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Recap

What did we talk about so far?

What is a GAN?

How do GANs work theoretically?

What kinds of problems can GANs address?
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Recap

What is a GAN?

Train a generator to produce samples from a target
distribution

Discriminator guides generator

Generator and Discriminator are trained adversarially
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Recap

How do GANs work theoretically?

Discriminator calculates a divergence between generated and
target distributions

Generator tries to minimize the divergence
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Pseudocode

How can you build one yourself?

Define a generator network that takes random inputs and
produces an image

Define a discriminator network that takes images and
produces a scalar

Draw a random batch of Z from prior
Draw a random batch of X from data
Gradient descent generator weights w.r.t. generator loss
Gradient descent discriminator weights w.r.t. discriminator loss

See recitations and tutorials for details
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Recap

What kinds of problems can GANs address?

Generation

Conditional Generation

Clustering

Semi-supervised Learning

Representation Learning

Translation

Any traditional discriminative task can be approached with
generative models
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Summary

Powerful tool for generative modeling

Lots of potential

Limited by pragmatic issues (stability)
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Common Failures

GAN training can be tricky to diagnose

“Mode collapse” generates a small subspace but does not
cover the entire distribution:
https://www.youtube.com/watch?v=ktxhiKhWoEE

Some errors harder to describe:
https://www.youtube.com/watch?v=D5akt32hsCQ

Cause can be unclear

Discriminator too complicated?
Discriminator not complicated enough?
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Causes of Optimization Issues

Simultaneous updates require a careful balance between
players

In general, two player games are not guaranteed to converge
to the global optimum

There is a stationary point but no guarantee of reaching it

Adversarial optimization is a more general, harder problem
than single-player optimization
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Simultaneous Updates

Simultaneous Updates

Why are updates simultaneous? Can you just train an optimal
discriminator?

For any given discriminator, the optimal generator outputs
∀Z : G (Z ) = argmaxX D(X )

The optimal discriminator emits 0.5 for all inputs, so isn’t
useful for training anything

Optimal discriminator conditional on current generator and
vice-versa

Cannot train generator without training discriminator first

Therefore generator and discriminator must be trained
together
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Simultaneous Updates

Adversarial Balance

What kind of balance is required?

If discriminator is under-trained, it guides the generator in the
wrong direction

If discriminator is over-trained, it is too “hard” and generator
can’t make progress

If generator trains too quickly it will “overshoot” the loss that
the discriminator learned
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Simultaneous Updates

Factors Affecting Balance

What affects the balance?

Different optimizers and learning rates

Different architectures, depths, and numbers of parameters

Regularization

Train D for kD iterations, train G for kG iterations, repeat

Train D and G for dynamic kD and kG iterations, depending
on some metrics
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Simultaneous Updates

Adversarial Balance

What does this look like in practice?

Target distribution is stationary 2D point (green)

Generator produces a single moving 2D point (blue)

Discriminator is a 2D linear function, represented by the
colored background

Watch oscillations as generator overshoots discriminator

https://www.youtube.com/watch?v=ebMei6bYeWw
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Two-player games

Two-Player Games

Even a simple game, Rock, Paper, Scissors, might not converge
using alternating updates.

Player A prefers rock by random initialization

Player B should therefore play only paper

Player A should play only scissors

Player B should play only rock

. . .
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Two-player games

Rock, Paper, Scissors

Why is this so unstable?

E`A = ARBS + APBR + ASBP

Global optimum
Both players select uniformly w.p. 0.33
Both players win, lose or draw w.p. 0.33

Local optimum
Say player B plays (R,P,S) w.p. (0.4, 0.3, 0.3)
Player A should play (R,P,S) w.p. (0, 1, 0)
Player B wins w.p. 0.4

What happens if you use gradient descent?
https://www.youtube.com/watch?v=JmON4S0kl04
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Stationary Points

Stationary Points

The fact that there is a stationary point does not mean you will
converge to it

Gradients can circle or point away from the minima

Stationary point may not be stable, no local “well”

