Deep Learning Recurrent Networks: 1 Spring 2019

Instructor: Bhiksha Raj

Which open source project?

```
* Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
static int indicate_policy(void)
 int error;
 if (fd == MARN_EPT) {
     * The kernel blank will coeld it to userspace.
    if (ss->segment < mem total)</pre>
      unblock_graph_and_set_blocked();
    else
      ret = 1;
    goto bail;
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup_works = true;
 for (i = 0; i < blocks; i++) {
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
  rw->name = "Getjbbregs";
  bprm self clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECON
 return segtable;
```

Related math. What is it talking about?

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves F on $X_{\acute{e}tale}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}\$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

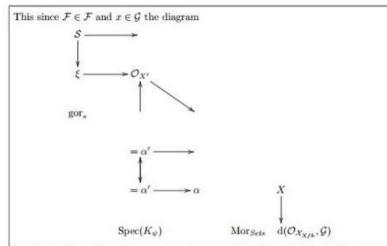
$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $O_X(U)$ which is locally of finite type.



is a limit. Then G is a finite type and assume S is a flat and F and G is a finite type f_* . This is of finite type diagrams, and

- the composition of G is a regular sequence,
- O_{X'} is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property F is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that G is a finite presentation, see Lemmas ??.

A reduced above we conclude that U is an open covering of C. The functor F is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}} -1(\mathcal{O}_{X_{\ell tale}}) \longrightarrow \mathcal{O}_{X_{\ell}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\eta}$$

 $\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}}$ $-1(\mathcal{O}_{X_{\ell talx}}) \longrightarrow \mathcal{O}_{X_{\ell}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\eta})$ is an isomorphism of covering of $\mathcal{O}_{X_{\ell}}$. If \mathcal{F} is the unique element of \mathcal{F} such that Xis an isomorphism.

The property F is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme O_X -algebra with F are opens of finite type over S. If F is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of F is a similar morphism.

And a Wikipedia page explaining it all

```
Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]
```

The unreasonable effectiveness of recurrent neural networks..

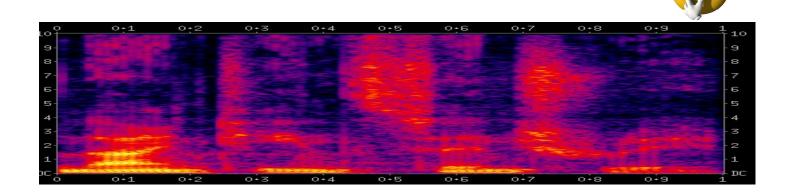
- All previous examples were *generated* blindly by a *recurrent* neural network..
- http://karpathy.github.io/2015/05/21/rnneffectiveness/

Modelling Series

- In many situations one must consider a series of inputs to produce an output
 - Outputs too may be a series
- Examples: ..

What did I say?

"To be" or not "to be"??



- Speech Recognition
 - Analyze a series of spectral vectors, determine what was said
- Note: Inputs are vectors. Output is a classification result

What is he talking about?

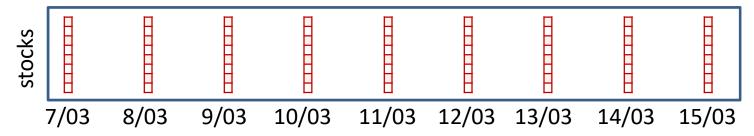
"Football" or "basketball"?

The Steelers, meanwhile, continue to struggle to make stops on defense. They've allowed, on average, 30 points a game, and have shown no signs of improving anytime soon.

- Text analysis
 - E.g. analyze document, identify topic
 - Input series of words, output classification output
 - E.g. read English, output French
 - Input series of words, output series of words

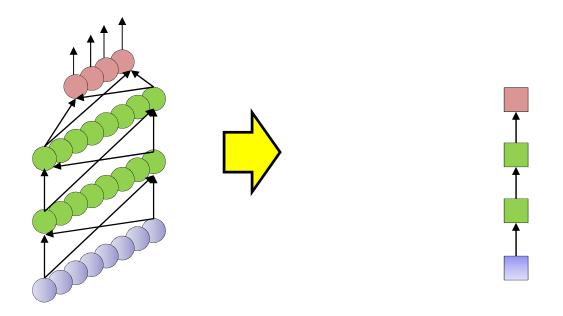
Should I invest...

To invest or not to invest?



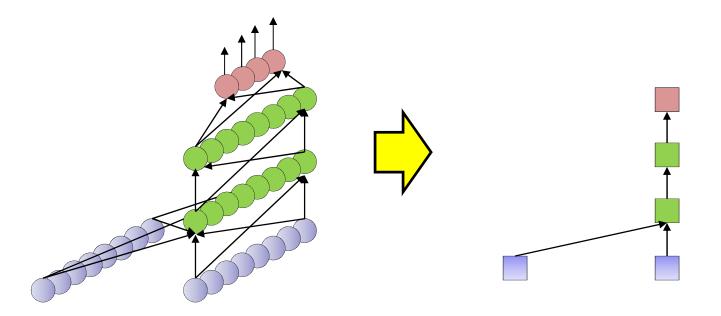
- Stock market
 - Must consider the series of stock values in the past several days to decide if it is wise to invest today
 - Ideally consider all of history
- Note: Inputs are vectors. Output may be scalar or vector
 - Should I invest, vs. should I invest in X

Representational shortcut



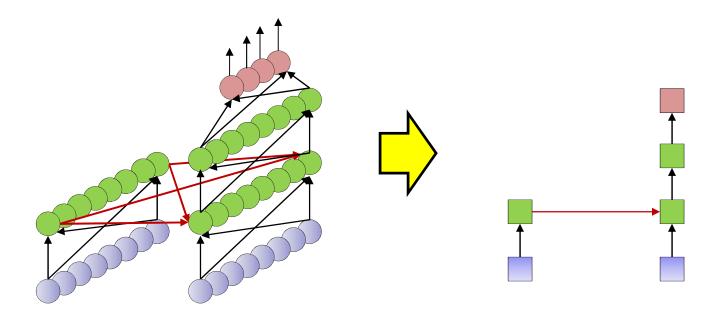
- Input at each time is a vector
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything by simple boxes
 - Each box actually represents an entire layer with many units

Representational shortcut

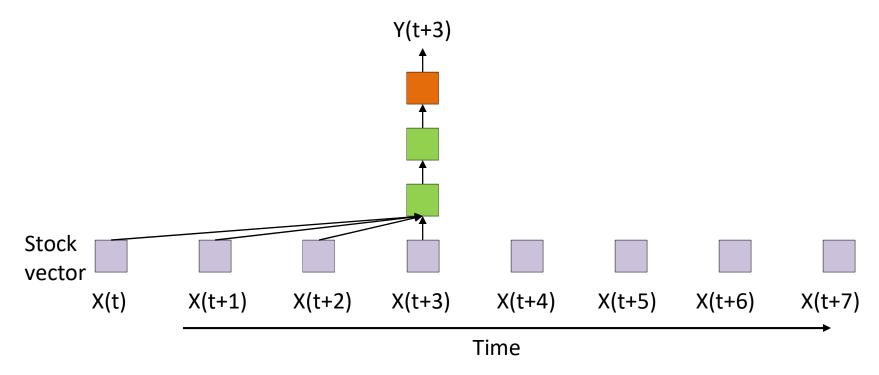


- Input at each time is a vector
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything by simple boxes
 - Each box actually represents an entire layer with many units

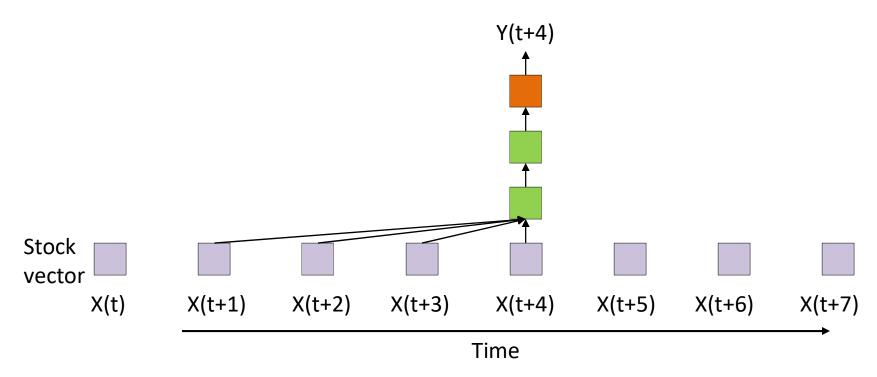
Representational shortcut



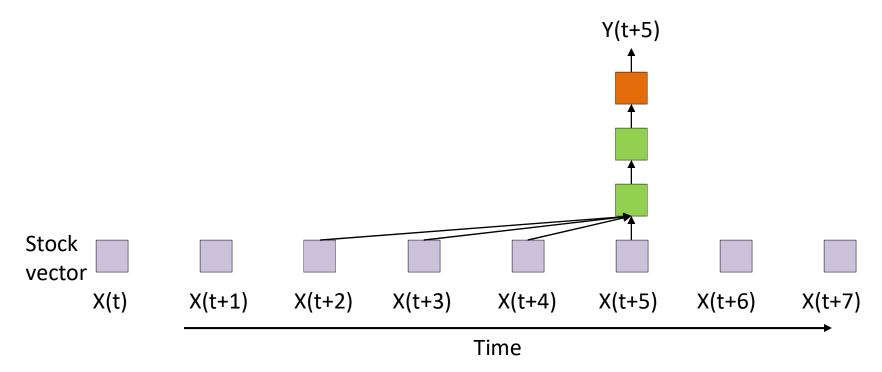
- Input at each time is a vector
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything simple boxes
 - Each box actually represents an entire layer with many units



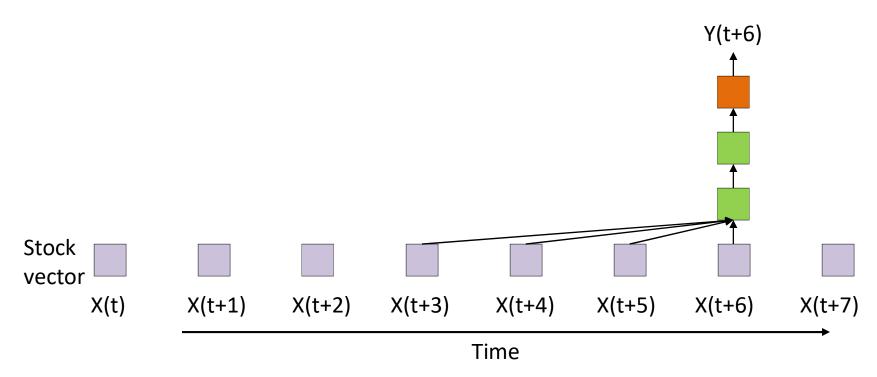
- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*



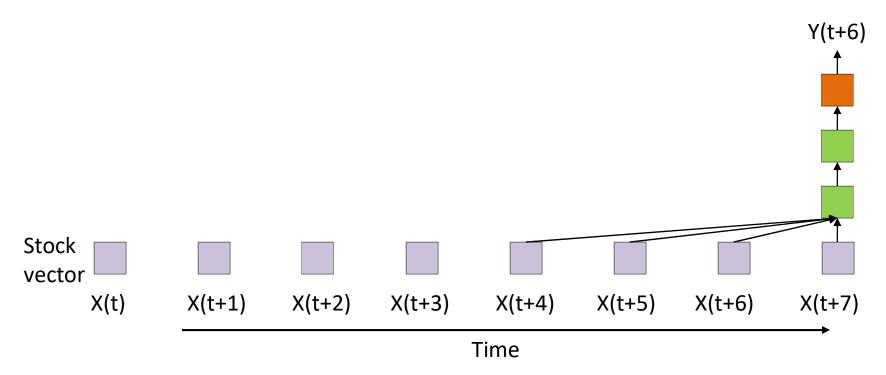
- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*



- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*



- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*

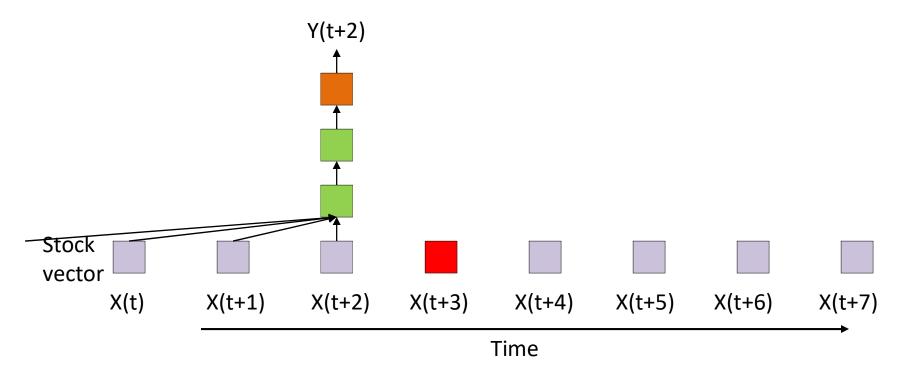


- The sliding predictor
 - Look at the last few days
 - This is just a convolutional neural net applied to series data
 - Also called a *Time-Delay neural network*

Finite-response model

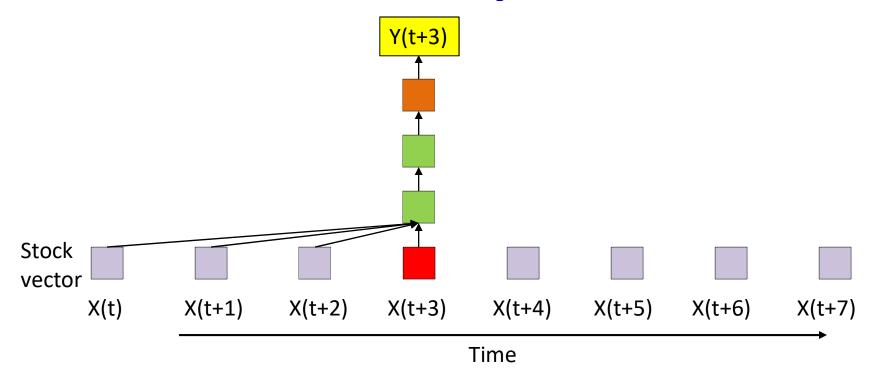
- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$



