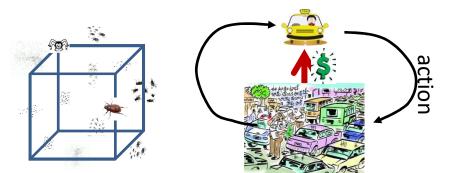
Deep Reinforcement Learning

Spring 2019 RL!

Story so far

- Typical problem in life:
 - Agent is in some state
 - Agent takes an action
 - Chosen according to some policy
 - Agent gets a reward
 - Environment changes state in response to action
- Objective: Choose policy to maximize longterm return
 - Discounted sum of rewards from start to end



Approach: Define values

• Typical sequence

$$S_1, A_1, \mathbf{R_2}, S_2, A_2, \mathbf{R_3}, S_3, A_3, \mathbf{R_4}, \dots$$

• Value of being any state (expected return) is the *expected* future return if you are at that state

$$v_{\pi}(s) = E[G_t | S_t = s]$$

= $E[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T | S_t = s]$

• Value of taking an action at any state

$$q_{\pi}(s, a) = E[G_t | S_t = s, A_t = a]$$

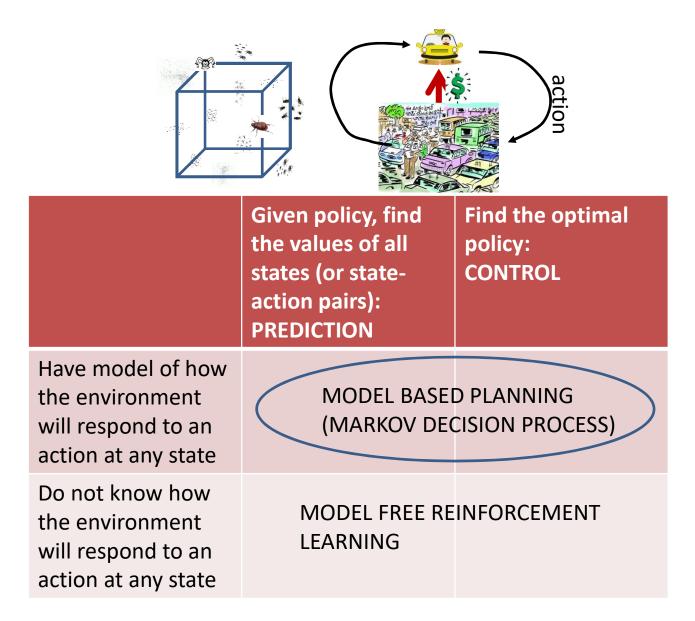
= $E[R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T | S_t = s, A_t = a]$

- These are functions of the policy
- Objective: Choose policy to maximize the return
 - The value of every state under the policy

Different settings

action			
	Given policy, find the values of all states (or state- action pairs): PREDICTION	Find the optimal policy: CONTROL	
Have model of how the environment will respond to an action at any state	MODEL BASE	D PLANNING	
Do not know how the environment will respond to an action at any state	MODEL FREE RE LEARNING	INFORCEMENT	

Different settings



Bellman *Expectation* Equations

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s') \right)$$

$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in \mathcal{A}} \pi(a|s') q_{\pi}(s',a')$$

- *For given policy* how to compute
 - The value of being in any state
 - The value of being in any state and taking a particular action

Bellman Optimality Equations

$$v_*(s) = \max_a R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_*(s')$$

$$q_*(s, a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \max_{a'} q_*(s', a')$$

- How to compute
 - The value of being in any state

 The value of being in any state and taking a particular action under the *optimal* policy

Solving an MDP

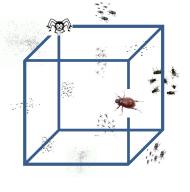
- Prediction: *Given a policy find value functions*
 - Using Bellman expectation equations
- Control: *Find the optimal policy*
 - Using policy iteration
 - Directly find optimal policy
 - Using value iteration
 - Find optimal values
 - Bellman optimality equation
 - Find policy from optimal values

Different settings

action			
	Given policy, find the values of all states (or state- action pairs): PREDICTION	Find the optimal policy: CONTROL	
Have model of how the environment will respond to an action at any state	MODEL BASE	D PLANNING	
Do not know how the environment will respond to an action at any state	MODEL FREE RE LEARNING	INFORCEMENT	

Reinforcement Learning

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s'} P_{s,s'}^a v_{\pi}(s') \right)$$
$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s'} P_{s,s'}^a \sum_{a' \in \mathcal{A}} \pi(a|s') q_{\pi}(s',a')$$



- In real-life problems the transition probabilities wont be known
 - No prior knowledge of how the environment will respond to an action
- Must still find optimal policy

Recap: Model-Free Methods

- AKA model-free **reinforcement learning**
- How do you find the value of a policy, without knowing the underlying MDP?

– Model-free *prediction*

- How do you find the optimal policy, without knowing the underlying MDP?
 - Model-free *control*

Solution: Actually run through the system

• Record many episodes of the kind

— ...

- $-episode(1) = S_{11}, A_{11}, R_{12}, S_{12}, A_{12}, R_{13}, \dots, S_{1T_1}$
- $-episode(2) = S_{21}, A_{21}, R_{22}, S_{22}, A_{22}, R_{23}, \dots, S_{2T_2}$
- Use these to estimate values $v_{\pi}(s)$ or action values $q_{\pi}(s, a)$ of states

Recap: Methods

- *Monte-Carlo* Learning
- *Temporal-Difference* Learning
 - TD(1)
 - -TD(K)
 - $-TD(\lambda)$

Recap: Methods

- *Temporal-Difference* Learning
 - TD(1)
 - -TD(K)
 - $-TD(\lambda)$

Recap: Monte Carlo

• To estimate the value of any state, identify the instances of that state in the episodes:

Compute the average return from those instances

 G_2

 $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots$ s_b s_a \dots

 G_1

$$v_{\pi}(\mathbf{s}_{a}) = avg(G_{1}, G_{3}, \dots)$$

G₃

Monte Carlo: Estimating the Action Value function

 To estimate the value of any state-action pair, identify the instances of that state-action pair in the episodes:

$$- (S_{1}, A_{1}) R_{2}, S_{2}, A_{2}, R_{3}, S_{3}, A_{3}, R_{4}, \dots$$

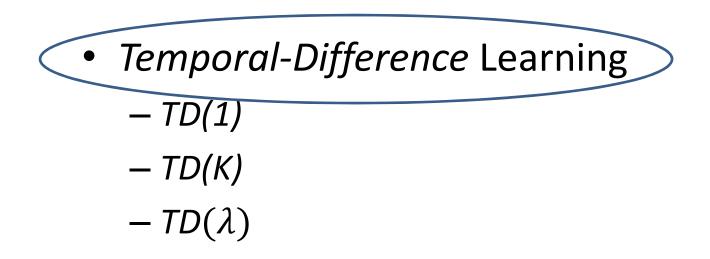
$$s_{a} a_{x} \qquad s_{b} a_{y} \qquad s_{a} a_{y} \dots$$

$$g_{1} \qquad g_{2} \qquad g_{3}$$

• Compute the average return from those instances $q_{\pi}(s_{a_1}a_{\chi}) = avg(G_1,...)$

