏ೎

𝑆௧ାே if t + 𝑁 < 𝑇, else
∑ 𝛾௞𝑅௧ା௞ାଵ

଴ஸ௞ஸ்ି௧ିଵ

– Compute the advantages 𝑎௧ = 𝐺 𝑆௧ − 𝑉ఏ೎
𝑆௧

– Compute 𝑓௔ 𝜃௔ =
ଵ

்
∑ log 𝜋ఏ 𝐴௧ 𝑆௧ 𝑎௧

௧ , 𝐿௖ 𝜃௖ =
ଵ

்
∑ 𝐺 𝑆௧ − 𝑉ఏ೎

𝑆௧

𝟐

௧

– 𝜃௔  𝜃௔ + 𝜂௔∇ఏೌ
𝐿௔ (𝜃௔), 𝜃௖  𝜃௖ − 𝜂௖∇ఏ೎

𝐿௖ (𝜃௖),

Extensions

• A2C can be applied in a multi-thread environment on
several episodes simultaneously, with a final mini-batch
update

• Asynchronous Advantage Actor-Critic (A3C) (Deepmind,
2016): Each thread performs its updates without waiting
for the others to end  each thread keeps its own version
of the parameters. They upload their gradients
asynchronously to a master server that performs batch
updates

• Experience Replay can be adapted to A2C  ACER
algorithm (Deepmind 2017)

Continuous action space

• We need to access action probabilities for
Reinforce and A2C.

• We have seen the discrete action space case (n labels +
softmax)  Very large or continuous space ?

• You can use a network that predict the parameters of a
distribution and sample an action from it. Ex :
with (similar to the encoder of a VAE) 
Reinforce/A2C can be used (with the reparametrization trick).

• Most general case : . What algorithm can I use ?

Deep Deterministic policy gradients
(DDPG)

• Hybrid between Q-learning and policy methods.
Makes use of many tricks seen so far.

• An actor predicts the action : .

• A critic predicts the action value :
.

• Actor objective : maximize the Q-value 
Gradient ascent with

Deep Deterministic policy gradients
(DDPG)

• Critic objective : predict accurately the Q-value. Could be
done with bootstrapping but like Double DQN, DDPG makes
use of decoupled targets instead

•  Separate set of target actor and critic with parameters

• Minimize

wrt
• are slowly updated as a moving average of
• DDPG also uses experience replay, and in training adds a

noise to for exploration.

Summary

• Parameterized Functions
• Action-replay
• Target functions
• Deep Q Networks
• Decoupled targets, Double DQN
• Policy gradients
• Reinforce
• Actor-Critic
• DDPG