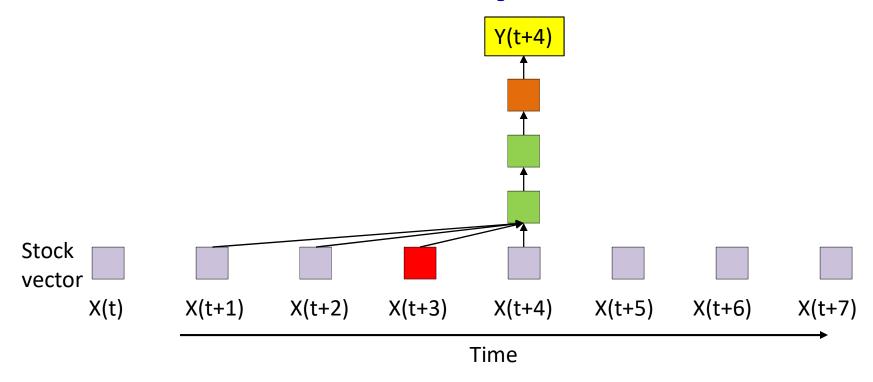
- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$



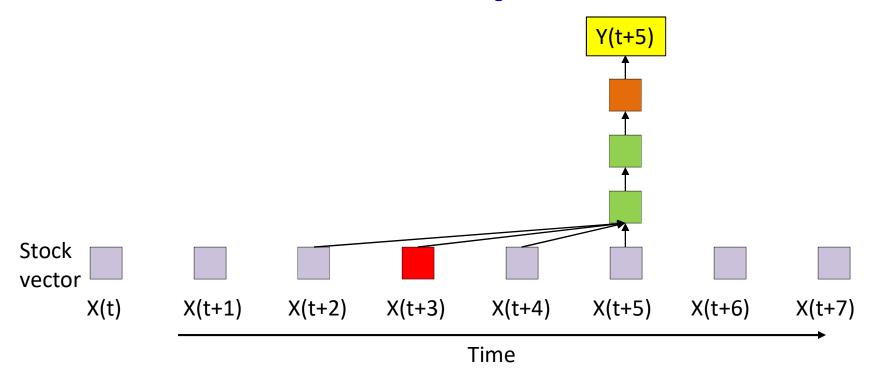
- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$



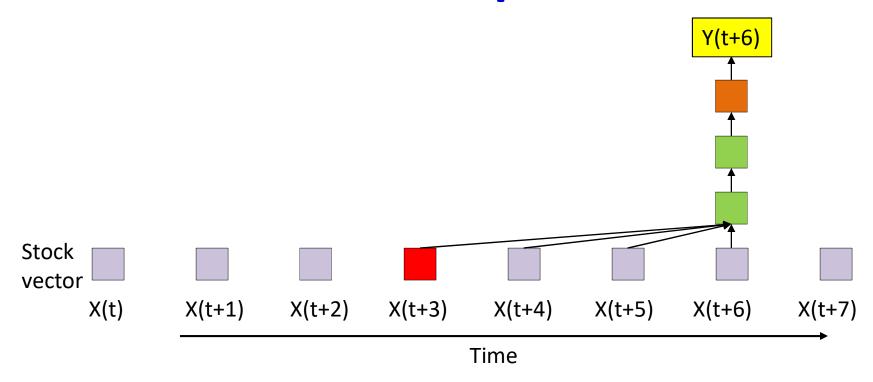
- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$



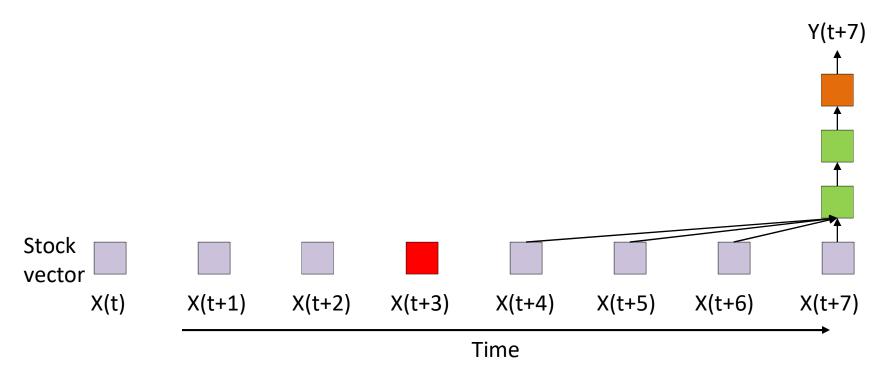
- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$



- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

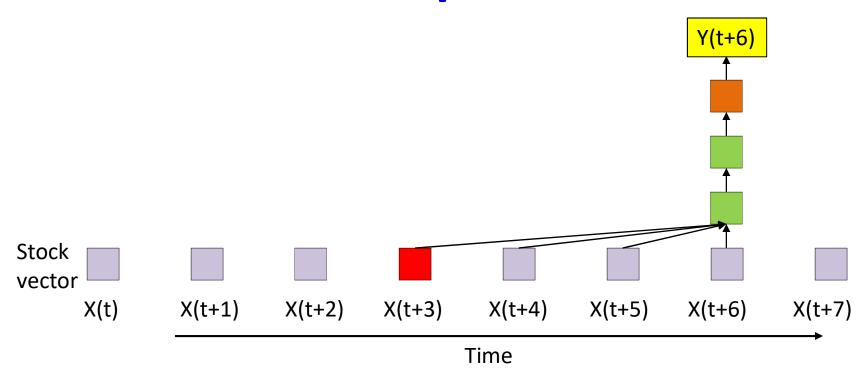
$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$



- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

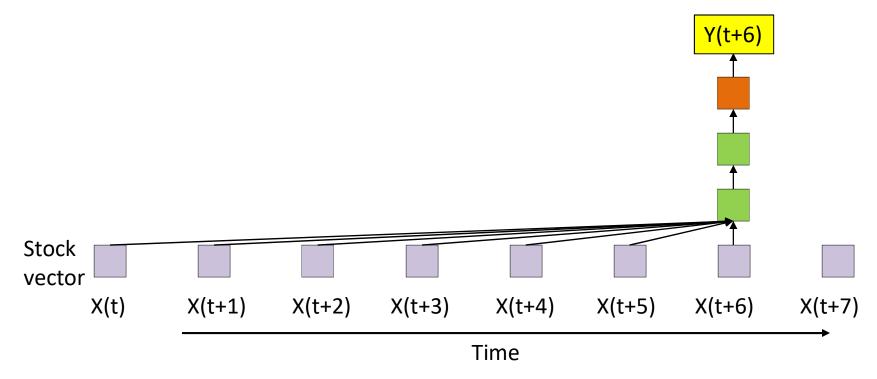
Finite-response model



- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

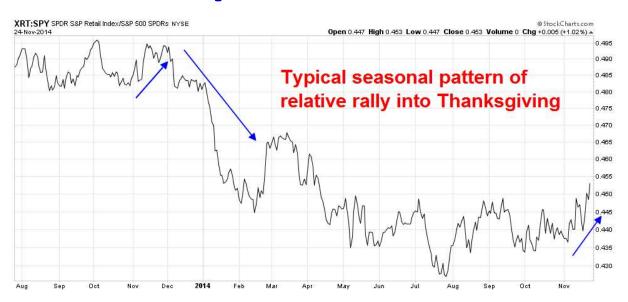
$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

Finite-response



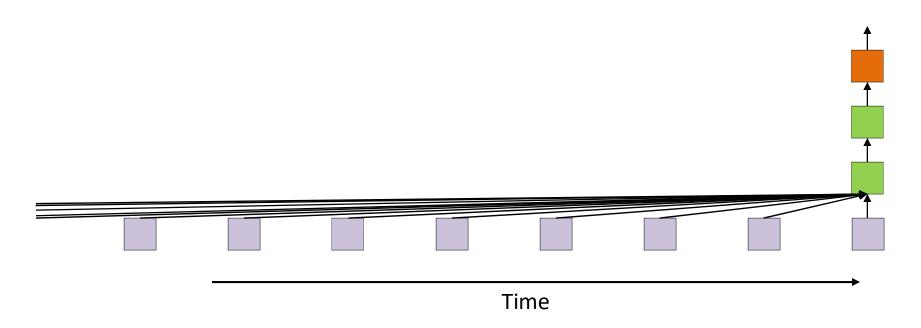
- Problem: Increasing the "history" makes the network more complex
 - No worries, we have the CPU and memory
 - Or do we?

Systems often have long-term dependencies



- Longer-term trends
 - Weekly trends in the market
 - Monthly trends in the market
 - Annual trends
 - Though longer historic tends to affect us less than more recent events..

We want infinite memory



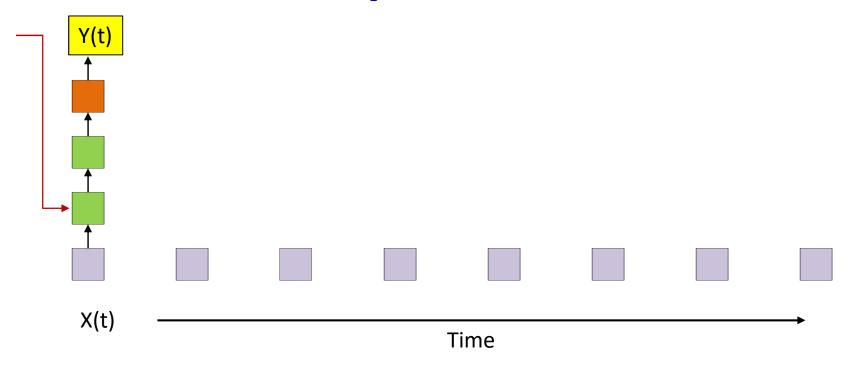
- Required: *Infinite* response systems
 - What happens today can continue to affect the output forever
 - Possibly with weaker and weaker influence

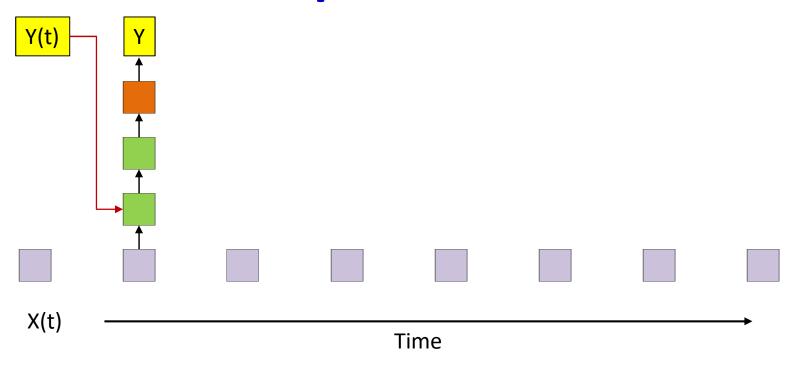
$$Y_t = f(X_t, X_{t-1}, \dots, X_{t-\infty})$$

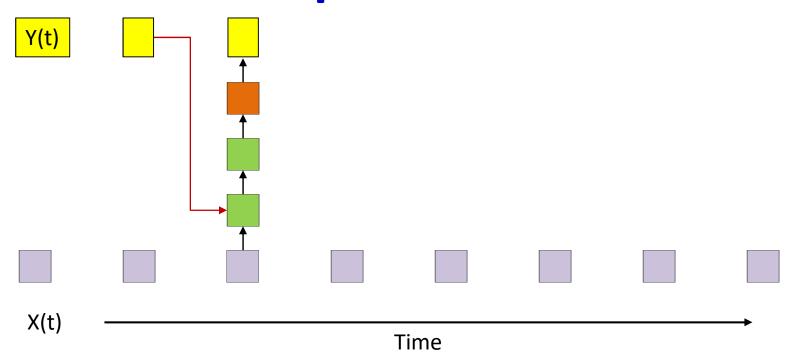
Examples of infinite response systems

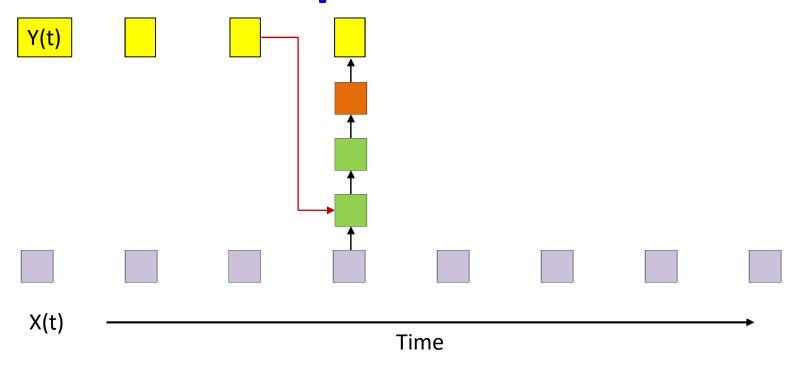
$$Y_t = f(X_t, Y_{t-1})$$

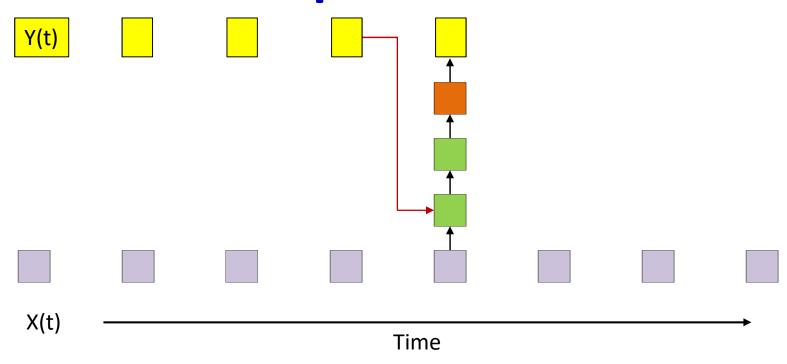
- Required: Define initial state: Y_{-1} for t = 0
- An input at X_0 at t=0 produces Y_0
- Y_0 produces Y_1 which produces Y_2 and so on until Y_∞ even if $X_1 \dots X_\infty$ are 0
 - i.e. even if there are no further inputs!
- This is an instance of a NARX network
 - "nonlinear autoregressive network with exogenous inputs"
 - $-Y_t = f(X_{0:t}, Y_{0:t-1})$
- Output contains information about the entire past

