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Story so far

• Typical problem in life:
– Agent is in some state
– Agent takes an action

• Chosen according to some policy
– Agent gets a reward
– Environment changes state in response to action

• Objective: Choose policy to maximize long-
term return
– Discounted sum of rewards from start to end

action



Approach: Define values

• Typical sequence

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ

• Value of being any state (expected return) is the expected future 
return if you are at that state

గ ௧ ௧

௧ାଵ ௧ାଶ
்ି௧ିଵ

் ௧

• Value of taking an action at any state

గ ௧ ௧ ௧

௧ାଵ ௧ାଶ
்ି௧ିଵ

் ௧ ௧

• These are functions of the policy
• Objective: Choose policy to maximize the return

– The value of every state under the policy



Different settings

action

Given policy, find 
the values of all 
states (or state-
action pairs):
PREDICTION

Find the optimal 
policy:
CONTROL

Have model of how 
the environment 
will respond to an 
action at any state

Do not know how 
the environment 
will respond to an 
action at any state

MODEL BASED PLANNING

MODEL FREE REINFORCEMENT
LEARNING
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Bellman Expectation Equations

• For given policy how to compute
– The value of being in any state
– The value of being in any state and taking a particular 

action



Bellman Optimality Equations

• How to compute
– The value of being in any state
– The value of being in any state and taking a particular action

under the optimal policy

 



Solving an MDP

• Prediction:  Given a policy find value functions
– Using Bellman expectation equations

• Control:  Find the optimal policy
– Using policy iteration

• Directly find optimal policy
– Using value iteration

• Find optimal values
– Bellman optimality equation

• Find policy from optimal values



Different settings

action
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LEARNING



Reinforcement Learning

• In real-life problems the transition probabilities wont be 
known
– No prior knowledge of how the environment will respond to an 

action

• Must still find optimal policy



Recap: Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without 
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without 
knowing the underlying MDP?
– Model-free control



Solution: Actually run through the 
system

• Record many episodes of the kind
–

భ

–
మ

– …

• Use these to estimate values or action 
values of states



Recap: Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD



Recap: Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD



Recap: Monte Carlo

• To estimate the value of any state, identify the 
instances of that state in the episodes:
–

• Compute the average return from those 
instances

…
G1 G2 G3



Monte Carlo: Estimating the Action 
Value function

• To estimate the value of any state-action pair, 
identify the instances of that state-action pair in 
the episodes:
–

• Compute the average return from those instances

…
G1 G2 G3



Recap: Methods

• Monte-Carlo Learning

• Temporal-Difference Learning
– TD(1)
– TD(K)
– TD



Concept behind TD learning

• If we had the true value or action value 
functions, the above equations would be valid

• We can even write

ᇲ ᇲ

ᇲ ᇲ ᇲ



Concept behind TD learning
• If we had the true value or action value functions, the 

above equations would be valid

• In practice we wont have the true value functions
• So we use the iterative update 

• It will converge to the true value for 

ᇲ ᇲ ᇲ

గ
௞ାଵ

గ
௞

గ ௦
௔

௦ᇱ గ గ
௞

గ
௞ାଵ

గ
௞

௦ᇲ ௦
௔

௦ᇲ,௔ᇲ గ
ᇱ ᇱ

గ
௞



Concept behind TD learning
• Problem with this estimator:

– true values and are unknown
– Transition probabilities are unknown, so expectations 

cannot be computed

• Instead we bootstrap with the empirical updates

గ
௞ାଵ

గ
௞

గ ௦
௔

௦ᇱ గ గ
௞

గ
௞ାଵ

గ
௞

௦ᇲ ௦
௔

௦ᇲ,௔ᇲ గ
ᇱ ᇱ

గ
௞



Concept behind TD learning
• TD Estimator:

• Generally written as (only shown for action value 
estimator)

• is generally referred to as the TD error



Recap: TD(1)
• An “episode” is a run: 

• For all Initialize:  
• For every episode 

– For every time 
• గ ௧ గ ௧ ௧ାଵ గ ௧ାଵ గ ௧

• There’s a “lookahead” of one state, to know 
which state the process arrives at at the next time

• But is otherwise online, with continuous updates



TD(1) with action-values
• For all , initialize: 