Recap: Methods

• Monte-Carlo Learning



 $v_{\pi}(s) = E_{\pi}[r_s^a + \gamma E_{s'}[v_{\pi}(s')|a] |s]$

 $q_{\pi}(s,a) = E_{s'}[r_s^a + \gamma E_{s',a'}[q_{\pi}(s',a')] | s,a]$

- If we had the true value or action value functions, the above equations would be valid
- We can even write

 $v_{\pi}(s) = v_{\pi}(s) + (E_{\pi}[r_s^a + \gamma E_{s'}[v_{\pi}(s')|a] |s] - v_{\pi}(s))$

 $q_{\pi}(s,a) = q_{\pi}(s,a) + (E_{s'}[r_s^a + \gamma E_{s',a'}[q_{\pi}(s',a')] | s,a] - q_{\pi}(s,a))$

 If we had the true value or action value functions, the above equations would be valid

 $v_{\pi}(s) = v_{\pi}(s) + (E_{\pi}[r_s^a + \gamma E_{s'}[v_{\pi}(s')|a] |s] - v_{\pi}(s))$

 $q_{\pi}(s,a) = q_{\pi}(s,a) + (E_{s'}[r_s^a + \gamma E_{s',a'}[q_{\pi}(s',a')] | s,a] - q_{\pi}(s,a))$

- In practice we wont have the true value functions
- So we use the iterative update

 $v_{\pi}^{k+1}(s) = v_{\pi}^{k}(s) + \alpha(E_{\pi}[r_{s}^{a} + \gamma E_{s'}[v_{\pi}(s')|a] |s] - v_{\pi}^{k}(s))$

 $q_{\pi}^{k+1}(s,a) = q_{\pi}^{k}(s,a) + \alpha(E_{s'}[r_{s}^{a} + \gamma E_{s',a'}[q_{\pi}(s',a')] | s,a] - q_{\pi}^{k}(s,a))$

• It will converge to the true value for $\alpha \leq 1$

• Problem with this estimator:

 $v_{\pi}^{k+1}(s) = v_{\pi}^{k}(s) + \alpha(E_{\pi}[r_{s}^{a} + \gamma E_{s'}[v_{\pi}(s')|a] |s] - v_{\pi}^{k}(s))$

 $q_{\pi}^{k+1}(s,a) = q_{\pi}^{k}(s,a) + \alpha(E_{s'}[r_{s}^{a} + \gamma E_{s',a'}[q_{\pi}(s',a')] | s,a] - q_{\pi}^{k}(s,a))$

- true values $v_{\pi}(s')$ and $q_{\pi}(s', a')$ are unknown
- Transition probabilities are unknown, so expectations cannot be computed
- Instead we *bootstrap* with the empirical updates

 $v_{\pi}^{k+1}(s) = v_{\pi}^{k}(s) + \alpha(r_{s}^{a} + \gamma v_{\pi}^{k}(s') - v_{\pi}^{k}(s))$

 $q_{\pi}^{k+1}(s,a) = q_{\pi}^{k}(s,a) + \alpha(r_{s}^{a} + \gamma q_{\pi}^{k}(s',a') - q_{\pi}^{k}(s,a))$

• TD Estimator:

 $v_{\pi}^{k+1}(s) = v_{\pi}^{k}(s) + \alpha(r_{s}^{a} + \gamma v_{\pi}^{k}(s') - v_{\pi}^{k}(s))$

 $q_{\pi}^{k+1}(s,a) = q_{\pi}^{k}(s,a) + \alpha(r_{s}^{a} + \gamma q_{\pi}^{k}(s',a') - q_{\pi}^{k}(s,a))$

Generally written as (only shown for action value estimator)

$$\delta = r_s^a + \gamma q_\pi^k(s', a') - q_\pi^k(s, a)$$
$$q_\pi^{k+1}(s, a) = q_\pi^k(s, a) + \alpha \delta$$

- δ is generally referred to as the TD error

Recap: TD(1)

- An "episode" is a run:
 S₁, A₁, R₂, S₂, A₂, R₃, S₃, A₃, R₄, ...
- For all *s* Initialize: $v_{\pi}(s) = 0$
- For every episode *e*

– For every time $t = 1 \dots T_e$

• $v_{\pi}(S_t) = v_{\pi}(S_t) + \alpha (R_{t+1} + \gamma v_{\pi}(S_{t+1}) - v_{\pi}(S_t))$

- There's a "lookahead" of one state, to know which state the process arrives at at the next time
- But is otherwise online, with continuous updates

TD(1) with action-values

• For all *s*, *a*, initialize:

$$q_{\pi}(s,a)=0$$

• For every episode *e*

- For every time
$$t = 1 \dots T_e$$

 $\hat{A}_{t+1} \sim \pi(S_{t+1})$
 $\delta_t = R_{t+1} + \gamma q_{\pi}(S_{t+1}, \hat{A}_{t+1}) - q_{\pi}(S_t, A_t)$
 $q_{\pi}(S_t, A_t) = q_{\pi}(S_t, A_t) + \alpha \delta_t$

Recap: TD(N) with lookahead

$$v_{\pi}(S_t) = v_{\pi}(S_t) + \alpha \delta_t(N)$$

• Where

$$\delta_t(N) = R_{t+1} + \sum_{i=1}^N \gamma^i R_{t+1+i} + \gamma^{N+1} \nu_{\pi}(S_{t+N}) - \nu_{\pi}(S_t)$$

• $\delta_t(N)$ is the TD *error* with N step lookahead

Recap: $TD(\lambda)$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t(n)$$

 Combine the predictions from all lookaheads with an exponentially falling weight

– Weights sum to 1.0

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right)$$

Recap: $TD(\lambda)$

• Maintain an eligibility trace for *every* state

$$E_0(s) = 0$$
$$E_t(s) = \lambda \gamma E_{t-1}(s) + 1(S_t = s)$$

Computes total weight for the state until the present time

Recap: $TD(\lambda)$

• At every time, update the value of *every state* according to its eligibility trace

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

- Any state that was visited will be updated
 - Those that were not will not be, though

Model-Free Methods

- AKA model-free **reinforcement learning**
- How do you find the value of a policy, without knowing the underlying MDP?

– Model-free *prediction*

• How do you find the optimal policy, without knowing the underlying MDP?