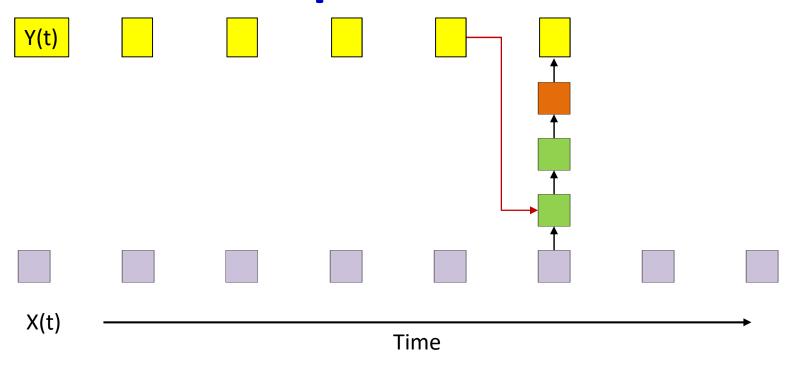


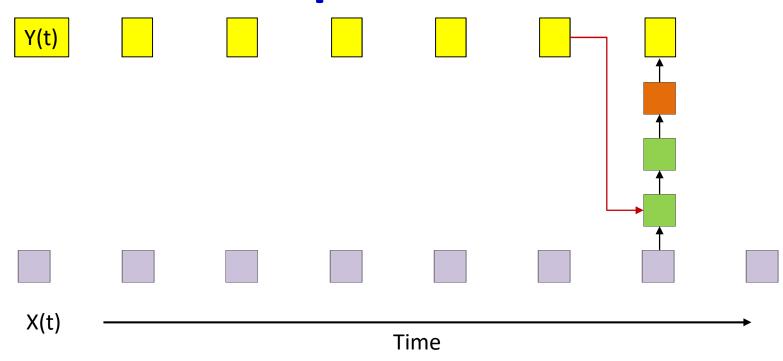




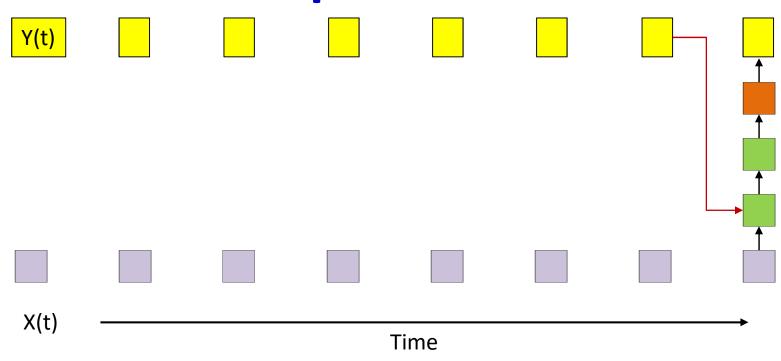






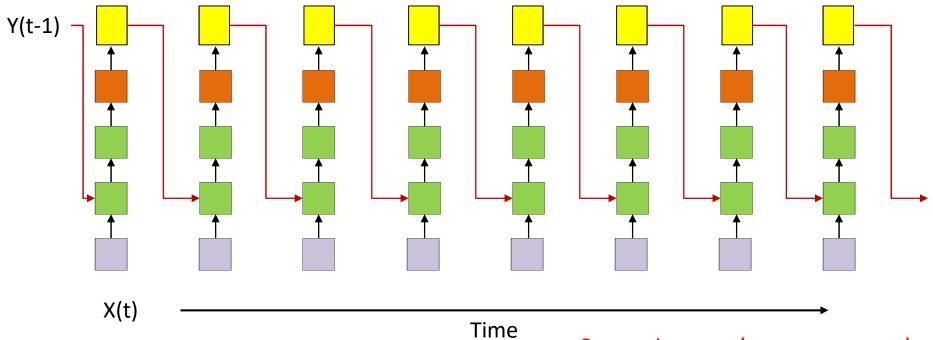


A one-tap NARX network



A NARX net with recursion from the output

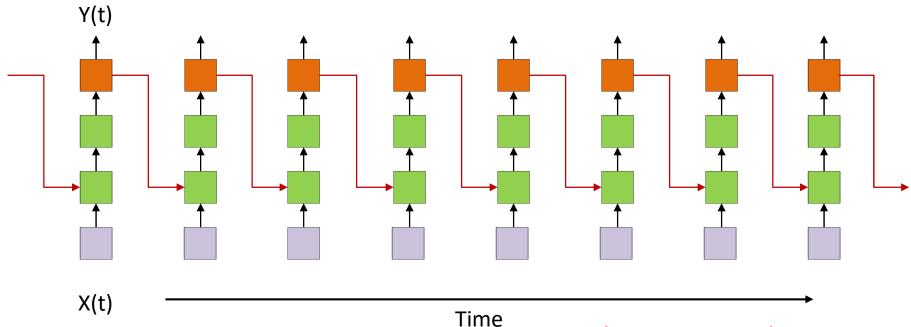
A more complete representation



Brown boxes show output nodes Yellow boxes are outputs

- A NARX net with recursion from the output
- Showing all computations
- All columns are identical
- An input at t=0 affects outputs forever

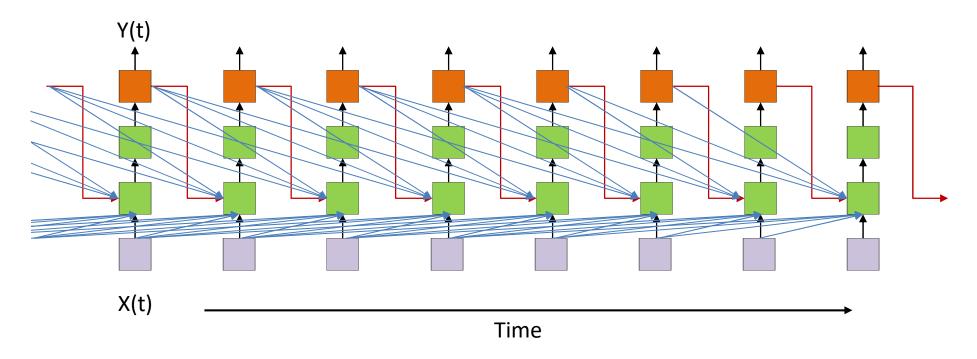
Same figure redrawn



Brown boxes show output nodes
All outgoing arrows are the same output

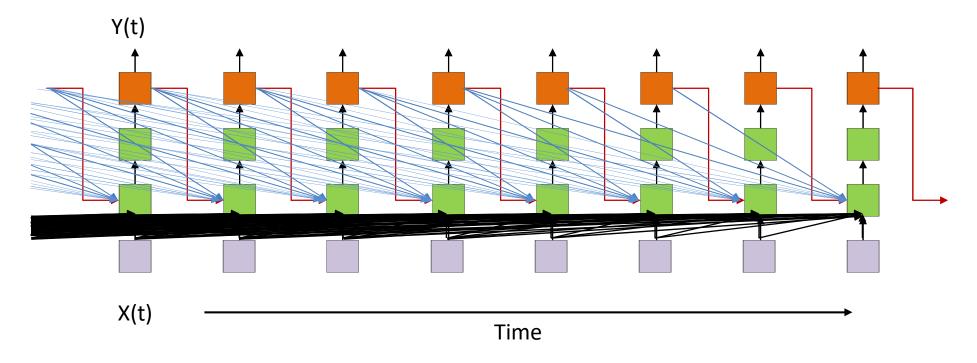
- A NARX net with recursion from the output
- Showing all computations
- All columns are identical
- An input at t=0 affects outputs forever

A more generic NARX network



• The output Y_t at time t is computed from the past K outputs Y_{t-1}, \ldots, Y_{t-K} and the current and past L inputs X_t, \ldots, X_{t-L}

A "complete" NARX network



- The output Y_t at time t is computed from all past outputs and all inputs until time t
 - Not really a practical model

NARX Networks

- Very popular for time-series prediction
 - Weather
 - Stock markets
 - As alternate system models in tracking systems
- Any phenomena with distinct "innovations" that "drive" an output
- Note: here the "memory" of the past is in the output itself, and not in the network

Lets make memory more explicit

- Task is to "remember" the past
- Introduce an explicit memory variable whose job it is to remember

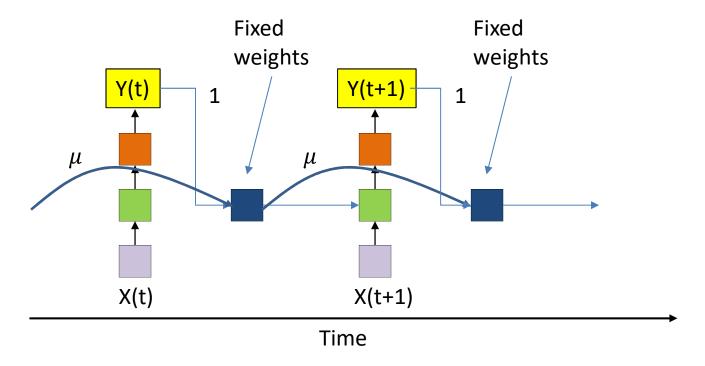
$$m_t = r(y_{t-1}, h_{t-1}, m_{t-1})$$

$$h_t = f(x_t, m_t)$$

$$y_t = g(h_t)$$

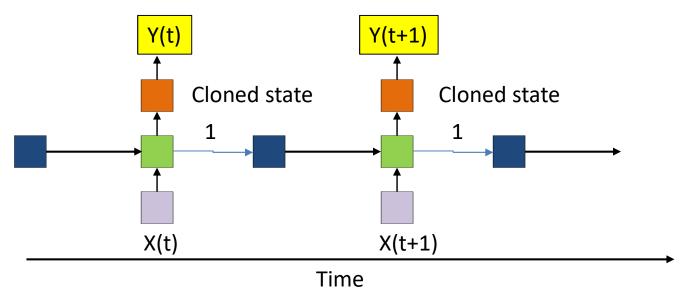
- m_t is a "memory" variable
 - Generally stored in a "memory" unit
 - Used to "remember" the past

Jordan Network



- Memory unit simply retains a running average of past outputs
 - "Serial order: A parallel distributed processing approach", M.I.Jordan, 1986
 - Input is constant (called a "plan")
 - Objective is to train net to produce a specific output, given an input plan
 - Memory has fixed structure; does not "learn" to remember
 - The running average of outputs considers entire past, rather than immediate past,

Elman Networks



- Separate memory state from output
 - "Context" units that carry historical state
 - "Finding structure in time", Jeffrey Elman, Cognitive Science, 1990
 - For the purpose of training, this was approximated as a set of T independent 1-step history nets
- Only the weight from the memory unit to the hidden unit is learned
 - But during training no gradient is backpropagated over the "1" link

Story so far

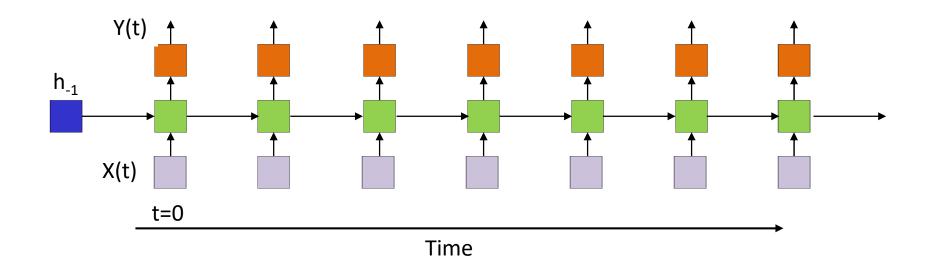
- In time series analysis, models must look at past inputs along with current input
 - Looking at a finite horizon of past inputs gives us a convolutional network
- Looking into the infinite past requires recursion
- NARX networks recurse by feeding back the output to the input
 - May feed back a finite horizon of outputs
- "Simple" recurrent networks:
 - Jordon networks maintain a running average of outputs in a "memory" unit
 - Elman networks store hidden unit values for one time instant in a "context" unit
 - "Simple" (or partially recurrent) because during learning current error does not actually propagate to the past
 - "Blocked" at the memory units in Jordan networks
 - "Blocked" at the "context" unit in Elman networks

An alternate model for infinite response systems: the state-space model

$$h_t = f(x_t, h_{t-1})$$
$$y_t = g(h_t)$$

- h_t is the *state* of the network
 - Model directly embeds the memory in the state
- Need to define initial state h_{-1}
- This is a *fully recurrent* neural network
 - Or simply a recurrent neural network
- State summarizes information about the entire past

The simple state-space model



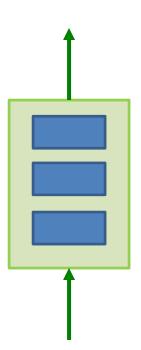
- The state (green) at any time is determined by the input at that time, and the state at the previous time
- An input at t=0 affects outputs forever
- Also known as a recurrent neural net

An alternate model for infinite response systems: the state-space model

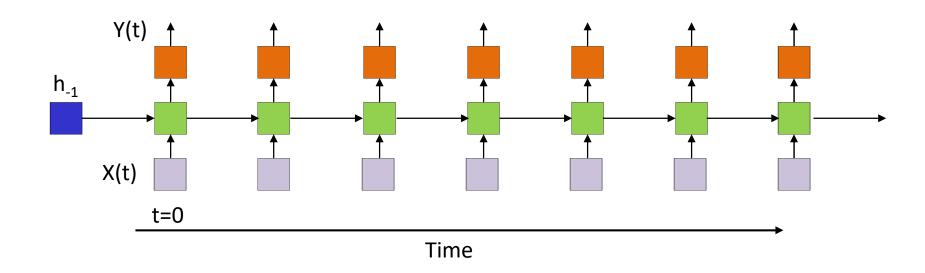
$$h_t = f(x_t, h_{t-1})$$
$$y_t = g(h_t)$$