• For every episode 
– For every time 



Recap: TD(N) with lookahead

• Where

• is the TD error with N step lookahead

•



Recap: TD(l)

• Combine the predictions from all lookaheads
with an exponentially falling weight
– Weights sum to 1.0



Recap: TD(l)

• Maintain an eligibility trace for every state

• Computes total weight for the state until the 
present time



Recap: TD(l)

• At every time, update the value of every state 
according to its eligibility trace

• Any state that was visited will be updated
– Those that were not will not be, though



Model-Free Methods

• AKA model-free reinforcement learning

• How do you find the value of a policy, without 
knowing the underlying MDP?
– Model-free prediction

• How do you find the optimal policy, without 
knowing the underlying MDP?
– Model-free control



Value vs. Action Value

• Simply knowing the value function is 
insufficient to find the optimal policy

• We must compute the optimal action value 
functions to find the optimal policy
– Optimal policy in any state : Choose the action 

that has the largest optimal action value



Value vs. Action Value

• Given only value functions, the optimal policy must be 
estimated as:

ᇲ

– Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

• This is model free (no need for knowledge of model 
parameters)



TD(1) with action-values
• For all , initialize: 

• For every episode 
– For every time 



TD(l) with action-values
For all , initialize: 

• For every episode 
– For every time 



Optimal Policy: Control

• We learned how to estimate the state value 
functions for an MDP whose transition 
probabilities are unknown for a given policy

• How do we find the optimal policy?



Problem of optimal control
• From a series of episodes of the kind:

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

– Can also find empirical returns ate each time for the episode

• Find the optimal action value function 
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy from ongoing 

experience



Problem of optimal control
• From a series of episodes of the kind:

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

– Can also find empirical returns ate each time for the episode

• Find the optimal action value function 
– The optimal policy can be found from it

• Ideally do this online
– So that we can continuously improve our policy from ongoing 

experience

G1 G2 G3



Control: Greedy Policy

• Recall the steps in policy iteration:
– Start with any policy 
– Iterate ( … convergence)

• Find the value function (ೖ) using DP
• Find the greedy policy

(ೖ)

• Can we adapt this for model-free control?



Control: Greedy Policy

• Our proposed algorithm:
– Start with any policy 
– Iterate ( … convergence)

• Estimate the action-value function (ೖ) using 
TD-learning

• Find the greedy policy

(ೖ)

• Let’s see if this works…



Gridworld Example

• States: Location on a 5x5 grid of cells

• Actions: Move up, down, left or right

• The game starts on the top right corner and ends on the 
lower left corner. State transitions are deterministic.



Gridworld: Iteration 1

• Initialize with a uniform random policy and collect sample 
episodes. Use TD-learning to estimate action-values.

• Find the greedy policy

Ignore state-action pairs that 
haven’t been visited when 
performing argmax.

We’re getting close. Nice!

True optimal route:



Gridworld: Iteration 2

• Use the previous policy and collect sample episodes. Use TD-
learning to estimate action-values.

• Find the greedy policy

Err… what just happened?True optimal route:



Exploration vs. Exploitation
• The original policy iteration algorithm can update the values 

of all states because all the rewards and transition 
probabilities are known.

• Our model-free control algorithm gathers sample data by 
following a policy.
– Can’t learn about state-action pairs that weren’t encountered

– Will never learn about alternate policies that may turn out to be better

• Solution: Follow our current policy of the time
– But choose a random action of the time

– The “epsilon-greedy” policy



GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy 
• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat



GLIE Monte Carlo
• Greedy in the limit with infinite exploration
• Start with some random initial policy 
• Produce the episode

ଵ ଵ ଶ ଶ ଶ ଷ ଷ ଷ ସ ்

• Process the episode using the following online update rules:

• Compute the -greedy policy for each state

௔ᇱ

ᇱ

௔

• Repeat



On-line version of GLIE: SARSA

• Bootstrap: Replace with an estimate
• TD(1) or TD(l)

– Just as in the prediction problem

• TD(1)  SARSA



SARSA
• Initialize for all 
• Start at initial state 
• Select an initial action 
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update 

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧



SARSA
• Initialize for all 
• Start at initial state 
• Select an initial action 
• For t = 1.. Terminate

– Get reward ௧

– Let system transition to new state ௧ାଵ

– Draw ௧ାଵ according to -greedy policy

௔ᇱ

ᇱ

௔

– Update 

௧ ௧ ௧ ௧ ௧ ௧ାଵ ௧ାଵ ௧ ௧

Similar to our proposed algorithm!
Though here, we’re making the greedy 
update to our policy after each action.