Some degree of smoothness to the discriminator is required

Even if discriminator correctly labels generated points 0 and
real points 1
Does not mean the gradient of the discriminator is in the right
direction
Does not mean area around generated points is 0 and area
around real points is 1
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GAN Training

Ongoing research into “best” GAN

Likely no silver-bullet

Combinations of techniques work well

Getting better every year
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GAN Training Techniques

We will discuss a sample of training/stabilization techniques

Will not cover every idea people have tried

Goal is to understand the types of techniques and research

Will cover some interesting or historical ideas that aren’t that
great

I am not endorsing all of the following techniques
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GAN Training Techniques

Unrolled Generative
Adversarial Networks

Gradient descent is locally
stable

DRAGAN

Numerics of GANs

Improved Techniques for
GANs

Least-Squares GAN

Instance Noise

EBGAN

WGAN

WGAN-GP

Spectral Normalized GAN

Fisher GAN

LapGAN

ProgGAN
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Unrolled Generative Adversarial Networks

Unrolled Generative Adversarial Networks

Optimize future loss, not current loss [MPPS16]

Calculate the discriminator after a few SGD steps

Find the generator that has the best loss on the future
discriminator

Differentiate through gradient descent
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Unrolled Generative Adversarial Networks

UGAN Definition

Think of it like chess. Make move that gives the best result after
the opponent’s move, not the best immediate reward.

θ0D = θD

θk+1
D = θkD + ηk

∂f (θG , θ
k
D)

∂θkD

fK (θG , θD) = f (θG , θ
K
D (θG , θD))

Benjamin Striner CMU

GANs



Recap Understanding Optimization Issues GAN Training and Stabilization Take Aways

Unrolled Generative Adversarial Networks

UGAN Diagram
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Unrolled Generative Adversarial Networks

UGAN Results
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Gradient descent GAN optimization is locally stable

Gradient descent GAN optimization is locally stable

Minimize the original objective as well as the gradient of the
objective [NK17]

Gradient of the discriminator is how much discriminator can
improve

If generator makes improvement, but discriminator gradient is
large, discriminator can undo that improvement

If generator makes improvement in a way that the
discriminator gradient is zero, discriminator cannot undo that
improvement

`G = `G ,0 + η ‖∇`D‖2
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How to train your DRAGAN

How to train your DRAGAN

Minimize the norm of the gradient in a region around real data
[KAHK17]

Minimize the norm of the gradient makes a function smoother

Smooth in a random region around real data to smooth the
discriminator

λEX ,ε max(0, ‖∇D(X + ε)‖2 − k)
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The Numerics of GANs

The Numerics of GANs

GANs define a vector field [MNG17]

Consider the joint field of generator and discriminator
parameters

Stationary points are where the gradient of each player w.r.t.
its own parameters is 0

Find these regions by minimizing the norm of the gradient of
each player

Regularization parameter balances between adversarial
objective and consensus objective

L = L0 + λ ‖∇L0‖22
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The Numerics of GANs

Consensus

Why “consensus”?

Generator tries to minimize discriminator gradients as well as
its own

Discriminator tries to minimize generator gradients as well as
its own

Mutual de-escalation

Encourages towards minima, maxima, and saddle points

Small regularization parameter so hopefully finds the minima
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The Numerics of GANs

Vector Fields

https:

//www.inference.vc/my-notes-on-the-numerics-of-gans/
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Improved Techniques for Training GANs

Improved Techniques for Training GANs

A collection of interesting techniques and experiments

Feature matching

Minibatch discrimination

Historical averaging

One-sided label smoothing

Virtual batch normalization
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Improved Techniques for Training GANs

Feature Matching

Statistics of generated images should match statistics of real
images

Discriminator produces multidimensional output, a “statistic”
of the data

Generator trained to minimize L2 between real and generated
data

Discriminator trained to maximize L2 between real and
generated data

‖EXD(X )− EZD(G (Z ))‖22
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Improved Techniques for Training GANs

Minibatch Discrimination

Discriminator can look at multiple inputs at once and decide if
those inputs come from the real or generated distribution