- h_t is the *state* of the network
- Need to define initial state h_{-1}

The state an be arbitrarily complex

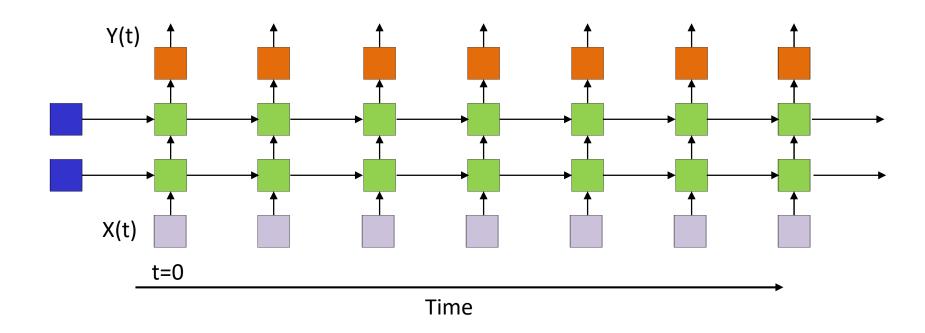


Single hidden layer RNN



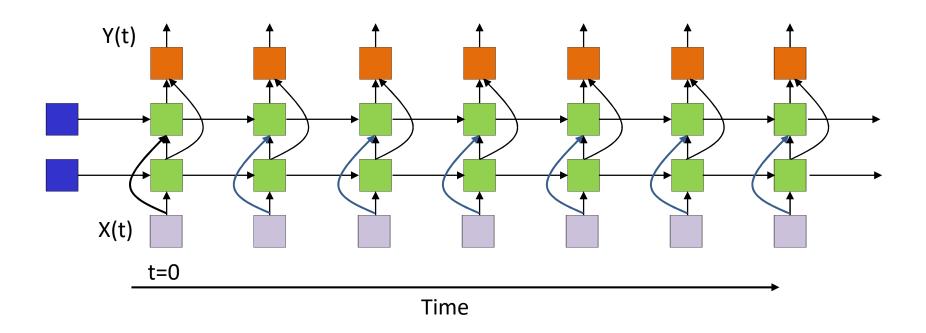
- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

Multiple recurrent layer RNN



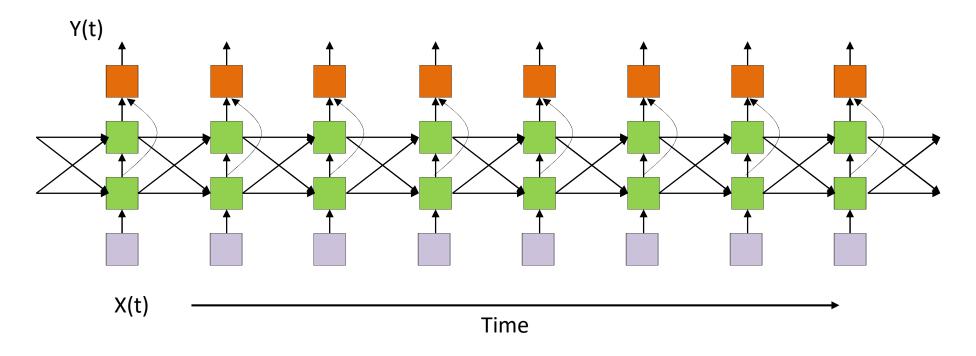
- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

Multiple recurrent layer RNN



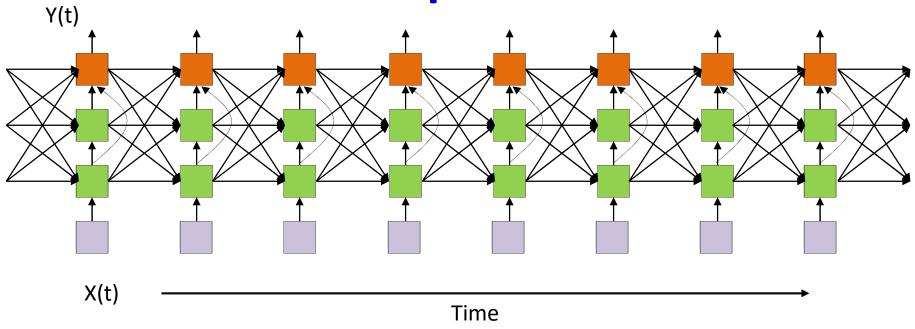
We can also have skips...

A more complex state



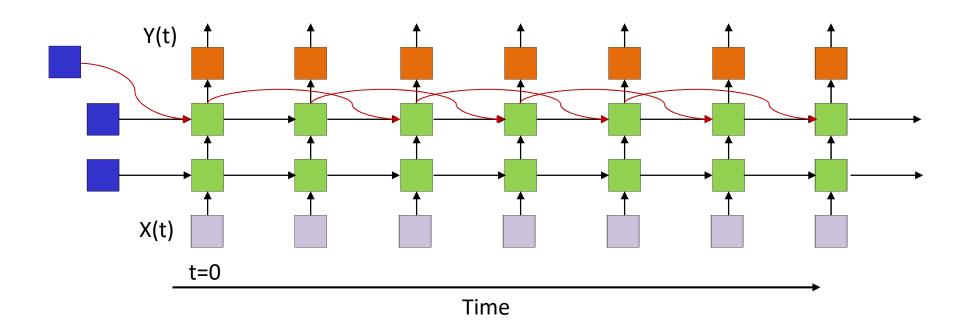
- All columns are identical
- An input at t=0 affects outputs forever

Or the network may be even more complicated



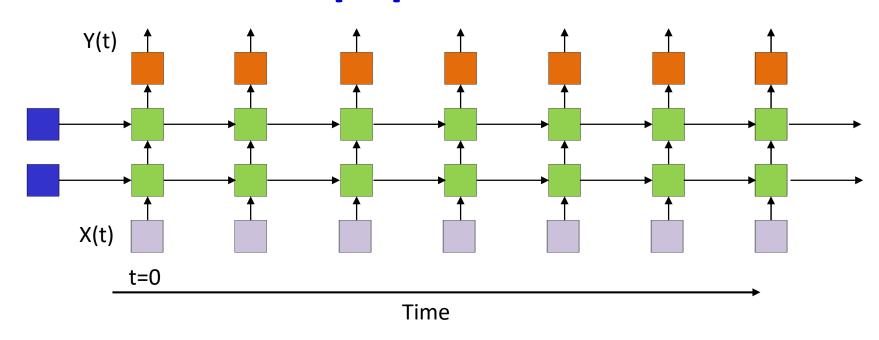
- Shades of NARX
- All columns are identical
- An input at t=0 affects outputs forever

Generalization with other recurrences



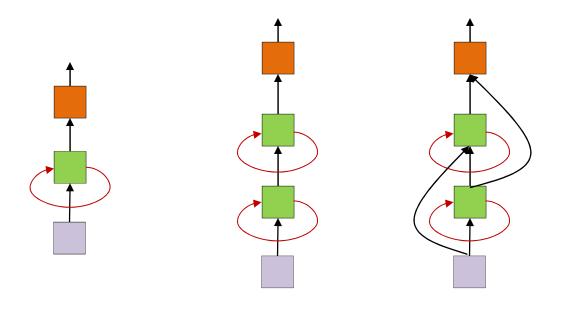
All columns (including incoming edges) are identical

The simplest structures are most popular



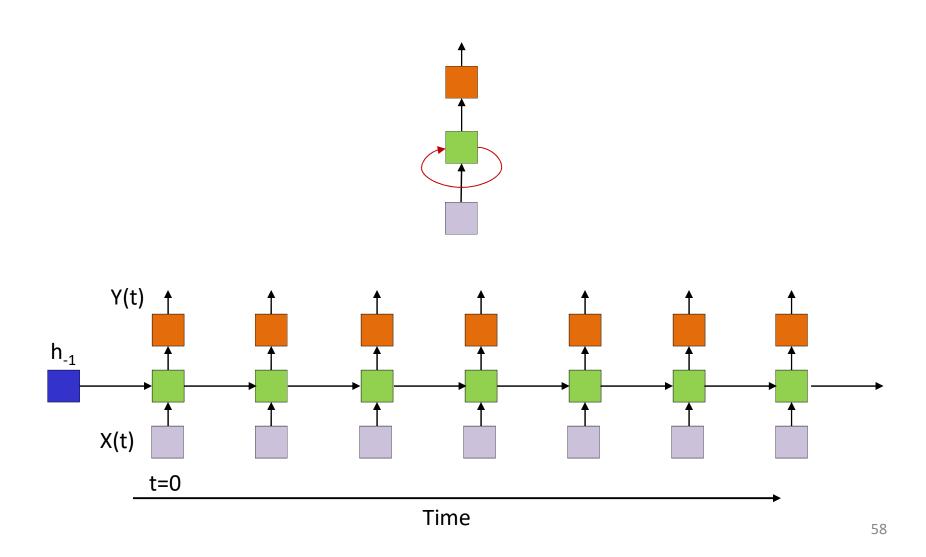
- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

A Recurrent Neural Network

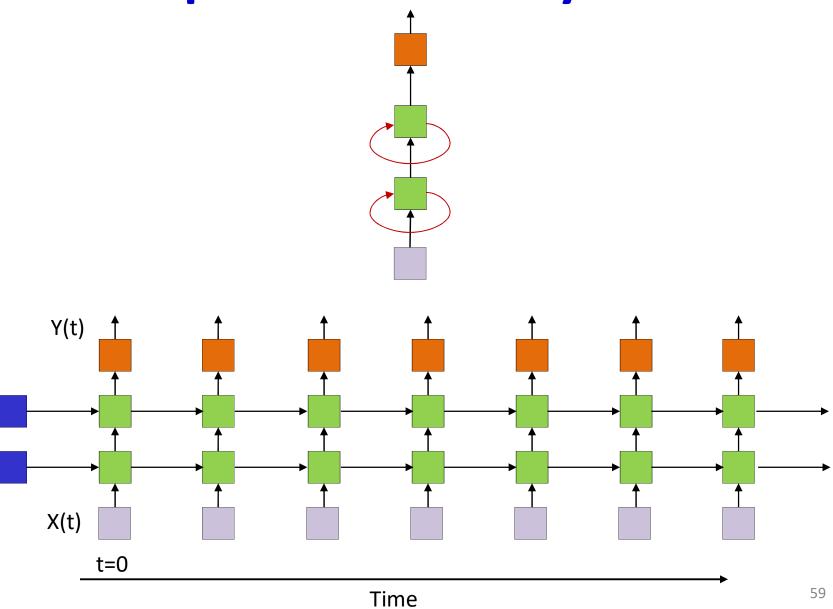


- Simplified models often drawn
- The loops imply recurrence

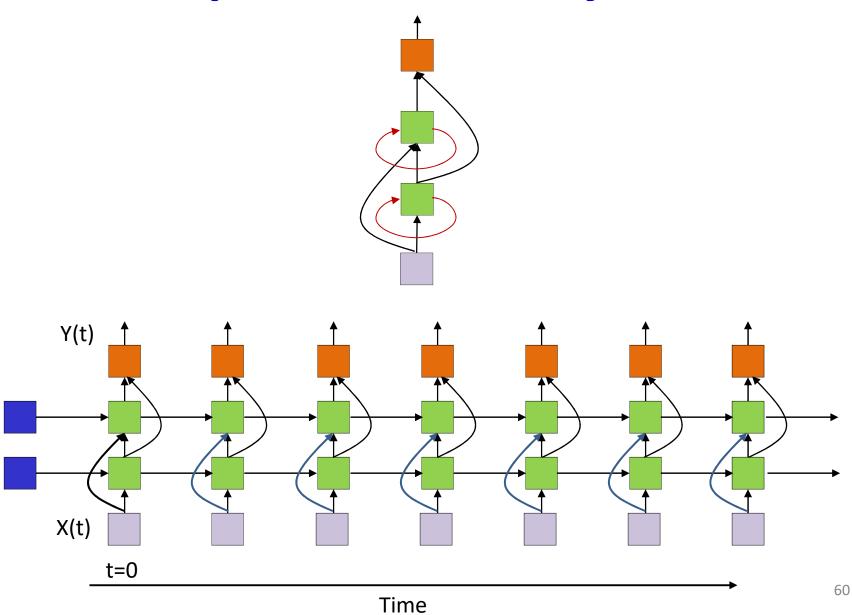
The detailed version of the simplified representation



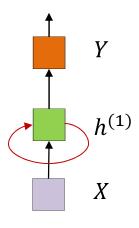
Multiple recurrent layer RNN



Multiple recurrent layer RNN



Equations



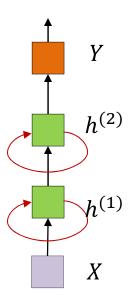
$$h_i^{(1)}(-1) = part\ of\ network\ parameters$$

$$h_i^{(1)}(t) = f_1 \left(\sum_j w_{ji}^{(0)} X_j(t) + \sum_j w_{ji}^{(11)} h_i^{(1)}(t-1) + b_i^{(1)} \right)$$

$$Y(t) = f_2 \left(\sum_j w_{jk}^{(1)} h_j^{(1)}(t) + b_k^{(1)}, k = 1..M \right)$$

- Note superscript in indexing, which indicates layer of network from which inputs are obtained
- Assuming vector function at output, e.g. softmax
- The *state* node activation, f_1 () is typically tanh()
- Every neuron also has a bias input

Equations



$$h_i^{(1)}(-1) = part \ of \ network \ parameters$$

 $h_i^{(2)}(-1) = part \ of \ network \ parameters$

$$h_i^{(1)}(t) = f_1 \left(\sum_j w_{ji}^{(0)} X_j(t) + \sum_j w_{ji}^{(11)} h_i^{(1)}(t-1) + b_i^{(1)} \right)$$

$$h_i^{(2)}(t) = f_2 \left(\sum_j w_{ji}^{(1)} h_j^{(1)}(t) + \sum_j w_{ji}^{(22)} h_i^{(2)}(t-1) + b_i^{(2)} \right)$$

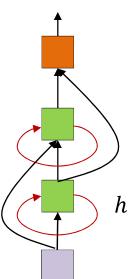
$$Y(t) = f_3 \left(\sum_j w_{jk}^{(2)} h_j^{(2)}(t) + b_k^{(3)}, k = 1...M \right)$$

- Assuming vector function at output, e.g. softmax $f_3()$
- The state node activations, $f_k()$ are typically tanh()
- Every neuron also has a bias input