This means we no longer need to 
explicitly store (a|s); we can infer it 
using the Q-values.



SARSA(l)

• Again, the TD(1) estimate can be replaced by a TD(l) estimate 
• Maintain an eligibility trace for every state-action pair:

଴

௧ ௧ିଵ ௧ ௧

• Update every state-action pair visited so far

௧ ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

௧ ௧



SARSA(l)

• For all initialize 
• For each episode 

– For all initialize 
– Initialize ଵ ଵ

– For 
• Observe ௧ାଵ ௧ାଵ

• Choose action ௧ାଵ using policy obtained from 

• ௧ାଵ ௧ାଵ ௧ାଵ ௧ ௧

• ௧ ௧

• For all 
– 𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝛼𝛿𝐸(𝑠, 𝑎)

– 𝐸 𝑠, 𝑎 = 𝜆𝛾𝐸(𝑠, 𝑎)



Closer look at SARSA
• SARSA:  From any state-action , accept 

reward , transition to next state , 
choose next action 

• Use TD rules to update:

• Problem: what’s the best policy to use to 
choose ?



Closer look at SARSA
• SARSA:  From any state-action , accept reward 

, transition to next state , choose next action 

• Problem: which policy do we use to choose 
• If we choose the current judgment of the best action at 

S’ we will become too greedy
– Fail to explore the space of possibilities

• If we choose a sub-optimal policy to follow, we will 
never find the best policy
– E.g. We don’t want to be -greedy at test-time!



Generalization of SARSA

• Pick a random initial policy .
• Repeatedly create episodes.

– For each time step in the current episode:
• Start at state ௧ (S)
• Carry out action ௧ ௧ (A)
• Get reward ௧ାଵ (R)
• Reach state ௧ାଵ (S)
• Estimate optimal future action ௌ೟శభ

∗ (A)
• Estimate optimal future return ௧ାଵ ௌ೟శభ

∗

• Update using ௧ାଵ and ௧ାଵ ௌ೟శభ

∗

• Update the current policy



Generalization of SARSA

• Pick a random initial policy .
• Repeatedly create episodes.

– For each time step in the current episode:
• Start at state ௧ (S)
• Carry out action ௧ ௧ (A)
• Get reward ௧ାଵ (R)
• Reach state ௧ାଵ (S)
• Estimate optimal future action ௌ೟శభ

∗ (A)
• Estimate optimal future return ௧ାଵ ௌ೟శభ

∗

• Update using ௧ାଵ and ௧ାଵ ௌ೟శభ

∗

• Update the current policy

 Used to explore the environment
Are there any reasons to choose ௧

to be the optimal action?

Used to estimate optimal return 
Are there any reasons to make ௌ೟శభ

∗

the same as ௧ାଵ?



On-policy vs. Off-policy
• It’s possible learn to what the best actions should be, even 

if we don’t always follow those actions.
– E.g. learning by observation

• We learn by following a more exploratory policy
• In the process, we look for a hypothetical optimal 

policy…the one that we’d want to follow at test-time.

మ య

• The actions we actually follow to get samples (e.g. ) are 
not the same as our best estimates of the optimal actions 
(e.g. 

೟
)

– Hence this is an “off-policy” method



Solution: Off-policy learning
• Use data to improve your choice of actions, but follow 

different (“off-policy”) actions to collect data.

మ య

• E.g. Use 
೟శభ

• But, actually follow the epsilon-greedy policy
– The hypothetical action is better than the one you actually 

took, but you still explore (non-greedy)

• This is the basis for the most popular RL algorithm, Q-
Learning



Q-Learning (TD-1)

• Pick initial values for .
• Repeatedly create episodes.