– Model-free *control*

Value vs. Action Value

- Simply knowing the value function is insufficient to find the optimal policy
- We must compute the optimal *action value* functions to find the optimal policy
 - Optimal policy in any state : Choose the action that has the largest *optimal* action value

Value vs. Action Value

• Given only value functions, the optimal policy must be estimated as:

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ \mathcal{R}^{a}_{s} + \mathcal{P}^{a}_{ss'} V(s')$$

Needs knowledge of transition probabilities

• Given action value functions, we can find it as:

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

• This is *model free* (no need for knowledge of model parameters)

TD(1) with action-values

• For all *s*, *a*, initialize:

$$q_{\pi}(s,a)=0$$

• For every episode *e*

- For every time
$$t = 1 \dots T_e$$

 $\hat{A}_{t+1} \sim \pi(S_{t+1})$
 $\delta_t = R_{t+1} + \gamma q_{\pi}(S_{t+1}, \hat{A}_{t+1}) - q_{\pi}(S_t, A_t)$
 $q_{\pi}(S_t, A_t) = q_{\pi}(S_t, A_t) + \alpha \delta_t$

TD(λ) with action-values

For all *s*, *a*, initialize:

$$q_{\pi}(s,a) = 0$$
$$E_t(s,a) = 0$$

• For every episode *e*

- For every time
$$t = 1 \dots T_e$$

 $E_t(s, a) = \lambda \gamma E_{t-1}(s, a) + 1(S_t = s \land A_t = a)$
 $\hat{A}_{t+1} \sim \pi(S_{t+1})$
 $\delta_t = R_{t+1} + \gamma q_{\pi}(S_{t+1}, \hat{A}_{t+1}) - q_{\pi}(S_t, A_t)$
 $q(s, a) \leftarrow q(s, a) + \alpha \delta_t E_t(s, a)$

Optimal Policy: Control

- We learned how to estimate the state value functions for an MDP whose transition probabilities are unknown *for a given policy*
- How do we find the optimal policy?

Problem of optimal control

• From a series of episodes of the kind:

 $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$

Problem of optimal control

From a series of episodes of the kind:

G₂ - Can also find *empirical returns ate each time* for the episode

 $S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$

- Find the optimal action value function $q_*(s, a)$
 - The optimal policy can be found from it

 G_1

- Ideally do this online \bullet
 - So that we can continuously improve our policy from *ongoing* experience

Control: Greedy Policy

- Recall the steps in policy iteration:
 - Start with any policy $\pi^{(0)}$
 - Iterate (k = 0 ... convergence)
 - Find the value function $v_{\pi^{(k)}}(s)$ using DP
 - Find the greedy policy

$$\pi^{(k+1)}(\mathbf{s}) = \operatorname{argmax}_{a} \left(R_{s}^{a} + \gamma \sum_{s'} P_{s,s'}^{a} v_{\pi^{(k)}}(s') \right)$$

• Can we adapt this for model-free control?

Control: Greedy Policy

- Our proposed algorithm:
 - Start with any policy $\pi^{(0)}$
 - Iterate (k = 0 ... convergence)
 - Estimate the action-value function $q_{\pi^{(k)}}(s, a)$ using TD-learning

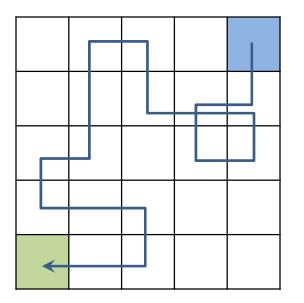
• Find the greedy policy

$$\pi^{(k+1)}(s) = \operatorname{argmax}_{a}(q_{\pi^{(k)}}(s,a))$$

• Let's see if this works...

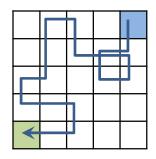
Gridworld Example

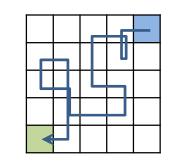
- States: Location on a 5x5 grid of cells
- Actions: Move up, down, left or right
- The game starts on the top right corner and ends on the lower left corner. State transitions are deterministic.

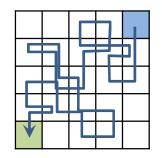


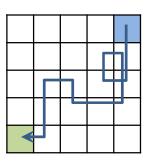
Gridworld: Iteration 1

• Initialize with a uniform random policy and collect sample episodes. Use TD-learning to estimate action-values.



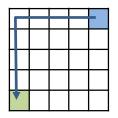


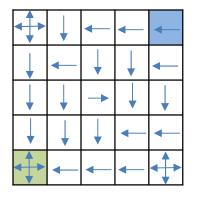




• Find the greedy policy

True optimal route:



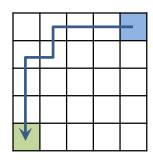


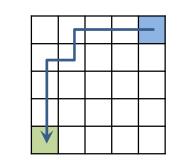
Ignore state-action pairs that haven't been visited when performing argmax.

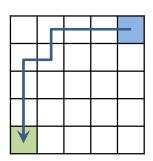
We're getting close. Nice!

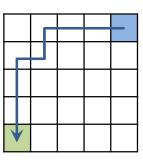
Gridworld: Iteration 2

• Use the previous policy and collect sample episodes. Use TDlearning to estimate action-values.



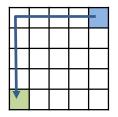


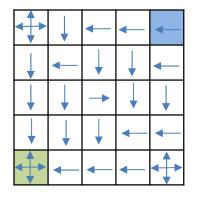




• Find the greedy policy

True optimal route:





Err... what just happened?

Exploration vs. Exploitation

- The original policy iteration algorithm can update the values of *all states* because all the rewards and transition probabilities are known.
- Our model-free control algorithm gathers sample data by following a policy.
 - Can't learn about state-action pairs that weren't encountered
 - Will never learn about alternate policies that may turn out to be better
- Solution: Follow our current policy 1ϵ of the time
 - But choose a random action ϵ of the time
 - The "epsilon-greedy" policy

GLIE Monte Carlo

- Greedy in the limit with infinite exploration
- Start with some random initial policy π
- Produce the episode

$$S_1, A_1, \mathbf{R_2}, S_2, A_2, \mathbf{R_3}, S_3, A_3, \mathbf{R_4}, \dots, S_T$$

• Process the episode using the following online update rules:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

• Compute the ϵ -greedy policy for each state

$$\pi(a|s) = \begin{cases} 1 - \epsilon & for \ a = \arg\max_{a'} Q(s, a') \\ \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

• Repeat

GLIE Monte Carlo

- Greedy in the limit with infinite exploration
- Start with some random initial policy π
- Produce the episode

$$S_1, A_1, \mathbf{R_2}, S_2, A_2, \mathbf{R_3}, S_3, A_3, \mathbf{R_4}, \dots, S_T$$

• Process the episode using the following online update rules:

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

• Compute the ϵ -greedy policy for each state

$$\pi(a|s) = \begin{cases} 1 - \epsilon & \text{for } a = \arg\max_{a'} Q(s, a') \\ \frac{\epsilon}{N_a - 1} & \text{otherwise} \end{cases}$$