Equations

$$h_i^{(1)}(-1) = part\ of\ network\ parameters$$

$$h_i^{(2)}(-1) = part\ of\ network\ parameters$$

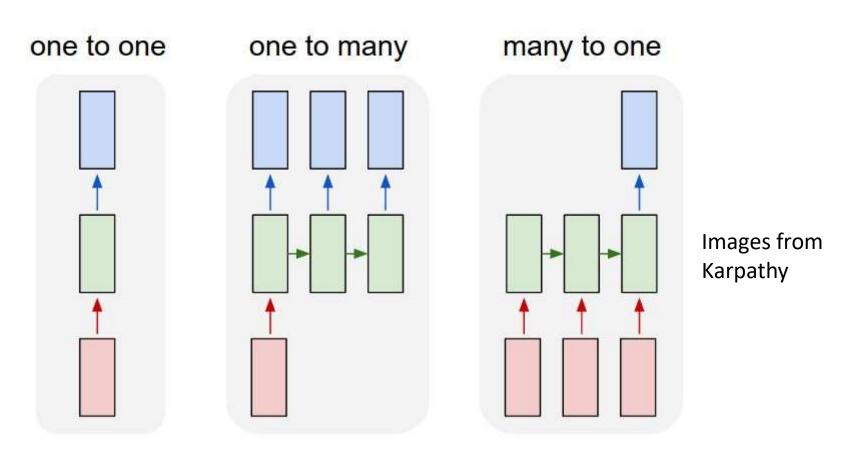


$$h_i^{(1)}(t) = f_1 \left(\sum_j w_{ji}^{(0,1)} X_j(t) + \sum_i w_{ii}^{(1,1)} h_i^{(1)}(t-1) + b_i^{(1)} \right)$$

$$h_i^{(2)}(t) = f_2 \left(\sum_j w_{ji}^{(1,2)} h_j^{(1)}(t) + \sum_j w_{ji}^{(0,2)} X_j(t) + \sum_i w_{ii}^{(2,2)} h_i^{(2)}(t-1) + b_i^{(2)} \right)$$

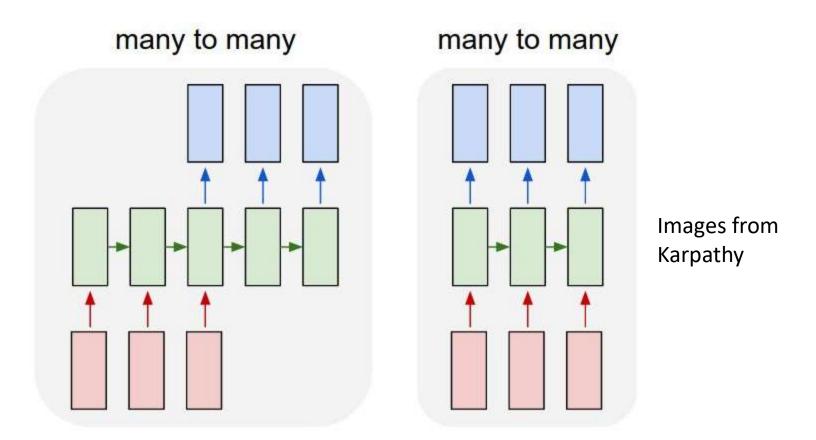
$$Y_i(t) = f_3 \left(\sum_j w_{jk}^{(2)} h_j^{(2)}(t) + \sum_j w_{jk}^{(1,3)} h_j^{(1)}(t) + b_k^{(3)}, k = 1..M \right)$$

Variants on recurrent nets



- 1: Conventional MLP
- 2: Sequence *generation*, e.g. image to caption
- 3: Sequence based *prediction or classification*, e.g. Speech recognition, text classification

Variants

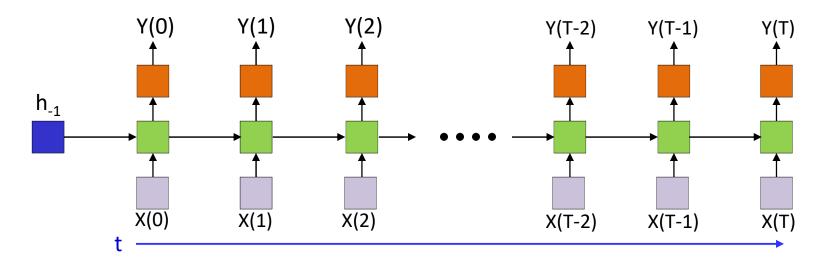


- 1: *Delayed* sequence to sequence
- 2: Sequence to sequence, e.g. stock problem, label prediction
- Etc...

Story so far

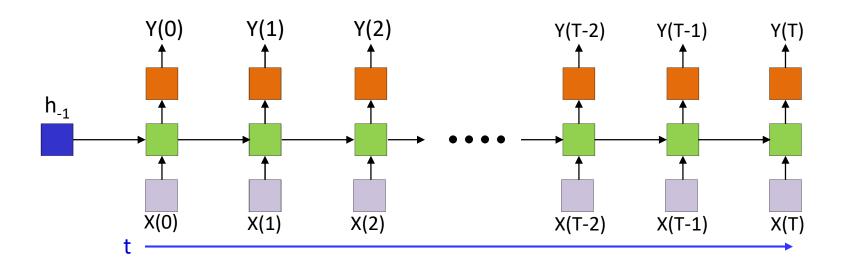
- Time series analysis must consider past inputs along with current input
- Looking into the infinite past requires recursion
- NARX networks achieve this by feeding back the output to the input
- "Simple" recurrent networks maintain separate "memory" or "context" units to retain some information about the past
 - But during learning the current error does not influence the past
- State-space models retain information about the past through recurrent hidden states
 - These are "fully recurrent" networks
 - The initial values of the hidden states are generally learnable parameters as well
- State-space models enable current error to update parameters in the past

How do we train the network



- Back propagation through time (BPTT)
- Given a collection of *sequence* inputs
 - $(\mathbf{X}_i, \mathbf{D}_i)$, where
 - $\mathbf{X}_i = X_{i,0}, \dots, X_{i,T}$
 - $\mathbf{D}_{i} = D_{i,0}, \dots, D_{i,T}$
- Train network parameters to minimize the error between the output of the network $\mathbf{Y}_i = Y_{i,0}, \dots, Y_{i,T}$ and the desired outputs
 - This is the most generic setting. In other settings we just "remove" some of the input or output entries

Training: Forward pass

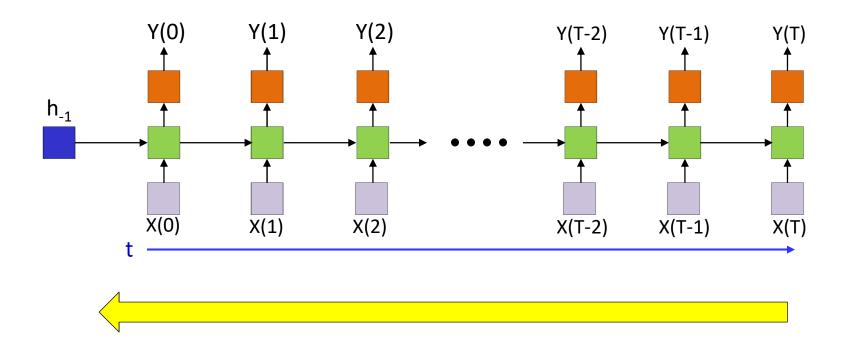


- For each training input:
- Forward pass: pass the entire data sequence through the network, generate outputs

Recurrent Neural Net Assuming time-synchronous output

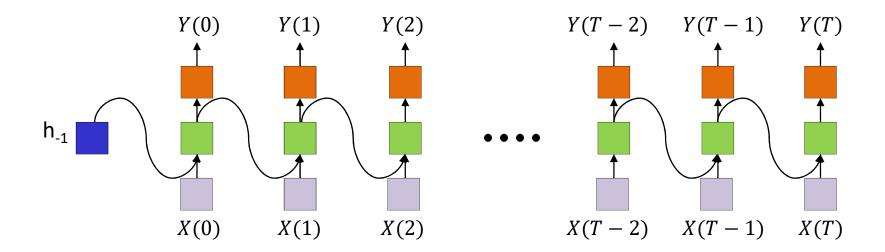
```
# Assuming h(-1,*) is known
# Assuming L hidden-state layers and an output layer
\# W_c(*) and W_r(*) are matrics, b(*) are vectors
# W<sub>c</sub> are weights for inputs from current time
# W<sub>r</sub> is recurrent weight applied to the previous time
# Wo are output layre weights
for t = 0:T-1 # Including both ends of the index
    h(t,0) = x(t) \# Vectors. Initialize h(0) to input
    for l = 1:L # hidden layers operate at time t
        z(t,1) = W_c(1)h(t,1-1) + W_r(1)h(t-1,1) + b(1)
        h(t,l) = tanh(z(t,l)) # Assuming tanh activ.
    z_o(t) = W_oh(t,L) + b_o
    Y(t) = softmax(z_0(t))
```

Training: Computing gradients



- For each training input:
- Backward pass: Compute gradients via backpropagation
 - Back Propagation Through Time

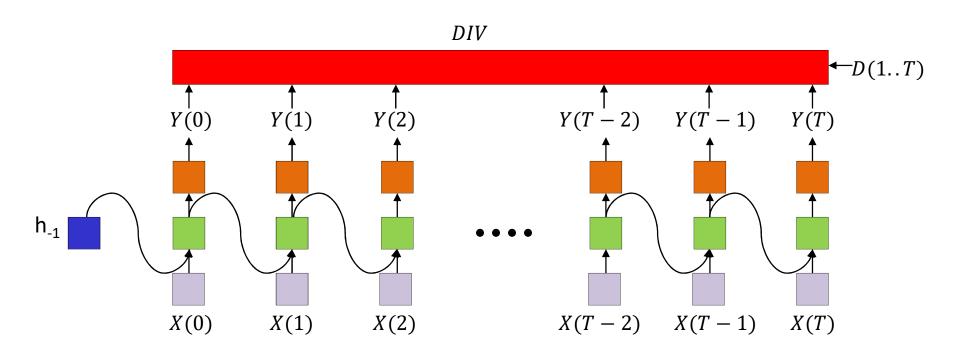
Back Propagation Through Time



Will only focus on one training instance

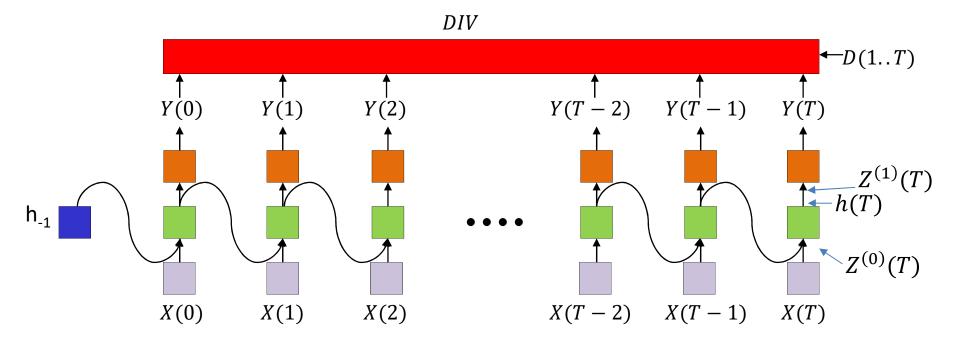
All subscripts represent components and not training instance index

Back Propagation Through Time

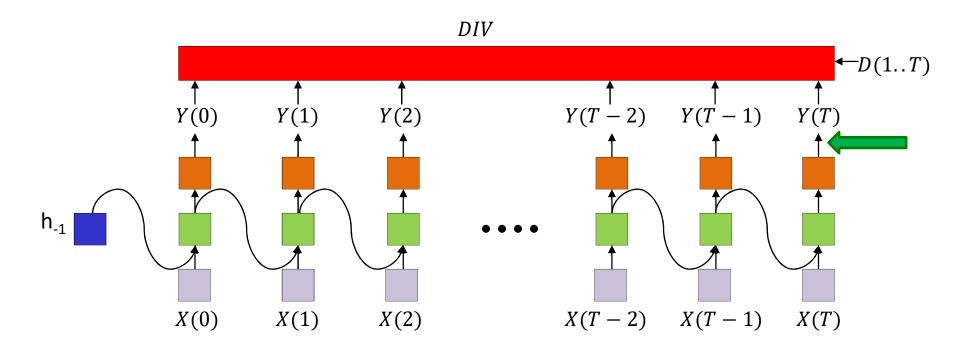


- The divergence computed is between the *sequence of outputs* by the network and the *desired sequence of outputs*
 - DIV is a scalar function of a series of vectors!
- This is not just the sum of the divergences at individual times
 - Unless we explicitly define it that way

Notation



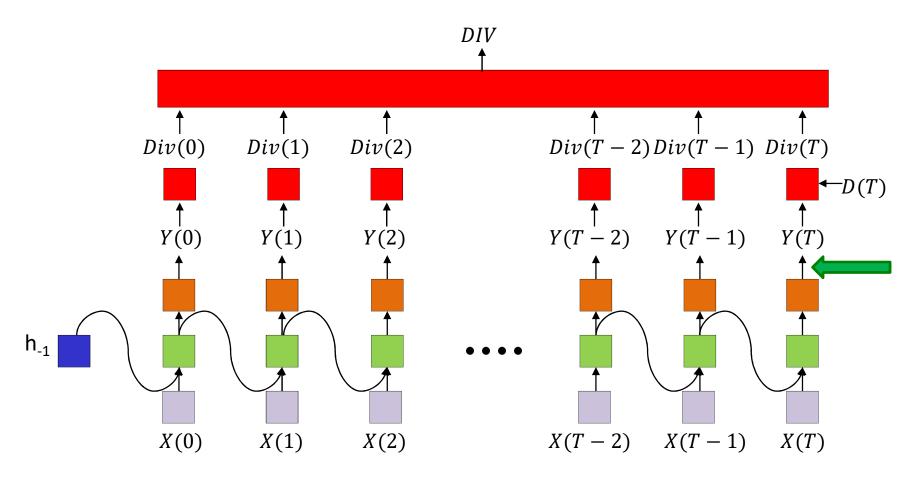
- Y(t) is the output at time t
 - $-Y_i(t)$ is the ith output
- $Z^{(1)}(t)$ is the pre-activation value of the neurons at the output layer at time t
- h(t) is the output of the hidden layer at time t
 - Assuming only one hidden layer in this example
- $Z^{(0)}(t)$ is the pre-activation value of the hidden layer at time t



First step of backprop: Compute $\frac{dDIV}{dY_i(T)}$ for all i

Note: DIV is a function of all outputs Y(0) ... Y(T)

In general we will be required to compute $\frac{dDIV}{dY_i(t)}$ for all i and t as we will see. This can be a source of significant difficulty in many scenarios.