– For each time step in the current episode:
• Start at state ௧

• Carry out action ௧ ఢ−୥୰ୣୣୢ୷ ௧

• Get reward ௧ାଵ

• Reach state ௧ାଵ

• Estimate optimal future action 
ௌ೟శభ

∗
௔ ௧ାଵ

• Estimate optimal future return ௧ାଵ ௌ೟శభ

∗

• Update ௧ ௧

௧ ௧ ௧ାଵ ௧ାଵ ௌ೟శభ

∗
௧ ௧

The Q-learning algorithm generalizes to TD(λ) too



Off-policy vs. On-policy

• Optimal greedy policy:

• Exploration policy

• Ideally should decrease with time



Scaling up the problem..

• We’ve assumed a discrete set of states
• And a discrete set of actions

• Value functions can be stored as a table
– One entry per state

• Action value functions can be stored as a table
– One entry per state-action combination

• Policy can be stored as a table
– One probability entry per state-action combination

• None of this is feasible if 
– The state space grows too large (e.g. chess)
– Or the states are continuous valued



Continuous State Space

• Tabular methods won’t work if our state space is 
infinite or huge

• E.g. position on a [0, 5] x [0, 5] square, instead of a 
5x5 grid.

4.4 4.5 4.8 5.3 5.9

3.9 4.0 4.4 4.9 5.6

3.2 3.4 3.8 4.0 5.1

2.2 2.4 3.0 3.7 4.6

0 1.0 2.0 3.0 4.0

The graphs show the
negative value function



Parameterized Functions

• Instead of using a table of Q-values, we use a 
parametrized function

• Instead of writing values to the table, we fit 
the parameters to minimize the prediction 
error of the “Q function”



Parameterized Functions

• Instead of using a table of Q-values, we use a 
parametrized function

• This can be a simple linear function…



Parameterized Functions

• Or a massive convolutional network…



Target Q

What is ?

As in TD, use bootstrapping for the target : 

And can be L2 distance



DQN (v0)

• Initialize 
• For each episode 

– Initialize 
– For 

• Choose action ௧ using –greedy policy obtained from ௧

• Observe ௧ାଵ ௧ାଵ

• Choose action ௧௔௥௚௘௧ ௔ ௧ାଵ ௧

• ௧௔௥ ௧ାଵ ௧ାଵ ௧௔௥௚௘௧

• ௧ାଵ ௧ ఏ ௧௔௥௚௘௧ ௧ ௧ ௧ ଶ
ଶ



Deep Q Network

• Note : does not

consider as depending of (although it 
does). Therefore this is semi-gradient descent.

• If your function is a neural network, and the 
action set is finite of size , then you can use a 

-labels classification network that associates 
the probabilities of each action to an input space.



Parameterized Functions

• Fundamental issue: limited capacity
– A table of Q values will never forget any values 

that you write into it
– But, modifying the parameters of a Q-function will 

affect its overall behavior
• Fitting the parameters to match one pair can 

change the function’s output at .
• If we don’t visit for a long time, the function’s 

output can diverge considerably from the values 
previously stored there.



Tables have full capacity

• Q-learning works well with Q-tables
– The sample data is going to be heavily biased 

toward optimal actions , or close 
approximations thereof.

– But still, -greedy policy will ensure that we will 
visit all state-action pairs arbitrarily many times if 
we explore long enough.

– The action-value for uncommon inputs will still 
converge, just more slowly.



Limited Capacity of

• The Q-function will fit more closely to more common 
inputs, even at the expense of lower accuracy for less 
common inputs.

• Just exploring the whole state-
action space isn’t enough. We 
also need to visit those states 
often enough so the function 
computes accurate Q-values 
before they are “forgotten”.



Action-replay

• The raw data obtained from Q-learning is:
– Highly correlated: current data can look very 

different from data from several episodes ago if 
the policy changed significantly.

– Very unevenly distributed: only probability of 
choosing suboptimal actions.

• Instead, create a replay buffer holding past 
experiences, so we can train the Q-function 
using this data.



Action-replay

• Pseudocode:
for B steps:

= make_action( )
replay_buffer.add( )

TD_update(replay_buffer.sample(B),
q_function)

• We have control over how the experiences are added, 
sampled and deleted.
– Can make the samples look independent
– Can emphasize old experiences more
– Can change frequency depending on accuracy



Action-replay

• What is the best way to sample?
– On the one hand, our function has limited 

capacity, so we should let it optimize more 
strongly for the common case

– On the other hand, our function needs explore 
uncommon examples just enough to compute 
accurate action-values, so it can avoid missing out 
on better policies

• A trade-off!