• Repeat

On-line version of GLIE: SARSA

- **Bootstrap:** Replace G_t with an estimate
- TD(1) or TD(λ)
 - Just as in the prediction problem
- TD(1) \rightarrow SARSA

R S' A'

 $Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') - Q(S,A))$

SARSA

- Initialize Q(s, a) for all s, a
- Start at initial state S₁
- Select an initial action A₁
- For t = 1.. Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ -greedy policy

$$P(\pi(s) = a) = \begin{cases} 1 - \epsilon & for \ a = \arg\max_{a'} Q(s, a') \\ & \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

Update

$$Q(S_t, A_t) = Q(S_t, A_t) + \alpha (R_t + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

SARSA

- Initialize Q(s, a) for all s, a
- Start at initial state S₁
- Select an initial action A₁
- For t = 1.. Terminate
 - Get reward R_t
 - Let system transition to new state S_{t+1}
 - Draw A_{t+1} according to ϵ -greedy policy

 $P(\pi(s) = \begin{cases} \textbf{Similar to our proposed algorithm!} \\ Though here, we're making the greedy \\ update to our policy after each action. \end{cases} (s, a')$ $- \text{ Update} \\ Q(S_t, A_t) = Q \end{cases}$ This means we no longer need to explicitly store $\pi(a|s)$; we can infer it using the Q-values. $-Q(S_t, A_t))$

SARSA(λ)

- Again, the TD(1) estimate can be replaced by a TD(λ) estimate
- Maintain an eligibility trace for every state-action pair:

$$E_0(s,a) = 0$$

$$E_t(s,a) = \lambda \gamma E_{t-1}(s,a) + 1(S_t = s, A_t = a)$$

• Update every state-action pair visited so far

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$
$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta_t E_t(s, a)$$

SARSA(λ)

- For all s, a initialize Q(s, a)
- For each episode *e*
 - For all s, a initialize E(s, a) = 0
 - Initialize S_1, A_1
 - For t = 1 ... Termination
 - Observe R_{t+1} , S_{t+1}
 - Choose action A_{t+1} using policy obtained from Q
 - $\delta = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) Q(S_t, A_t)$
 - $E(S_t, A_t) += 1$
 - For all *s*, *a*
 - $Q(s,a) = Q(s,a) + \alpha \delta E(s,a)$
 - $E(s,a) = \lambda \gamma E(s,a)$

Closer look at SARSA

- SARSA: From any state-action (S, A), accept reward (R), transition to next state (S'), choose next action (A')
- Use TD rules to update: $\delta = R + \gamma Q(S', A') - Q(S, A)$
- Problem: what's the best policy to use to choose A'?

Closer look at SARSA

- SARSA: From any state-action (S, A), accept reward (R), transition to next state (S'), choose next action (A')
- Problem: which policy do we use to choose A'
- If we choose the *current judgment of the best action* at S' we will become too greedy
 - Fail to explore the space of possibilities
- If we choose a *sub-optimal* policy to follow, we will never find the best policy
 - E.g. We don't want to be ϵ -greedy at test-time!

Generalization of SARSA

- Pick a random initial policy π .
- Repeatedly create episodes.
 - For each time step t in the current episode:
 - Start at state S_t (S)
 - Carry out action $A_t = \pi(S_t)$ (A)
 - Get reward R_{t+1} (R)
 - Reach state S_{t+1} (S)

(A)

- Estimate optimal future action $\hat{a}^*_{S_{t+1}}$
- Estimate optimal future return $Q(S_{t+1}, \hat{a}^*_{S_{t+1}})$
- Update Q(S, a) using R_{t+1} and $Q(S_{t+1}, \hat{a}_{S_{t+1}}^*)$
- Update the current policy

Generalization of SARSA

- Pick a random initial policy π .
- Repeatedly create episodes.
 - For each time step t in the current episode:
 - Start at state S_t
 - Carry out action $A_t = \pi(S_t)$
 - Get reward R_{t+1}
 - Reach state S_{t+1}

 \leftarrow **Used to explore the environment** Are there any reasons to choose A_t to be the optimal action?

(A)

(S)

the same as A_{t+1} ? • Update the current policy

Used to estimate optimal return \rightarrow future action $\hat{a}_{S_{t+1}}^*$

Are there any reasons to make $\hat{a}^*_{S_{t+1}}$ future return $Q(S_{t+1}, \hat{a}^*_{S_{t+1}})$

On-policy vs. Off-policy

- It's possible learn to what the best actions should be, even if we don't always follow those actions.
 - E.g. learning by observation
- We learn by following a more exploratory policy
- In the process, we look for a hypothetical optimal policy...the one that we'd want to follow at test-time.

$$S_1, A_1, R_2, S_2, A_2, R_3, S_3, A_3, R_4, \dots, S_T$$

 $\hat{a}_{S_2}^*$? $\hat{a}_{S_3}^*$?

- The actions we actually follow to get samples (e.g. A_t) are not the same as our best estimates of the optimal actions (e.g. $\hat{a}_{S_t}^*$)
 - Hence this is an "off-policy" method

Solution: Off-policy learning

• Use data to improve your choice of actions, but follow different ("off-policy") actions to collect data.

$$S_1, A_1, \mathbf{R}_2, S_2, A_2, \mathbf{R}_3, S_3, A_3, \mathbf{R}_4, \dots, S_T$$

 $\hat{a}_{S_2}^*$? $\hat{a}_{S_3}^*$?

- E.g. Use $\hat{a}_{S_{t+1}}^* = \operatorname{argmax}_a(Q(S_{t+1}, a))$
- But, actually follow the *epsilon-greedy* policy
 - The hypothetical action is better than the one you actually took, but you still explore (non-greedy)
- This is the basis for the most popular RL algorithm, Q-Learning

Q-Learning (TD-1)

- Pick initial values for Q.
- Repeatedly create episodes.
 - For each time step t in the current episode:
 - Start at state S_t
 - Carry out action $A_t = \pi_{\epsilon-\text{greedy}}(S_t)$
 - Get reward R_{t+1}
 - Reach state S_{t+1}
 - Estimate optimal future action $\hat{a}_{S_{t+1}}^* = \operatorname{argmax}_a(Q(S_{t+1}, a))$
 - Estimate optimal future return $Q(S_{t+1}, \hat{a}^*_{S_{t+1}})$
 - Update $Q(S_t, A_t) =$ $Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, \hat{a}^*_{S_{t+1}}) - Q(S_t, A_t) \right)$

The Q-learning algorithm generalizes to $TD(\lambda)$ too

Off-policy vs. On-policy

• Optimal greedy policy:

$$\pi(a|s) = \begin{cases} 1 & for \ a = \arg\max_{a'} Q(s, a') \\ 0 & otherwise \end{cases}$$