GANs frequently collapse to a single point

Discriminator needs to differentiate between two distributions

Easier task if looking at multiple samples
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Improved Techniques for Training GANs

Historical Averaging

Dampen oscillations by encouraging updates to converge to a
mean

GANs frequently create a cycle or experience oscillations

Add a term to reduce oscillations that encourages the current
parameters to be near a moving average of the parameters∥∥∥∥∥θ − 1

t

t∑
i

θi

∥∥∥∥∥
2

2
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Improved Techniques for Training GANs

One-sided label smoothing

Don’t over-penalize generated images

Label smoothing is a common and easy technique that
improves performance across many domains

Sigmoid tries hard to saturate to 0 or 1 but can never quite
reach that goal
Provide targets that are ε or 1− ε so the sigmoid doesn’t
saturate and overtrain

Experimentally, smooth the real targets but do not smooth
the generated targets when training the discriminator
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Improved Techniques for Training GANs

Virtual Batch Normalization

Use batch normalization to accelerate convergence

Batch normalization accelerates convergence

However, hard to apply in an adversarial setting

Collect statistics on a fixed batch of real data and use to
normalize other data
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Least-Squares GAN

Least-Squares GAN

Use an L2 loss instead of cross-entropy [MLX+16]

Generator tries to minimize L2 loss ‖a− D(G (Z ))‖22
Generator tries to minimize L2 loss
‖b − D(G (Z ))‖22 + ‖c − D(G (Z ))‖22
For example, a = 1, b = 0, c = 1

Less squashing and large values than cross-entropy
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Amortised MAP Inference for Image Super-Resolution

Amortised MAP Inference for Image Super-Resolution

Part of a larger paper with several modifications and experiments
[SCT+16]

“Instance Noise”

Add noise to generated and real images

Smooth the function learned by the discriminator

Simple and effective
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Energy-based Generative Adversarial Network

Energy-based Generative Adversarial Network

Simplify the loss function, removing powers and exponents
[ZML16]

No longer easily described using JS divergence or something
similar

Greatly simplified and linear

Gradients are neither squashed nor explode

LD = EXD(X ) + EZ [m − D(G (Z ))]+

LG = D(G (z))
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Wasserstein GAN

Wasserstein GAN

Further simplified and theoretically grounded [ACB17]

Solve Wasserstein “earth mover” distance

Provide a smoother gradient

Constrain Lipschitz of discriminator to 1

Harder to overtrain discriminator

LD = EXD(X )− EZD(G (Z ))

LG = EZD(G (Z ))
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Wasserstein GAN

Wasserstein Distance

The total
∑

mass× distance required to transform one distribution
to another.

Intuitive, symmetric measure of divergence

Hard to calculate because requires solving “optimal transport”

You have some distribution of products at some warehouses
and you need to make some other distribution of products at
those warehouses

Move the products to the target distribution minimizing∑
mass× distance

Creating the optimal “transport plan” can be NP-hard
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Wasserstein GAN

KL Example

KL(p‖q) =

∫
x
p(x) log

p(x)

q(x)

Real data is a point mass at 0

Generated data is a point mass at θ

If θ 6= 0, p(0) log p(0)
q(0) = 11

0 =∞

If θ = 0, 1 log 1
1 = 0

Not differentiable w.r.t. θ
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Wasserstein GAN

JS Example

Calculate the average distribution and calculate the average KL to
the average.

m(x) =
p(x) + q(x)

2

JS(p‖q)

Real data is a point mass at 0

Generated data is a point mass at θ

If θ 6= 0, 1
2

[
1 log 1

0.5 + 1 log 1
0.5

]
= log 4

If θ = 0, 1
2

[
1 log 1

1 + 1 log 1
1

]
= 0

Not differentiable w.r.t. θ
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Wasserstein GAN

Wasserstein Example

Calculate the mass times the distance in one dimension

Real data is a point mass at 0

Generated data is a point mass at θ

EM is |θ|
Differentiable w.r.t. θ!
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Wasserstein GAN

Kantorovich Dual

Result showing the EM can be calculated using a dual method

sup
φ,ψ

(∫
X
φ(x)dµ(x) +

∫
Y
ψ(y)dν(y)

)

φ(x)− ψ(y) ≤ c(x , y)

Provide justification for GAN techniques.
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Wasserstein GAN

EM v JS Visualized
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Wasserstein GAN

GAN vs WGAN

Benjamin Striner CMU

GANs



Recap Understanding Optimization Issues GAN Training and Stabilization Take Aways

Wasserstein GAN

So what’s the catch?