DQN (with Action-replay)

• Initialize ଴

• Initialize buffer with some random episodes
• For each episode 

– Initialize ଵ ଵ

– For 
• Choose action 𝐴௧ using 𝜀 –greedy policy obtained from 𝜃௧

• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Add 𝑆௧, 𝐴௧, 𝑅௧ାଵ, 𝑆௧ାଵ to the buffer
• Sample from the buffer a batch of tuples 𝑆, 𝐴, 𝑅, 𝑆௡௘௪

• Choose 𝐴௧௔௥௚௘௧ = 𝑎𝑟𝑔𝑚𝑎𝑥௔𝑓(𝑆୬ୣ௪, 𝑎|𝜃௧)

• 𝑄௧௔௥௚௘௧ = 𝑅 + 𝛾𝑄 𝑆௡௘௪, 𝐴௧௔௥௚௘

• 𝜃௧ାଵ = 𝜃௧ − 𝜂∇ఏฮ𝑄௧௔௥௚௘௧ − 𝑓 𝑆, 𝐴 𝜃௧ ‖ଶ
ଶ



Moving target

• We already have moving targets in online SARSA and 
Q-learning, since we’re using the action-values to 
compute the updates to the action-values.

• The problem is much worse with Q-functions though. 
Optimizing the function at one state-action pair affects 
all other state-action pairs.
– The target value is fluctuating at all inputs in the function’s 

domain, and all updates will shift the target value across 
the entire domain.



Frozen target function

• Solution : Create two copies of the Q-function.
– The “target copy” is frozen and used to compute the target 

Q-values.
– The “learner copy” will be trained on the targets.

• Just need to periodically update the target copy to 
match the learner copy.



Fixed target DQN
• Initialize ଴, ∗

଴

• Initialize buffer with some random episodes
• For each episode 

– Initialize ଵ ଵ

• For 𝑡 = 1 … 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• If 𝑡%𝑘 = 0 then update 𝜃∗ = 𝜃௧

• Choose action 𝐴௧ using 𝜀 –greedy policy obtained from 𝜃௧

• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

• Add 𝑆௧, 𝐴௧, 𝑅௧ାଵ, 𝑆௧ାଵ to the buffer
• Sample from the buffer a batch of tuples 𝑆, 𝐴, 𝑅, 𝑆௡௘௪

• Choose 𝐴௧௔௥௚ = 𝑎𝑟𝑔𝑚𝑎𝑥௔𝑓(𝑆୬ୣ௪, 𝑎|𝜃∗)

• 𝑄௧௔௥௚ = 𝑅 + 𝛾𝑓(𝑆୬ୣ௪, 𝐴௧௔௥௚ |𝜃∗)

• 𝜃௧ାଵ = 𝜃௧ − 𝜂∇ఏฮ𝑄௧௔௥௚௘௧ − 𝑓 𝑆, 𝐴 𝜃௧ ‖ଶ
ଶ



Performance



Overestimation of Q-values

• Choose 

•

• But what if this action is not optimal ?

• If, in DQN (fixed target or not) in early training 
non-optimal actions are attributed higher Q-
values than the optimal action…
– Learning is difficult, due to bias on chosen 

actions



Double Q networks
• Solution : Create two Q-functions.

– The “DQN network” compute the target action
– The “target network” is used to compute the Q-value of the 

target action.
– The “DQN network” is trained on the targets.

ୈ୕୒ ௧ ௧ ୤୧୲ ௧ାଵ

୲ୟ୰୥ୣ୲ ௧ାଵ ௔ ୈ୕୒ ௧ାଵ

• Each network can play the role of the DQN or target 
network : chosen randomly at each step