• Exploration policy

$$\pi(a|s) = \begin{cases} 1 - \epsilon & for \ a = \arg\max_{a'} Q(s, a') \\ & \frac{\epsilon}{N_a - 1} & otherwise \end{cases}$$

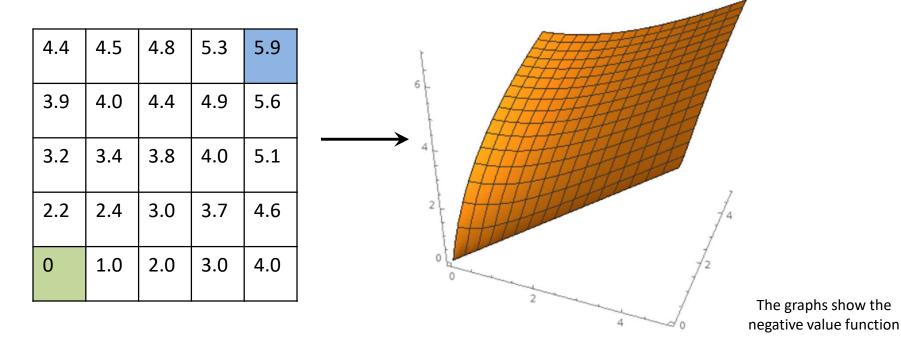
• Ideally ϵ should decrease with time

Scaling up the problem..

- We've assumed a discrete set of states
- And a discrete set of actions
- Value functions can be stored as a table
 - One entry per state
- Action value functions can be stored as a table
 - One entry per state-action combination
- Policy can be stored as a table
 - One probability entry per state-action combination
- None of this is feasible if
 - The state space grows too large (e.g. chess)
 - Or the states are continuous valued

Continuous State Space

- Tabular methods won't work if our state space is infinite or huge
- E.g. position on a [0, 5] x [0, 5] square, instead of a 5x5 grid.

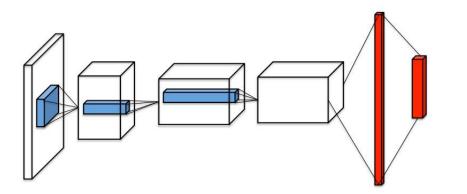


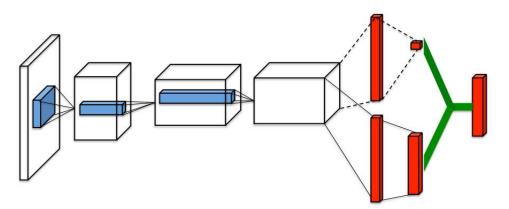
- Instead of using a table of Q-values, we use a parametrized function $Q(s,a) = f(s,a|\theta)$
- Instead of writing values to the table, we fit the parameters to minimize the prediction error of the "Q function"

$$\theta_{k+1} \leftarrow \theta_k - \eta \nabla_{\theta} \left(Div(f(s, a | \theta_k), Q_{s,a}^{\text{target}}) \right)$$

- Instead of using a table of Q-values, we use a parametrized function $Q(s,a) = f(s,a|\theta)$
- This can be a simple linear function... $f(\mathbf{s}, \mathbf{a} | \mathbf{\theta}) = \mathbf{\theta}^T[\mathbf{s}; \mathbf{a}]$

• Or a massive convolutional network...





Target Q

 $\theta_{k+1} \leftarrow \theta_k - \eta \nabla_{\theta} \left(Div(f(s, a | \theta_k), Q_{s,a}^{\text{target}}) \right)$ $\rightarrow \text{What is } Q_{s,a}^{\text{target}} ?$

As in TD, use bootstrapping for the target : $Q_{s,a}^{target} = \mathcal{R}_s^a + \gamma \operatorname{argmax}_{a' \in \mathcal{A}} f(s', a' | \theta_k)$ $a' \in \mathcal{A}$ And *Div* can be L2 distance

DQN (v0)

- Initialize θ_0
- For each episode *e*
 - Initialize S_1 , A_1
 - For $t = 1 \dots Termination$
 - Choose action A_t using ε –greedy policy obtained from θ_t
 - Observe R_{t+1} , S_{t+1}
 - Choose action $A_{target} = argmax_a f(S_{t+1}, a | \theta_t)$
 - $Q_{tar} = R_{t+1} + \gamma Q(S_{t+1}, A_{target})$
 - $\theta_{t+1} = \theta_t \eta \nabla_{\theta} \| Q_{target} f(S_t, A_t | \theta_t) \|_2^2$

Deep Q Network

- Note : $\nabla_{\theta} \| Q_{target} f(S_t, A_t | \theta_t) \|_2^2$ does **not** consider Q_{target} as depending of θ_t (although it does). Therefore this is **semi-gradient descent**.
- If your function is a neural network, and the action set is finite of size |A|, then you can use a |A|-labels classification network that associates the probabilities of each action to an input

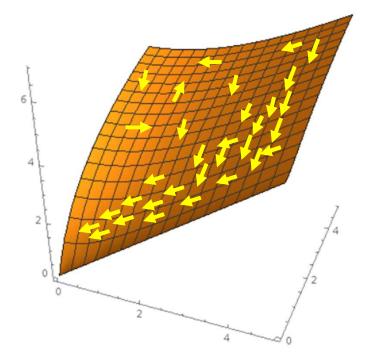
- Fundamental issue: limited capacity
 - A table of Q values will never forget any values that you write into it
 - But, modifying the parameters of a Q-function will affect its *overall* behavior
 - Fitting the parameters to match one (s, a) pair can change the function's output at (s', a').
 - If we don't visit (s', a') for a long time, the function's output can diverge considerably from the values previously stored there.

Tables have full capacity

- Q-learning works well with Q-tables
 - The sample data is going to be heavily biased toward optimal actions $(s, \pi^*(s))$, or close approximations thereof.
 - But still, ε-greedy policy will ensure that we will visit all state-action pairs arbitrarily many times if we explore long enough.
 - The action-value for uncommon inputs will still converge, just more slowly.

Limited Capacity of $f(s, a | \theta)$

- The Q-function will fit more closely to more common inputs, even at the expense of lower accuracy for less common inputs.
- Just exploring the whole stateaction space isn't enough. We also need to visit those states often enough so the function computes accurate Q-values before they are "forgotten".



Action-replay

- The raw data obtained from Q-learning is:
 - Highly correlated: current data can look very different from data from several episodes ago if the policy changed significantly.
 - Very unevenly distributed: only ϵ probability of choosing suboptimal actions.
- Instead, create a *replay buffer* holding past experiences, so we can train the Q-function using this data.