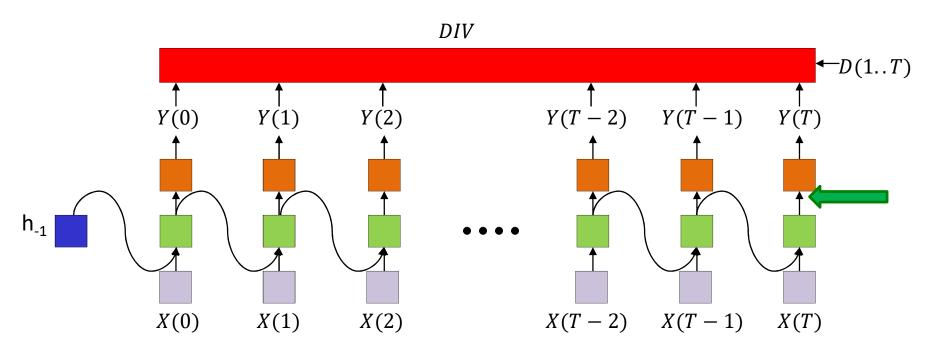
Special case, when the overall divergence is a simple combination of local divergences at each time:

Must compute

 $\frac{dDIV}{dY_i(t)}$ for all i for all T

Will usually get

$$\frac{dDIV}{dY_i(t)} = \frac{dDiv(t)}{dY_i(t)}$$



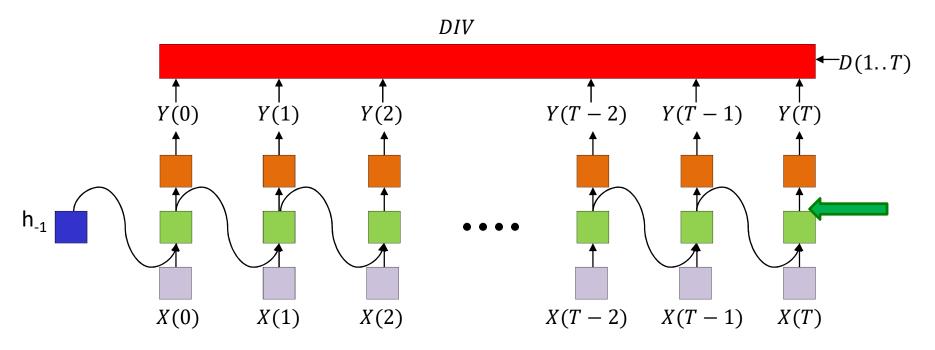
First step of backprop: Compute $\frac{dDIV}{dY_i(T)}$ for all i

$$\nabla_{Z^{(1)}(T)}DIV = \nabla_{Y(T)}DIV\nabla_{Z^{(1)}(T)}Y(T)$$

Vector output activation

$$\frac{dDIV}{dZ_i^{(1)}(T)} = \frac{dDIV}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(1)}(T)} \text{ OR } \frac{dDIV}{dZ_i(T)}$$

$$\frac{dDIV}{dZ_i(T)} = \sum_{j} \frac{dDIV}{dY_j(T)} \frac{dY_j(T)}{dZ_j^{(1)}(T)}$$



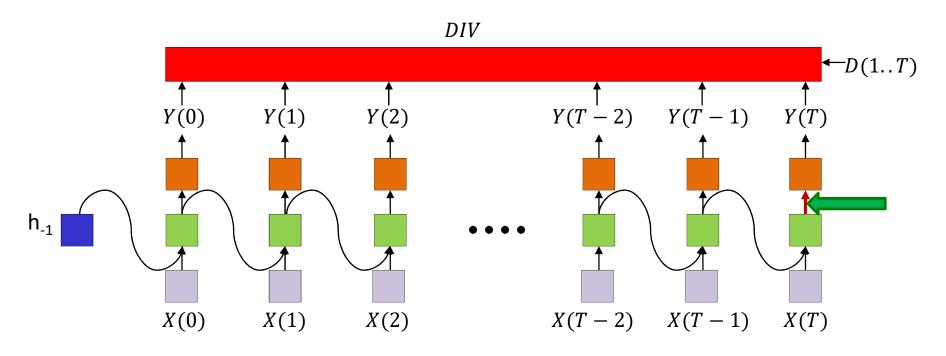
$$\frac{dDIV}{dY_i(T)} \text{ for all i}$$

$$\frac{dDIV}{dDIV} = \frac{dDiv(t)}{dt}$$

$$\frac{dDIV}{dZ_i^{(1)}(T)} = \frac{dDiv(T)}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(1)}(T)}$$

$$\frac{dDIV}{dh_i(T)} = \sum_{j} \frac{dDIV}{dZ_j^{(1)}(T)} \frac{dZ_j^{(1)}(T)}{dh_i(T)} = \sum_{j} w_{ij}^{(1)} \frac{dDIV}{dZ_j^{(1)}(T)}$$

$$\nabla_{h(T)}DIV = \nabla_{Z^{(1)}(T)}DIV W^{(1)}$$

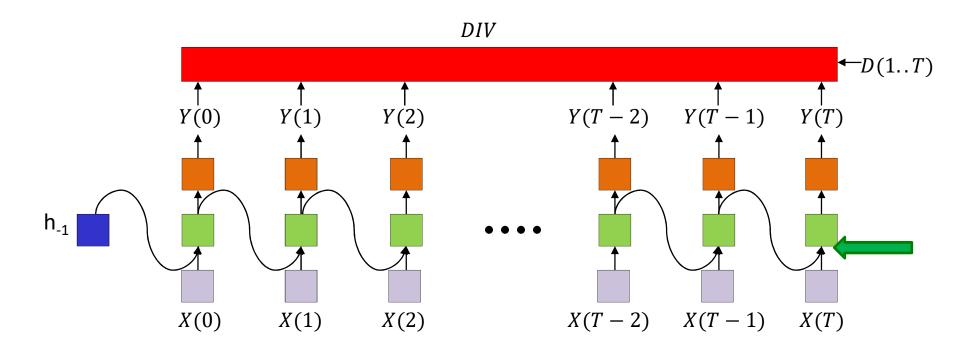


$$\frac{dDIV}{dZ_{i}^{(1)}(T)} = \frac{dDiv(T)}{dY_{i}(T)} \frac{dY_{i}(T)}{dZ_{i}^{(1)}(T)} \qquad \frac{dDIV}{dh_{i}(T)} = \sum_{i} w_{ij}^{(1)} \frac{dDIV}{dZ_{i}^{(1)}(T)}$$

$$\frac{dDIV}{dh_i(T)} = \sum_j w_{ij}^{(1)} \frac{dDIV}{dZ_j^{(1)}(T)}$$

$$\nabla_{W^{(1)}}DIV = h(T)\nabla_{Z^{(1)}(T)}DIV$$

$$\frac{dDIV}{dw_{ij}^{(1)}} = \frac{dDIV}{dZ_j^{(1)}(T)} h_i(T)$$



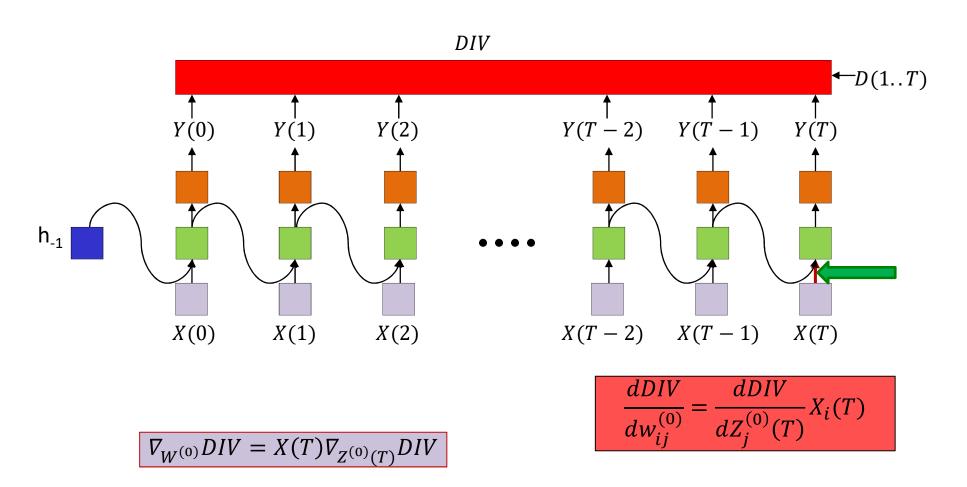
$$\nabla_{Z^{(0)}(T)}DIV = \nabla_{h(T)}DIV \nabla_{Z^{(0)}(T)}h(T)$$

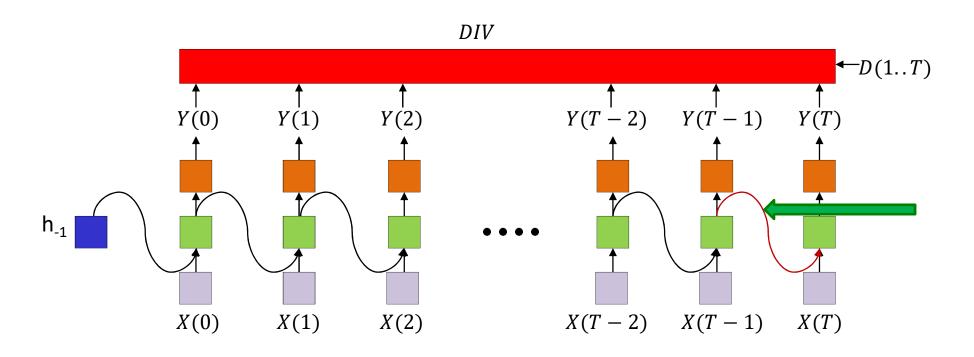
$$\frac{dDIV}{dZ_i^{(0)}(T)} = \frac{dDIV}{dh_i(T)} \frac{dh_i(T)}{dZ_i^{(0)}(T)}$$

$$\frac{dDIV}{dZ_i^{(1)}(T)} = \frac{dDIV}{dY_i(T)} \frac{dY_i(T)}{dZ_i^{(1)}(T)}$$

$$\frac{dDIV}{dh_i(T)} = \sum_{i} w_{ij}^{(1)} \frac{dDIV}{dZ_i^{(1)}(T)}$$

$$\frac{dDIV}{dw_{ij}^{(1)}} = \frac{dDIV}{dZ_i^{(1)}(T)} h_i(T)$$

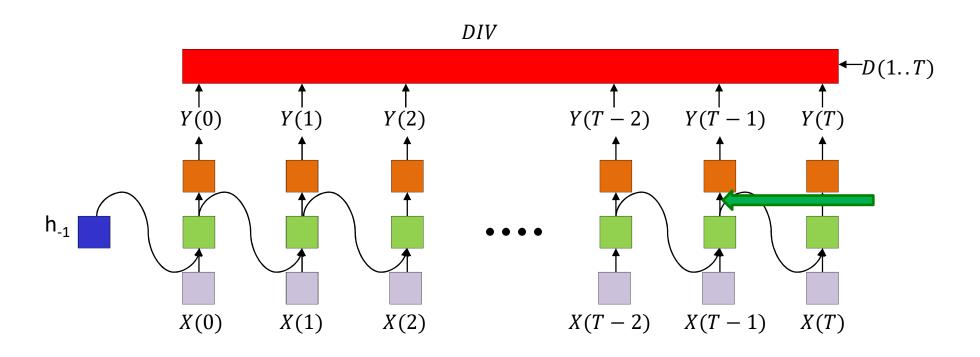




$$\nabla_{W^{(11)}}DIV = h(T-1)\nabla_{Z^{(0)}(T)}DIV$$

$$\frac{dDIV}{dw_{ij}^{(0)}} = \frac{dDIV}{dZ_j^{(0)}(T)} X_i(T)$$

$$\frac{dDIV}{dw_{ij}^{(11)}} = \frac{dDIV}{dZ_j^{(0)}(T)} h_i(T-1)$$

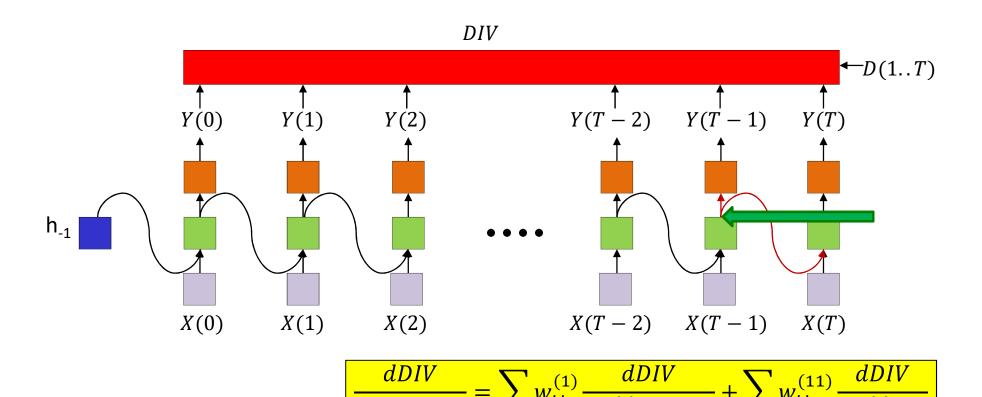


$$\nabla_{Z^{(1)}(T-1)}DIV = \nabla_{Y(T-1)}DIV \nabla_{Z^{(1)}(T)}Y(T-1)$$

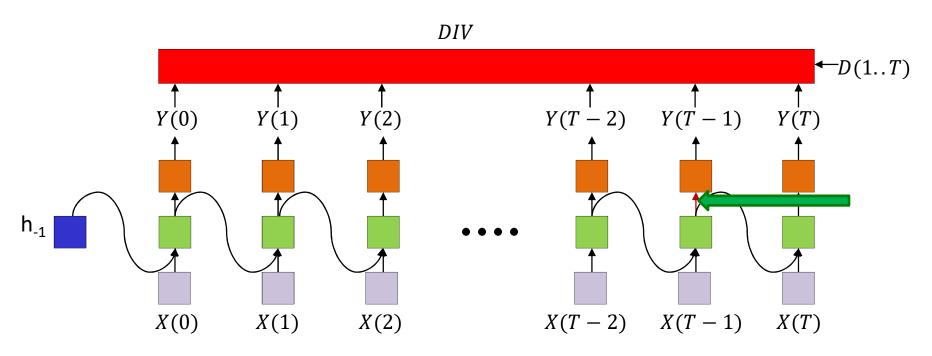
Vector output activation

$$\frac{dDIV}{dZ_i^{(1)}(T-1)} = \frac{dDIV}{dY_i(T-1)} \frac{dY_i(T-1)}{dZ_i^{(1)}(T-1)}$$
 OR

$$\frac{dDIV}{dZ_i^{(1)}(T-1)} = \sum_j \frac{dDIV}{dY_j(T-1)} \frac{dY_j(T-1)}{dZ_i^{(1)}(T-1)}$$