• Action selections are epsilon-greedy with respect to 
the sum of both networks



Double DQN
• Initialize ଴

ଵ, ଴
ଶ

• Initialize buffer with some random episodes
• For each episode 

– Initialize ଵ ଵ

• For 
• Choose action ௧ using –greedy policy obtained from 

௧
ଵ

௧
ଶ , Observe ௧ାଵ ௧ାଵ

• Add ௧ ௧ ௧ାଵ ௧ାଵ to the buffer
• Sample from the buffer a batch of tuples ௡௘௪

• Assign randomly ଴
ଵ, ଴

ଶ ଴
஽ொே, ଴

௧௔௥௚௘௧

• Choose ௧௔௥௚௘௧ ௔ ୬ୣ௪ ௧
஽ொே

• ௧௔௥௚ ୬ୣ ௧௔௥௚ ௧
௧௔௥௚௘௧

• ௧ାଵ
஽ொே

௧
஽ொே ஽ொே

ఏವೂಿ ௧௔௥௚௘௧ ௧
஽ொே

ଶ

ଶ



Other Q-learning optimizations

• Dualing DQN:
– Decompose 

• V is the value function, and A is known as the advantage function.

– Easier to learn since you can get good estimates with 
and 



Direct Policy Estimation

• It’s also possible to make a deep neural 
network that directly produces a distribution 
over actions given a state
– Also known as a policy network, or the policy 

gradient method
– Useful when the action space is also large or 

continuous



Policy Network
• Train a neural network to prescribe actions at 

each state: 

– Input is S, output is probability distribution over A

– Could be deterministic

• Problem : how to train such a network  ?

• No golden truth
– Unlike value functions, where there is a target value 

for the value at each state
• Against which we can compute a loss



Maximizing return

• Learn policy to maximize expected return!

• Problem:  For discrete action space, the return is 
not differentiable with respect to policy function 
parameters
– Selection is not a differentiable operation

s

A1

A2

AK

Q

select

Q

Q



Solution

• Recast differentiation as an expectation 
operation
– Can now be approximated by sampling
– Policy gradient method

• Compute expected returns using an action-
value function approximator
– Actor-critic methods
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How to choose policy

• In any run starting at a state we get
–

• The trajectory associated with the run is
–

• The total return over the run (at t=1) is
– G = R2 + gR3 + g2R4 ….

• The choice of in will modify the 
trajectory and thereby the return



The objective
• The probability of a trajectory is a function of 

and hence of 
–

• The probability of a return is a function of the 
trajectory 
–

• Objective: to maximize expected return

 



Gradient of the objective
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The trajectory

• The trajectory is

ଵ ଵ ଶ ଶ ଷ ଷ

• The probability of , under the policy function is

ଵ ଵ ଵ ଶ ଵ ଵ ଶ ଶ

• Taking logs

ଵ ௧ାଵ ௧ ௧ ௧ ௧

 

௧

 

௧

• Giving us the deriviative

ఏ ఏ ௧ ௧

 

௧



Gradient of the objective

• This is a simple expectation that can be 
approximated by sampling!



A simple extension

• Better to compute the above instead as follows

• This too can be estimated by sampling



Policy Gradients

• Record an episode (or episodes)

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes
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Policy Gradients

• Episode

• Compute returns at each time
• Compute log policy at each time
• Compute gradient
• Update network parameters

– Ideally ఏ is averaged over many episodes
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Its like Maximum Likelihood
• The gradient actually looks like the derivative of a 

log likelihood function

• Can be written as
 

• Maximization increases the probability of 
trajectories with greater return
– If you see a trajectory you increase its probability



Its like Maximum Likelihood
• The gradient actually looks like the derivative 

of a log likelihood function

• Maximization increases the probability of all 
seen actions
– At the cost of the probability of unseen actions

– Usual ML estimator



Merely seeing a trajectory isn’t good

• We want to emphasize trajectories with high 
return and reduce the probability of low-
return trajectories

• If an action results in more returns than the 
current average return for the state, we must 
improve its probability
– If it results in less, we must decrease it



Its like Maximum Likelihood
• Subtract the expected return for the current state

• is the advantage function
– How much advantage the current action has over the 

average

• Train to maximize advantage

– Typically approximate by ᇲ



Reinforce
• Initialize 
• For each episode 

– Initialize ଵ ଵ

– For 
• Choose action ௧ using –greedy policy obtained from 
• Observe ௧ାଵ ௧ାଵ

– Compute the returns ௧ then the advantages ௧

– Compute ଵ

் ఏ ௧ ௧ ௧
 
௧

–  ఏ



Solution

• Recast differentiation as an expectation 
operation
– Can now be approximated by sampling
– Policy gradient method

• Compute expected returns using an action-
value function approximator
– Actor-critic methods



Instability

• In Reinforce, the estimator for the expected return has 
high variance : rewards on one episode act as 
estimates for state value functions.