Action-replay

 Pseudocode: for B steps: (R_{t+1}, S_{t+1}) = make_action(A_t) replay_buffer.add(S_t, A_t, R_{t+1}, S_{t+1})
 TD_update(replay_buffer.sample(B),

q function)

- We have control over how the experiences are added, sampled and deleted.
 - Can make the samples look independent
 - Can emphasize old experiences more
 - Can change frequency depending on accuracy

Action-replay

- What is the best way to sample?
 - On the one hand, our function has limited capacity, so we should let it optimize more strongly for the common case
 - On the other hand, our function needs explore uncommon examples just enough to compute accurate action-values, so it can avoid missing out on better policies
- A trade-off!

DQN (with Action-replay)

- Initialize θ_0
- Initialize buffer with some random episodes
- For each episode *e*
 - Initialize S_1, A_1
 - For $t = 1 \dots Termination$
 - Choose action A_t using ε –greedy policy obtained from θ_t
 - Observe R_{t+1} , S_{t+1}
 - Add S_t , A_t , R_{t+1} , S_{t+1} to the buffer
 - Sample from the buffer a batch of tuples S, A, R, S_{new}
 - Choose $A_{target} = argmax_a f(S_{new}, a | \theta_t)$
 - $Q_{target} = R + \gamma Q(S_{new}, A_{targe})$
 - $\theta_{t+1} = \theta_t \eta \nabla_{\theta} \| Q_{target} f(S, A | \theta_t) \|_2^2$

Moving target

- We already have moving targets in online SARSA and Q-learning, since we're using the action-values to compute the updates to the action-values.
- The problem is much worse with Q-functions though.
 Optimizing the function at one state-action pair affects all other state-action pairs.
 - The target value is fluctuating at all inputs in the function's domain, and all updates will shift the target value across the entire domain.

Frozen target function

- Solution : Create two copies of the Q-function.
 - The "target copy" is frozen and used to compute the target Q-values.
 - The "learner copy" will be trained on the targets. $Q_{\text{learner}}(S_t, A_t) \leftarrow_{\text{fit}} R_{t+1} + \gamma \max_a \left(Q_{\text{target}}(S_{t+1}, a) \right)$
- Just need to periodically update the target copy to match the learner copy.

Fixed target DQN

- Initialize $\theta_0, \theta^* = \theta_0$
- Initialize buffer with some random episodes
- For each episode *e*
 - Initialize S_1, A_1
 - For $t = 1 \dots Termination$
 - If t% k = 0 then update $\theta^* = \theta_t$
 - Choose action A_t using ε –greedy policy obtained from θ_t
 - Observe R_{t+1} , S_{t+1}
 - Add S_t , A_t , R_{t+1} , S_{t+1} to the buffer
 - Sample from the buffer a batch of tuples S, A, R, S_{new}
 - Choose $A_{targ} = argmax_a f(S_{new}, a | \theta^*)$
 - $Q_{targ} = R + \gamma f(S_{new}, A_{targ} | \theta^*)$
 - $\theta_{t+1} = \theta_t \eta \nabla_{\theta} \| Q_{target} f(S, A | \theta_t) \|_2^2$

Performance

	Breakout	R. Raid	Enduro	Sequest	S. Invaders
DQN	316.8	7446.6	1006.3	2894.4	1088.9
Naive DQN	3.2	1453.0	29.1	275.8	302.0
Linear	3.0	2346.9	62.0	656.9	301.3

Replay	0	0	×	×
Target	\bigcirc	×	0	×
Breakout	316.8	240.7	10.2	3.2
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

Overestimation of Q-values

- Choose $A_{target} = argmax_a f(S_{new}, a | \theta^*)$
- $Q_{target} = R + \gamma f(S_{new}, A_{target} | \theta^*)$
- But what if this action is not optimal ?
- If, in DQN (fixed target or not) in early training non-optimal actions are attributed higher Q-values than the optimal action...
 - Learning is difficult, due to bias on chosen actions

Double Q networks

- Solution : Create two Q-functions.
 - The "DQN network" compute the target action
 - The "target network" is used to compute the Q-value of the target action.
 - The "DQN network" is trained on the targets. $Q_{\text{DQN}}(S_t, A_t) \leftarrow_{\text{fit}} R_{t+1}$ $+ \gamma \left(Q_{\text{target}} \left(S_{t+1}, argmax_a Q_{\text{DQN}}(S_{t+1}, a) \right) \right)$
- Each network can play the role of the DQN or target network : chosen randomly at each step
- Action selections are epsilon-greedy with respect to the sum of both networks

Double DQN

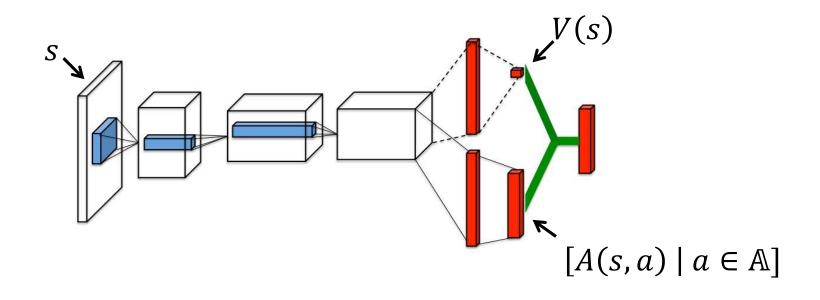
- Initialize θ_0^1, θ_0^2
- Initialize buffer with some random episodes
- For each episode *e*
 - Initialize S_1, A_1
 - For $t = 1 \dots Termination$
 - Choose action A_t using ε –greedy policy obtained from θ_t^1 and θ_t^2 , Observe R_{t+1} , S_{t+1}
 - Add S_t , A_t , R_{t+1} , S_{t+1} to the buffer
 - Sample from the buffer a batch of tuples *S*, *A*, *R*, *S*_{new}
 - Assign randomly θ_0^1 , $\theta_0^2 \rightarrow \theta_0^{DQN}$, θ_0^{target}
 - Choose $A_{target} = argmax_a f(S_{new}, a | \theta_t^{DQN})$
 - $Q_{targ} = R + \gamma f(S_{ne}, A_{targ} | \theta_t^{target})$
 - $\theta_{t+1}^{DQN} = \theta_t^{DQN} \eta^{DQN} \nabla_{\theta^{DQN}} \left\| Q_{target} f(S, A | \theta_t^{DQN}) \right\|_2^2$

Other Q-learning optimizations

• Dualing DQN:

- Decompose Q(s, a) = f(V(s), A(s, a))

- V is the value function, and A is known as the advantage function.
- Easier to learn since you can get good estimates with A(s, a) = some constant A(a) and f(x, y) = x + y



Direct Policy Estimation

- It's also possible to make a deep neural network that directly produces a distribution over actions given a state
 - Also known as a policy network, or the policy gradient method
 - Useful when the action space is also large or continuous

Policy Network

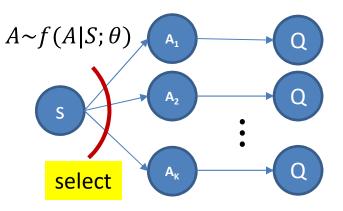
• Train a neural network to prescribe actions at each state:

$f(A|S;\theta)$

- Input is S, output is probability distribution over A
- Could be deterministic
- **Problem** : how to train such a network ?
- No golden truth
 - Unlike value functions, where there is a target value for the value at each state
 - Against which we can compute a loss

Maximizing return

• Learn policy to maximize expected return!