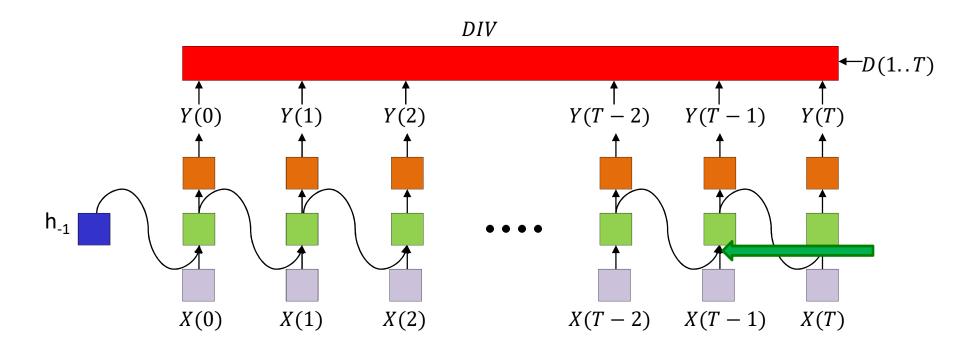
$$\nabla_{h(T-1)}DIV = \nabla_{Z^{(1)}(T-1)}DIV W^{(1)} + \nabla_{Z^{(0)}(T)}DIV W^{(11)}$$



$$\frac{dDIV}{dh_i(T-1)} = \sum_j w_{ij}^{(1)} \frac{dDIV}{dZ_j^{(1)}(T-1)} + \sum_j w_{ij}^{(11)} \frac{dDIV}{dZ_j^{(0)}(T)}$$

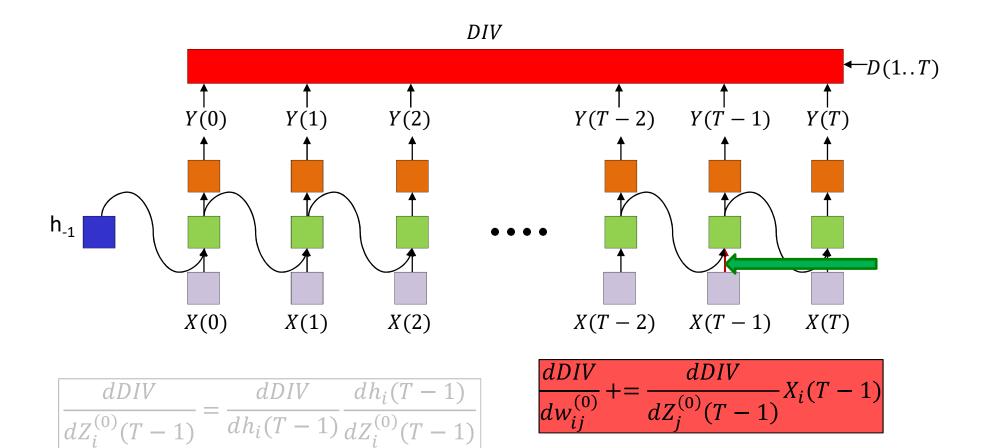
$$\frac{dDIV}{dw_{ij}^{(1)}} += \frac{dDIV}{dZ_{j}^{(1)}(T-1)} h_{i}(T-1)$$

$$\nabla_{W^{(1)}}DIV += h(T-1)\nabla_{Z^{(1)}(T-1)}DIV$$



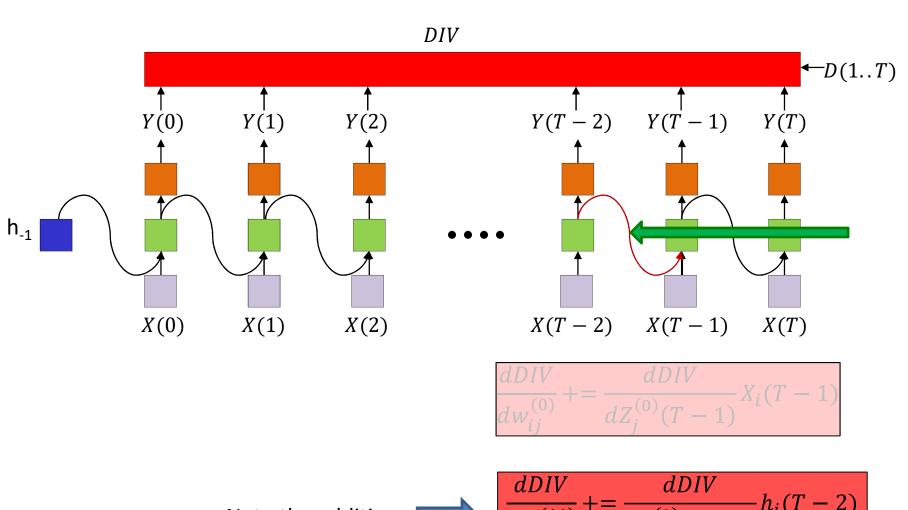
$$\frac{dDIV}{dZ_i^{(0)}(T-1)} = \frac{dDIV}{dh_i(T-1)} \frac{dh_i(T-1)}{dZ_i^{(0)}(T-1)}$$

$$\nabla_{Z^{(0)}(T-1)}DIV = \nabla_{h(T-1)}DIV \nabla_{Z^{(0)}(T-1)}h(T-1)$$



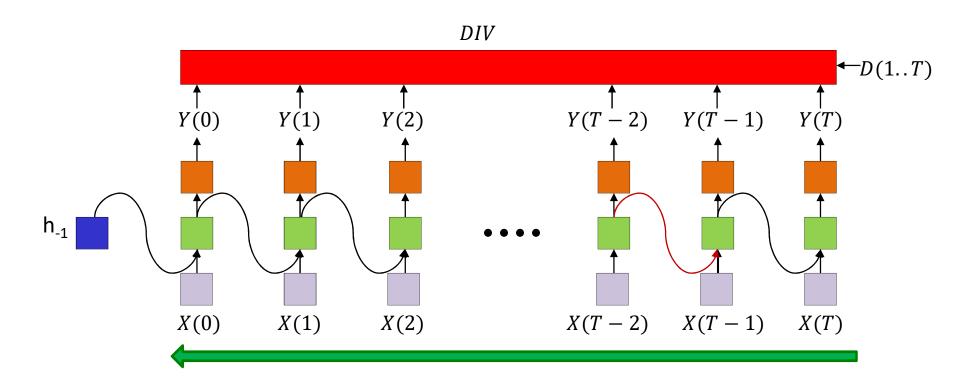
Note the addition

$$\nabla_{W^{(0)}}DIV += X(T-1)\nabla_{Z^{(0)}(T-1)}DIV$$



Note the addition
$$\frac{dDIV}{dw_{ij}^{(11)}} + = \frac{dDIV}{dZ_{j}^{(0)}(T-1)} h_{i}(T-2)$$

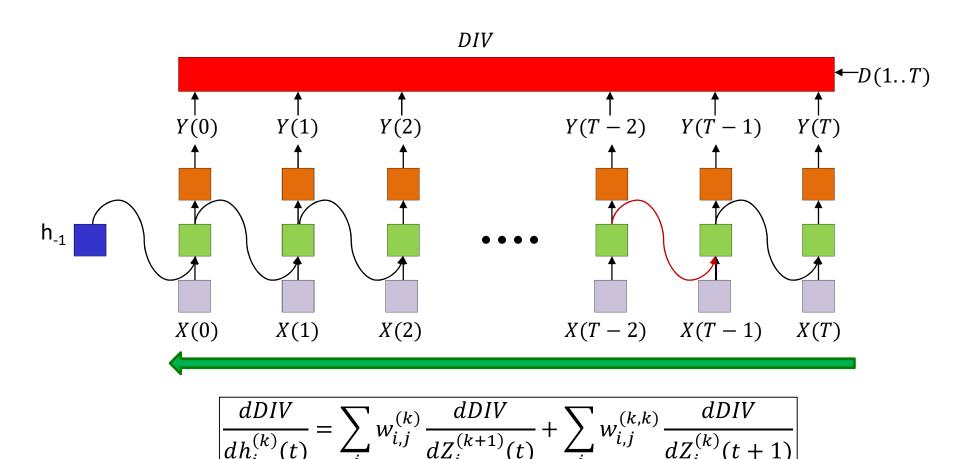
$$\nabla_{W^{(11)}}DIV + = h(T-2)\nabla_{Z^{(0)}(T-1)}DIV$$



Continue computing derivatives going backward through time until..

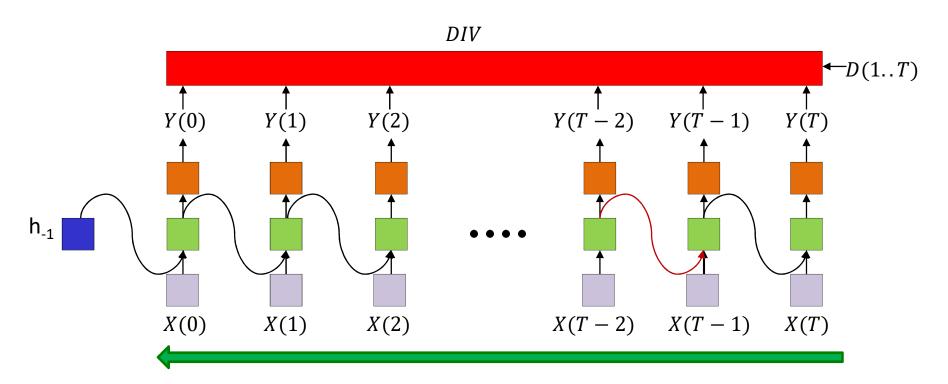
$$\frac{dDIV}{dh_{-1}} = \sum_{j} w_{ij}^{(11)} \frac{dDIV}{dZ_{j}^{(1)}(0)}$$

$$\nabla_{h_{-1}}DIV = \nabla_{Z^{(1)}(0)}DIVW^{(11)}$$



Not showing derivatives at output neurons

$$\frac{dDIV}{dZ_i^{(k)}(t)} = \frac{dDIV}{dh_i^{(k)}(t)} f_k' \left(Z_i^{(k)}(t) \right)$$



$$\frac{dDIV}{dh_{-1}} = \sum_{j} w_{ij}^{(11)} \frac{dDIV}{dZ_{j}^{(1)}(0)}$$

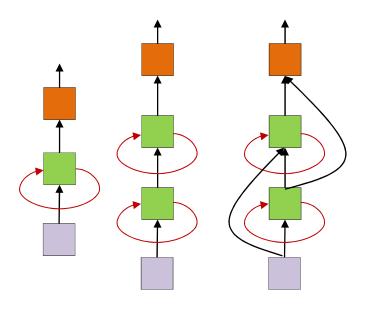
$$\frac{dDIV}{dw_{ij}^{(0)}} = \sum_{t} \frac{dDIV}{dZ_j^{(0)}(t)} X_i(t)$$

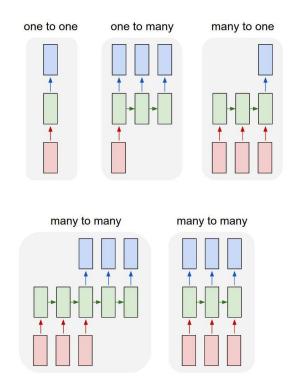
$$\frac{dDIV}{dw_{ij}^{(11)}} = \sum_{t} \frac{dDIV}{dZ_{j}^{(0)}(t)} h_{i}(t-1)$$
₉₀

BPTT

```
# Assuming forward pass has been completed
# Jacobian(x,y) is the jacobian of x w.r.t. y
# Assuming dY(t) = gradient(div,Y(t)) available for all t
# Assuming all dz, dh, dW and db are initialized to 0
for t = T-1:downto:0 # Backward through time
    dz_{o}(t) = dY(t) Jacobian(Y(t), z_{o}(t))
    dW_0 += h(t,L)dz_0(t)
    db(L) += dz(t)
    dh(t,L) += dz_0(t)W_0
    for 1 = L:1 # Reverse through layers
        dz(t,l) = dh(t,l) Jacobian(h(t,l),z(t,l))
        dh(t,l-1) += dz(t,l) W_{c}(1)
        dh(t-1,1) += dz(t,1) W_r(1)
        dW_{c}(1) += h(t,1-1)dz(t,1)
        dW_r(1) += h(t-1,1)dz(t,1)
        db(1) += dz(t,1)
                                                          91
```

BPTT

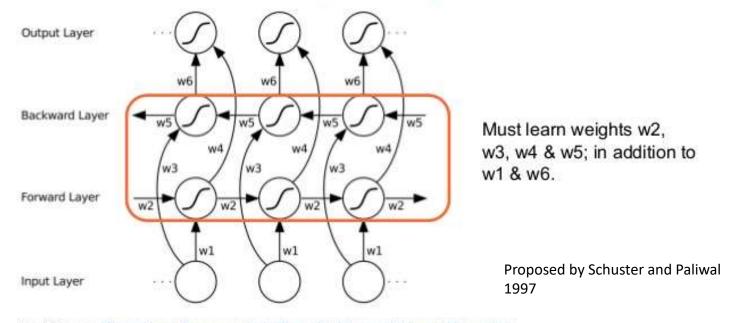




Can be generalized to any architecture

Extensions to the RNN: Bidirectional RNN

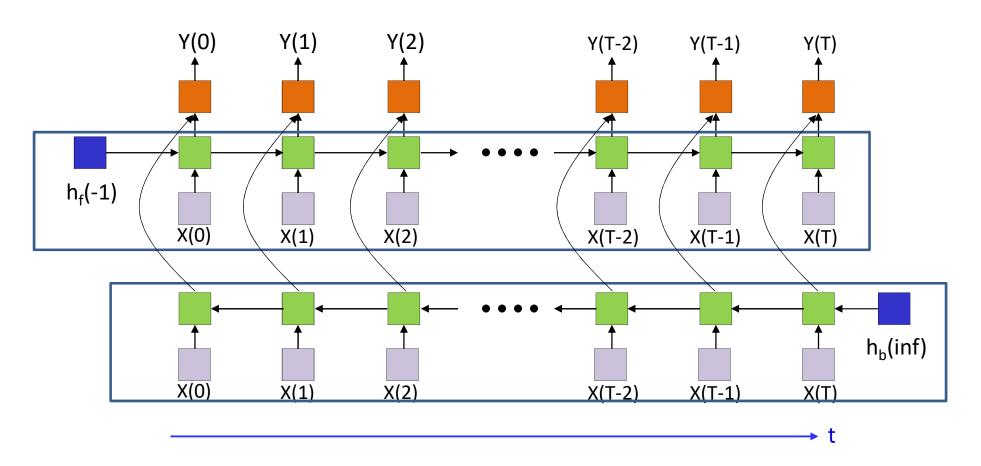
Bidirectional RNN (BRNN)