Constrain the Lipschitz of an arbitrary function

Function is nonlinear

Cannot calculate
‖D(x)−D(y)‖2
‖x−y‖2

for all pairs

Just clip the weights to some value

Constraining the L∞ of all weight matrices upper bounds the
Lipschitz of the function

Bound is not great

In practice, leads to poor discriminators
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Improved Training of Wasserstein GAN

Wasserstein GAN-GP

Demonstrate the flaws with gradient clipping [GAA+17]

Propose an alternative method of constraining the Lipschitz

Lipschitz should be 1 almost everywhere

Calculate the gradient of D at random samples

Add a penalty of the mean squared distance between the
gradient and 1

L = EX (D(X ))− EZ (D(G (Z )) + λEX ′
(∥∥∇D(X ′)

∥∥
2
− 1
)2
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Improved Training of Wasserstein GAN

Where to sample?

How to sample?

Cannot constrain gradient everywhere

Can only penalize gradient at some samples

Use samples that are random linear interpolations between
real and fake data

Keeps discriminator smooth over the relevant region
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Improved Training of Wasserstein GAN

Discriminator Visualization
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Spectral Normalized GAN

Spectral Normalized GAN

Bound the Lipschitz using the spectral norm of each layer
[MKKY18]

Lipschitz of a single matrix multiplication can be calculated
using a power iteration

sup
x

‖xA‖2
‖x‖2

= ‖A‖∗2

Lipschitz of an MLP can be upper bounded by product of
each layer

Constrain each layer by calculating Ŵ = W
‖W ‖∗2
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Fisher GAN

Fisher GAN

Fisher IPM does not require constraining the discriminator [MS17]

Constraint is imposed by the loss function itself

Difference between D(G (Z )) and D(X ) is scaled by D(G (Z ))
and D(X )

sup
f

EXD(X )− EZD(G (Z ))√
1
2EXD(X )2 + 1

2EZD(G (Z ))2
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LapGAN

LapGAN

Break image generation into smaller chunks [DCSF15]

GAN generates small, blurry image

CGAN sharpens and enlarges image slightly

Repeat step 2 until desired size

Separate, small GANs simplify training
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Progressive Growing of GANs

Progressive Growing of GANs

Gradually expand networks, like a curriculum [KALL17]

Simple generator learns with simple discriminator

Gradually add layers to generator and discriminator to produce
larger images
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Progressive Growing of GANs

Progessive GAN Visualization
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Common “Gotchas”

You can only reduce an NP problem into another NP problem

Unrolling or second gradients are computationally expensive
(UGAN, CGAN)

Sampling-based methods can be unreliable (WGAN-GP)

Bound-based methods can easily learn poor local optima
(WGAN, SNGAN)
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Lessons

Some major trends in the research

Regularize and smooth the discriminator, especially in some
region around the real and generated points

Update the players towards some sort of consensus or future
stable region, not just the immediate greedy update

Simplify networks and losses to eliminate nonlinearities

Constrain the “complexity” of the discriminator so you can
train reliably without overtraining

Grow or chain GANs to reduce complexity, learn a curriculum
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Where is current research?

Current techniques have impressive results

Lots of GPUs and tuning required

But the results are constantly improving

Better techniques allow larger models, always pushing the
limits

Mostly images but other modalities are in-progress
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Where is this going?

Ultimately, discriminator is calculating a divergence/loss function

Neural networks are universal function approximators

Loss functions are functions

How can we measure/constrain the “complexity” of a neural
network?

How can we architect a neural network to learn a meaningful
loss function?
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