- **Problem:** For discrete action space, the return is not differentiable with respect to policy function parameters
 - Selection is not a differentiable operation

Solution

- Recast differentiation as an *expectation* operation
 - Can now be approximated by sampling
 - Policy gradient method
- Compute expected returns using an actionvalue function approximator

Actor-critic methods

Solution

Recast differentiation as an *expectation* operation

Can now be approximated by sampling

Policy gradient method

• Compute expected returns using an actionvalue function approximator

Actor-critic methods

How to choose policy

• In any run starting at a state S we get

 $-(S_1 = S_1) A_1 R_2 S_2 A_2 R_3 S_3 A_3 R_4 \dots$

• The trajectory T associated with the run is

 $-T = S A_1 S_2 A_2 S_3 A_3 \dots$

The total return over the run (at t=1) is

 $-\mathbf{G} = \mathbf{R}_2 + \gamma \mathbf{R}_3 + \gamma^2 \mathbf{R}_4 \dots$

The choice of θ in f (A|S; θ) will modify the trajectory and thereby the return

The objective

- The probability of a trajectory T is a function of $f(A|S; \theta)$ and hence of θ
 - $-T \sim P(T;\theta)$
- The probability of a return *G* is a function of the trajectory *T*

-G(T)

• Objective: to maximize expected return

$$\operatorname{argmax}_{\theta} J(\theta) = \operatorname{argmax}_{\theta} \sum_{T} P(T; \theta) G(T)$$

Gradient of the objective

$$J(\theta) = \sum_{T} P(T; \theta) G(T)$$
$$\nabla_{\theta} J(\theta) = \sum_{T} \nabla_{\theta} P(T; \theta) G(T)$$

• A simple trick:

$$\nabla_{\theta} P(T;\theta) = P(T;\theta) \frac{\nabla_{\theta} P(T;\theta)}{P(T;\theta)} = P(T;\theta) \nabla_{\theta} \log P(T;\theta)$$

$$\nabla_{\theta} J(\theta) = \sum_{T} P(T;\theta) \nabla_{\theta} \log P(T;\theta) G(T)$$

$$\nabla_{\theta} J(\theta) = E_{T \sim P(T;\theta)} \nabla_{\theta} \log P(T;\theta) G(T)$$

Gradient of the objective

$$J(\theta) = \sum_{T} P(T; \theta) G(T)$$
$$\nabla_{\theta} J(\theta) = \sum_{T} \nabla_{\theta} P(T; \theta) G(T)$$

• A simple trick:

$$\nabla_{\theta} P(T;\theta) = P(T;\theta) \frac{\nabla_{\theta} P(T;\theta)}{P(T;\theta)} = P(T;\theta) \nabla_{\theta} \log P(T;\theta)$$

$$\nabla_{\theta} J(\theta) = \sum_{T} P(T;\theta) \nabla_{\theta} \log P(T;\theta) G(T)$$

$$\nabla_{\theta} J(\theta) = E_{T \sim P(T;\theta)} \nabla_{\theta} \log P(T;\theta) G(T)$$

The trajectory

• The trajectory *T* is

$$T = S_1 A_1 S_2 A_2 S_3 A_3 \dots$$

- The probability of *T*, under the policy function $f(A|S;\theta)$ is $P(T;\theta) = P(S_1) f(A_1|S_1;\theta)P(S_2|S_1,A_1)f(A_2|S_2;\theta) \dots$
- Taking logs

$$\log P(T;\theta) = \log P(S_1) + \sum_t \log P(S_{t+1}|S_t, A_t) + \sum_t \log f(A_t|S_t;\theta)$$

• Giving us the deriviative

$$\nabla_{\theta} \log P(T;\theta) = \sum_{t} \nabla_{\theta} \log f(A_t|S_t;\theta)$$

Gradient of the objective

 $\nabla_{\theta} J(\theta)$

$$= E_{T \sim P(T;\theta)} \left(\sum_{t} \nabla_{\theta} \log f(A_t | S_t; \theta) \right) G(T)$$

• This is a simple expectation that can be approximated by sampling!

A simple extension

$$\nabla_{\theta} J(\theta) = E_{T \sim P(T;\theta)} \left(\sum_{t} \nabla_{\theta} \log f(A_t | S_t; \theta) \right) G(T)$$

• Better to compute the above instead as follows

$$\nabla_{\theta} J(\theta) = E_{T \sim P(T;\theta)} \sum_{t} \nabla_{\theta} \log f(A_t | S_t; \theta) G(t)$$

This too can be estimated by sampling

• Record an episode (or episodes) $S_1 A_1 R_2 S_2 A_2 R_3 S_3 A_3 R_4 \dots$

• Episode G(1) $S_1 A_1 R_2 S_2 A_2 R_3 S_3 A_3 R_4 ...$

• Compute returns at each time

• Episode G(1) G(2) G(2) G(3) G(2) $S_1 A_1 R_2 S_2 A_2 R_3 S_3 A_3 R_4 ...$ $\log f(A_1|S_1;\theta) \log f(A_2|S_2;\theta) \log f(A_3|S_3;\theta)$

- Compute returns at each time
- Compute log policy at each time

• Episode G(1) $S_1 A_1 R_2 S_2 A_2 R_3 S_3 A_3 R_4 ...$ $\log f(A_1|S_1;\theta) \log f(A_2|S_2;\theta) \log f(A_3|S_3;\theta)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{T} \sum_{t} \nabla_{\theta} \log f(A_{t} | S_{t}; \theta) G(t)$$

- Compute returns at each time
- Compute log policy at each time
- Compute gradient

• Episode G(1) G(2) G(2) $S_1 A_1 R_2 S_2 A_2 R_3 S_3 A_3 R_4 ...$ $\log f(A_1|S_1;\theta) \log f(A_2|S_2;\theta) \log f(A_3|S_3;\theta)$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{T} \sum_{t} \nabla_{\theta} \log f(A_{t} | S_{t}; \theta) G(t)$$

 $\theta = \theta + \eta v_{\theta} I(\theta)$

• Compute returns at each time

- Compute log policy at each time
- Compute gradient
- Update network parameters
 - Ideally $\nabla_{\theta} J(\theta)$ is averaged over many episodes

Its like Maximum Likelihood

 The gradient actually looks like the derivative of a log likelihood function

 $\nabla_{\theta} J(\theta) = E_{T \sim P(T;\theta)} \nabla_{\theta} \log P(T;\theta) G(T)$