ᇲ
ᇲ

ᇲ

• It also requires entire runs of episodes
– Not online

• It can be made more stable through function 
approximation of the value function



Actor-Critic

• In actor-critic methods, two networks are used :
• The actor is the policy network : ௔ ఏೌ

and is used 
to predict the next action

• The critic is a state value network : ௖ ఏ೎
and is used to 

guide the optimization direction of the actor

• To estimate the expected return based on an episode, we use N-
step lookahead : 

௧
௞

௧ା௞ାଵ

 

଴ஸ௞ஸேିଵ

ே
ఏ೎ ௧ାே



Advantage Actor Critic (A2C)

Rethink the advantages

The critic can also be used as the “baseline” when 
computing the advantages :

೎

The trajectory’s probability is improved if it is better than 
the trajectories previously followed.

The critic is trained on how well it predicted the return.



A2C
• Initialize ௔ ௖

• For each episode 
– Initialize 𝑆ଵ, 𝐴ଵ

– For 𝑡 = 1 … 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

• Choose action 𝐴௧ using 𝜀 –greedy policy obtained from 𝜃௔

• Observe 𝑅௧ାଵ, 𝑆௧ାଵ

– Compute the returns 𝐺 𝑆௧ = ∑ 𝛾௞𝑅௧ା௞ାଵ
 
଴ஸ௞ஸேିଵ + 𝛾ே𝑉ఏ೎

𝑆௧ାே if t + 𝑁 < 𝑇, else 
∑ 𝛾௞𝑅௧ା௞ାଵ

 
଴ஸ௞ஸ்ି௧ିଵ

– Compute the advantages 𝑎௧ = 𝐺 𝑆௧ − 𝑉ఏ೎
𝑆௧

– Compute 𝑓௔ 𝜃௔ =
ଵ

்
∑ log 𝜋ఏ 𝐴௧ 𝑆௧ 𝑎௧  

௧ , 𝐿௖ 𝜃௖ =
ଵ

்
∑ 𝐺 𝑆௧ − 𝑉ఏ೎

𝑆௧

𝟐
 
௧

– 𝜃௔  𝜃௔ + 𝜂௔∇ఏೌ
𝐿௔ (𝜃௔), 𝜃௖  𝜃௖  − 𝜂௖∇ఏ೎

𝐿௖ (𝜃௖), 



Extensions

• A2C can be applied in a multi-thread environment on 
several episodes simultaneously, with a final mini-batch 
update

• Asynchronous Advantage Actor-Critic (A3C) (Deepmind, 
2016): Each thread performs its updates without waiting 
for the others to end  each thread keeps its own version 
of the parameters. They upload their gradients 
asynchronously to a master server that performs batch 
updates

• Experience Replay can be adapted to A2C  ACER 
algorithm (Deepmind 2017)



Continuous action space

• We need to access action probabilities for 
Reinforce and A2C.

• We have seen the discrete action space case (n labels + 
softmax)  Very large or continuous space ?

• You can use a network that predict the parameters of a 
distribution and sample an action from it. Ex : 
with (similar to the encoder of a VAE) 
Reinforce/A2C can be used (with the reparametrization trick).

• Most general case : . What algorithm can I use ? 



Deep Deterministic policy gradients 
(DDPG)

• Hybrid between Q-learning and policy methods. 
Makes use of many tricks seen so far.

• An actor predicts the action : . 

• A critic predicts the action value : 
. 

• Actor objective : maximize the Q-value 
Gradient ascent with 



Deep Deterministic policy gradients 
(DDPG)

• Critic objective : predict accurately the Q-value. Could be 
done with bootstrapping but like Double DQN, DDPG makes 
use of decoupled targets instead

•  Separate set of target actor and critic with parameters 

• Minimize 

wrt 
• are slowly updated as a moving average of
• DDPG also uses experience replay, and in training adds a 

noise to for exploration.



Summary

• Parameterized Functions
• Action-replay
• Target functions
• Deep Q Networks
• Decoupled targets, Double DQN
• Policy gradients
• Reinforce
• Actor-Critic
• DDPG