• Can be written as

 $\nabla_{\theta} J(\theta) = E_{T \sim P(T;\theta)} \nabla_{\theta} \log P(T;\theta)^{G(T)}$

 Maximization increases the probability of trajectories with greater return

- If you see a trajectory you increase its probability

Its like Maximum Likelihood

• The gradient actually looks like the derivative of a log likelihood function

$$\nabla_{\theta} J(\theta) \approx \frac{1}{T} \sum_{t} \nabla_{\theta} \log f(A_t | S_t; \theta)^{G(t)}$$

- Maximization increases the probability of all seen actions
 - At the cost of the probability of unseen actions
 - Usual ML estimator

Merely seeing a trajectory isn't good

- We want to emphasize trajectories with high return and *reduce* the probability of lowreturn trajectories
- If an action results in more returns than the current average return for the state, we must improve its probability

- If it results in less, we must decrease it

Its like Maximum Likelihood

• Subtract the *expected* return for the current state

$$\nabla_{\theta} J(\theta) \approx \frac{1}{T} \sum_{t} \nabla_{\theta} \log f(A_t | S_t; \theta)^{G(t) - \nu(S_t)}$$

- $a_t = G(t) v(S_t)$ is the advantage function
 - How much advantage the current action has over the average
- Train $f(A_t|S_t; \theta)$ to maximize advantage

- Typically approximate
$$v(S_t)$$
 by $\frac{1}{\tau}\sum_{t'} G(S_{t'})$

Reinforce

- Initialize θ
- For each episode *e*
 - Initialize S_1, A_1
 - For $t = 1 \dots Termination$
 - Choose action A_t using ε –greedy policy obtained from θ
 - Observe R_{t+1} , S_{t+1}
 - Compute the returns $G(S_t)$, then the advantages a_t

- Compute
$$J(\theta) = \frac{1}{T} \sum_{t} \log(\pi_{\theta}(A_t|S_t)) a_t$$

 $- \ \theta \leftarrow \theta + \eta \nabla_{\theta} J(\theta)$

Solution

- Recast differentiation as an *expectation* operation
 - Can now be approximated by sampling
 - Policy gradient method
- Compute expected returns using an actionvalue function approximator
 - Actor-critic methods

Instability

 In Reinforce, the estimator for the expected return has high variance : rewards on one episode act as estimates for state value functions.

$$G(S_t) = \sum_{t' \ge t} \gamma^{t'-t} R_{t'+1}$$

• It also requires entire runs of episodes

Not online

• It can be made more stable through function approximation of the value function

Actor-Critic

- In actor-critic methods, two networks are used :
- The **actor** is the policy network : $f(S, A|\theta_a) = \pi_{\theta_a}(A|S)$ and is used to predict the next action
- The **critic** is a state value network : $g(S|\theta_c) = V_{\theta_c}(S)$ and is used to guide the optimization direction of the actor
- To estimate the expected return based on an episode, we use Nstep lookahead :

$$G(S_t) = \sum_{0 \le k \le N-1} \gamma^k R_{t+k+1} + \gamma^N V_{\theta_c}(S_{t+N})$$

Advantage Actor Critic (A2C)

Rethink the advantages

The critic can also be used as the "baseline" when computing the advantages :

$$a_t = G(S_t) - V_{\theta_c}(S_t)$$

The trajectory's probability is improved if it is better than the trajectories previously followed.

The critic is trained on how well it predicted the return.

A2C

- Initialize θ_a , θ_c
- For each episode *e*
 - Initialize S_1 , A_1
 - For $t = 1 \dots Termination$
 - Choose action A_t using ε –greedy policy obtained from θ_a
 - Observe R_{t+1} , S_{t+1}
 - Compute the returns $G(S_t) = \sum_{0 \le k \le N-1} \gamma^k R_{t+k+1} + \gamma^N V_{\theta_c}(S_{t+N})$ if t + N < T, else $\sum_{0 \le k \le T-t-1} \gamma^k R_{t+k+1}$
 - Compute the advantages $a_t = G(S_t) V_{\theta_c}(S_t)$
 - Compute $f_a(\theta_a) = \frac{1}{T} \sum_t \log(\pi_\theta(A_t|S_t)) a_t$, $L_c(\theta_c) = \frac{1}{T} \sum_t (G(S_t) V_{\theta_c}(S_t))^2$
 - $\quad \theta_a \leftarrow \theta_a + \eta_a \nabla_{\theta_a} L_a \ (\theta_a), \ \theta_c \leftarrow \theta_c \ \eta_c \nabla_{\theta_c} L_c \ (\theta_c),$

Extensions

- A2C can be applied in a multi-thread environment on several episodes simultaneously, with a final mini-batch update
- Asynchronous Advantage Actor-Critic (A3C) (Deepmind, 2016): Each thread performs its updates without waiting for the others to end → each thread keeps its own version of the parameters. They upload their gradients asynchronously to a master server that performs batch updates
- Experience Replay can be adapted to A2C → ACER algorithm (Deepmind 2017)

Continuous action space

- We need to access action probabilities $\pi_{\theta}(A_t|S_t)$ for Reinforce and A2C.
- We have seen the discrete action space case (n labels + softmax) → Very large or continuous space ?
- You can use a network that **predict the parameters of a distribution** and sample an action from it. Ex : $A_t \sim N(\mu, \sigma)$ with $\mu, \sigma = f(S_t | \theta)$ (similar to the encoder of a VAE) \rightarrow Reinforce/A2C can be used (with the reparametrization trick).
- Most general case : $f(S_t|\theta) = A_t$. What algorithm can I use ?

Deep Deterministic policy gradients (DDPG)

- Hybrid between Q-learning and policy methods.
 Makes use of many tricks seen so far.
- An **actor** predicts the action : $f(S|\theta_a) = A$.
- A critic predicts the action value : $g(S, A | \theta_c) = Q_{\theta_c}(S, A)$.
- Actor objective : maximize the Q-value \rightarrow Gradient ascent with $\nabla_{\theta_a} g(S, f(S|\theta_a)|\theta_c)$

Deep Deterministic policy gradients (DDPG)

- Critic objective : predict accurately the Q-value. Could be done with bootstrapping but like Double DQN, DDPG makes use of decoupled targets instead
- \rightarrow Separate set of target actor and critic with parameters θ'_a, θ'_c
- Minimize $(g(S_t, A_t | \theta_c) R_{t+1} \gamma g(S_{t+1}, f(S_{t+1} | \theta'_a) | \theta'_c))^2$ wrt θ_c
- θ'_a , θ'_c are **slowly updated** as a moving average of θ_a , θ_c
- DDPG also uses experience replay, and in training adds a noise to $f(S|\theta_a)$ for exploration.

Summary

- Parameterized Functions
- Action-replay
- Target functions
- Deep Q Networks
- Decoupled targets, Double DQN
- Policy gradients
- Reinforce
- Actor-Critic
- DDPG