Alex Graves, "Supervised Sequence Labelling with Recurrent Neural Networks"

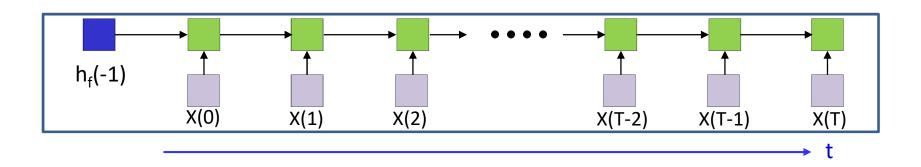
- RNN with both forward and backward recursion
 - Explicitly models the fact that just as the future can be predicted from the past, the past can be deduced from the future

Bidirectional RNN



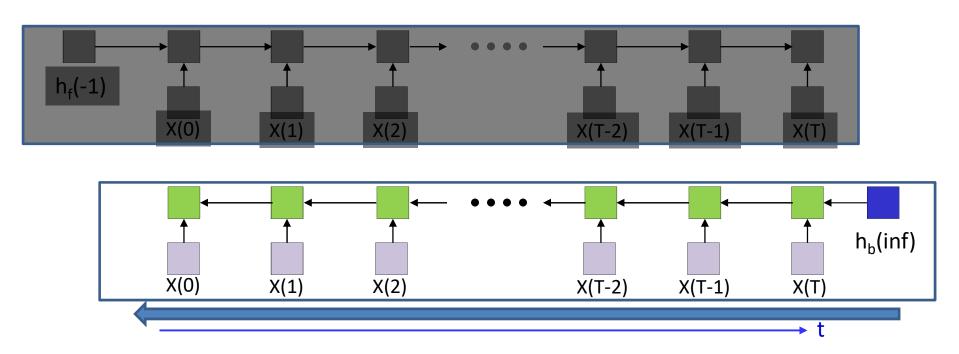
- A forward net process the data from t=0 to t=T
- A backward net processes it backward from t=T down to t=0

Bidirectional RNN: Processing an input string



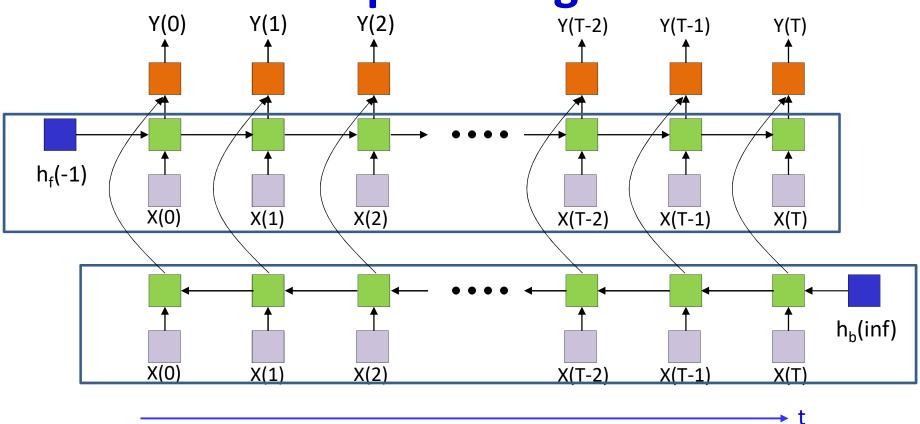
- The forward net process the data from t=0 to t=T
 - Only computing the hidden states, initially

Bidirectional RNN: Processing an input string



- The backward nets processes the input data in reverse time, end to beginning
 - Initially only the hidden state values are computed
 - Clearly, this is not an online process and requires the entire input data
 - Note: This is not the backward pass of backprop.

Bidirectional RNN: Processing an input string



 The computed states of both networks are used to compute the final output at each time.

Bidirectional RNN Assuming time-synchronous output

```
# Subscript f represents forward net, b is backward net
# Assuming h_f(-1,*) and h_b(inf,*) are known
#forward pass
for t = 0:T-1 # Going forward in time
    h_f(t,0) = x(t) \# Vectors. Initialize h(0) to input
    for 1 = 1:L<sub>f</sub> # L<sub>f</sub> is depth of forward network hidden layers
         z_f(t,1) = W_{fc}(1)h_f(t,1-1) + W_{fr}(1)h_f(t-1,1) + b_f(1)
         h_f(t,1) = \tanh(z_f(t,1)) \# Assuming tanh activ.
#backward
h(T,:,:) = h(\inf,:,:) # Just the initial value
for t = T-1:downto:0 # Going backward in time
    h_h(t,0) = x(t) \# Vectors. Initialize h(0) to input
    for 1 = 1:L<sub>b</sub> # L<sub>b</sub> is depth of backward network hidden layers
         z_b(t,1) = W_{bc}(1)h_b(t,1-1) + W_{br}(1)h(t+1,1) + b_b(1)
         h_b(t,1) = \tanh(z_b(t,1)) \# Assuming tanh activ.
for t = 0:T-1 # The output combines forward and backward
      z_o(t) = W_{fo}h_f(t,L_f) + W_{bo}h_b(t,L_b) + b_o
     Y(t) = softmax(z_0(t))
```

Bidirectional RNN: Simplified code

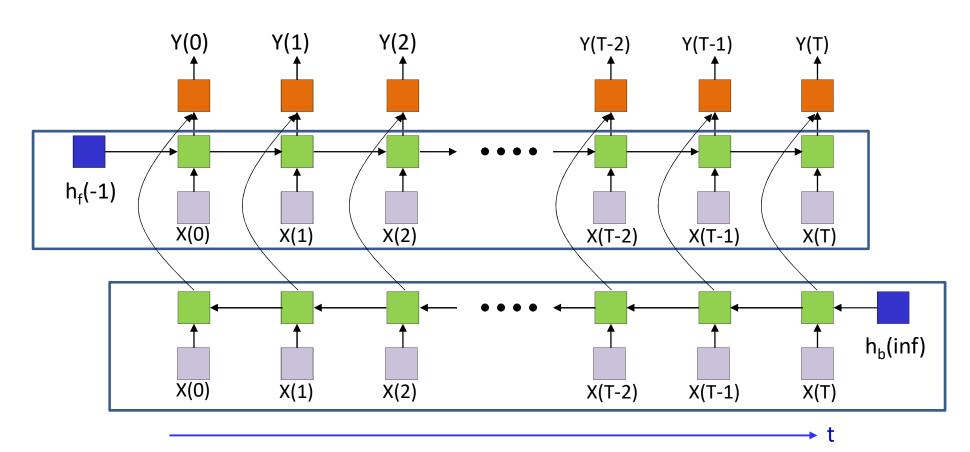
 Code can be made modular and simplified for better interpretability...

First: Define basic RNN with only hidden units

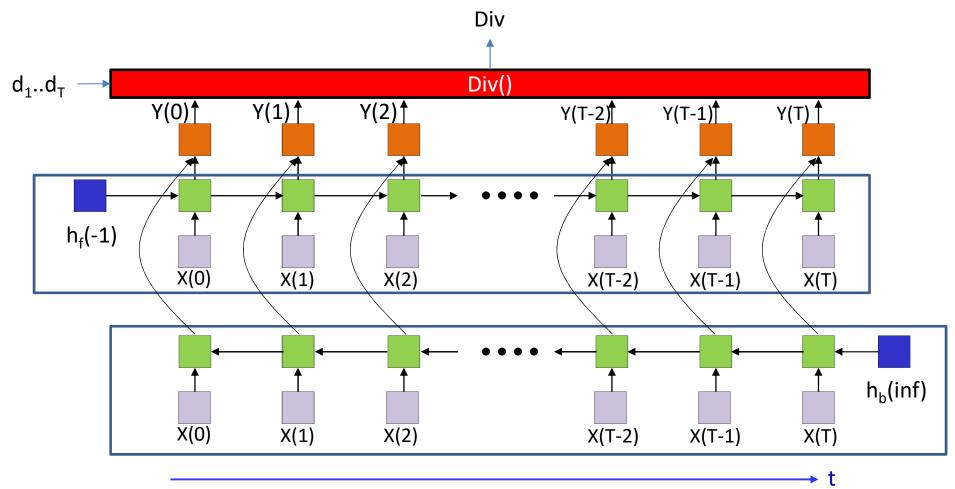
```
# Inputs:
#
     L : Number of hidden layers
#
    W<sub>c</sub>,W<sub>r</sub>,b: current weights, recurrent weights, biases
#
     hinit: initial value of h(representing h(-1,*))
     x: input vector sequence
#
     T: Length of input vector sequence
# Output:
#
     h, z: sequence of pre-and post activation hidden
#
           representations from all layers of the RNN
function [h,z] = RNN \text{ forward}(L, W_a, W_r, b, hinit, x, T)
    h(-1,:) = hinit # hinit is the initial value for all layers
    for t = 0:T-1 # Going forward in time
        h(t,0) = x(t) \# Vectors. Initialize h(0) to input
        for 1 = 1:I_{-}
            z(t,1) = W_c(1)h(t,1-1) + W_r(1)h(t-1,1) + b(1)
            h(t,1) = tanh(z(t,1)) # Assuming tanh activ.
    return h,z
```

Bidirectional RNN Assuming time-synchronous output

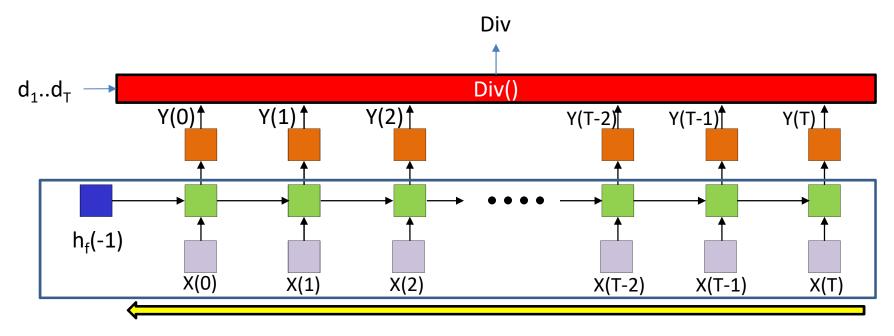
```
# Subscript f represents forward net, b is backward net
# Assuming h_f(-1,*) and h_h(inf,*) are known
#forward pass
[h_f, z_f] = RNN \text{ forward}(L_f, W_{fc}, W_{fr}, b_f, h(-1,:), x, T)
#backward pass
x_{rev} = fliplr(x) # Flip it in time
[h_{brev}, z_{brev}] = RNN forward(L_b, W_{bc}, W_{br}, b_b, h(inf,:), x_{rev}, T)
h_{\rm b} = fliplr(h_{\rm brev})  # Flip back to straighten time
z_b = fliplr(z_{brev})
#combine the two for the output
for t = 0:T-1 # The output combines forward and backward
     z_o(t) = W_{fo}h_f(t,L_f) + W_{bo}h_b(t,L_b) + b_o
     Y(t) = softmax(z_0(t))
```



 Forward pass: Compute both forward and backward networks and final output

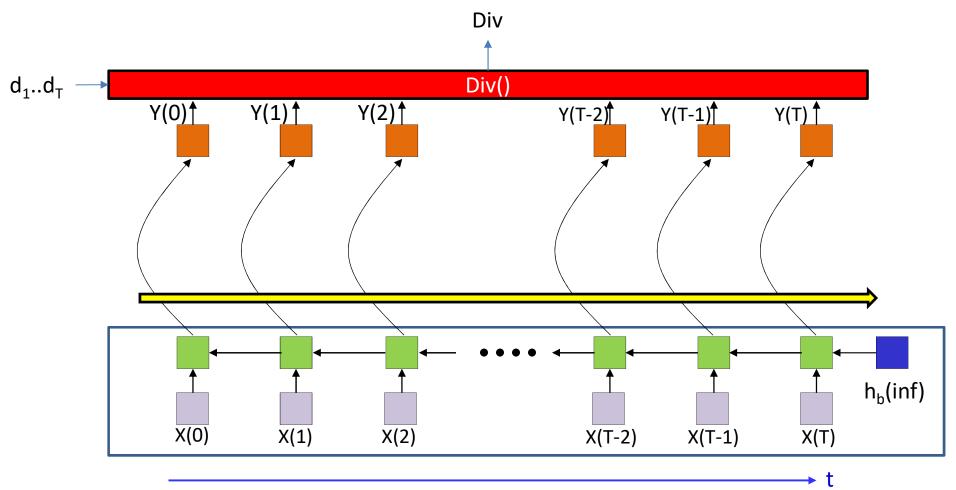


• Backward pass: Define a divergence from the desired output



t

- Backward pass: Define a divergence from the desired output
- Separately perform back propagation on both nets
 - From t=T down to t=0 for the forward net



- Backward pass: Define a divergence from the desired output
- Separately perform back propagation on both nets
 - From t=T down to t=0 for the forward net
 - From t=0 up to t=T for the backward net

Backpropagation: Pseudocode

- As before we will use a 2-step code:
 - A basic backprop routine that we will call
 - Two calls to the routine within a higher-level wrapper

First: backprop through a recurrent net

```
# Inputs:
      (In addition to inputs used by L : Number of hidden layers
     dh<sub>top</sub>: derivatives ddiv/dh<sub>*</sub>(t,L) at each time (* may be f or b)
     h, z: h and z values returned by the forward pass
     T: Length of input vector sequence
# Output:
     dW<sub>c</sub>, dW<sub>h</sub>, db dh<sub>init</sub>: derivatives w.r.t current and recurrent weights,
                           biases, and initial h.
# Assuming all dz, dh, dW<sub>c</sub>, dW<sub>r</sub> and db are initialized to 0
function [dW_c, dW_r, db, dh_{init}] = RNN bptt(L, W_c, W_r, b, hinit, x, T, dh_{top}, h, z)
    dh = zeros
    for t = T-1:downto:0 # Backward through time
         dh(t,L) += dh_{top}(t)
         for 1 = L:1 # Reverse through layers
             dz(t,1) = dh(t,1) Jacobian(h(t,1),z(t,1))
             dh(t,l-1) += dz(t,l) W_{a}(1)
             dh(t-1,1) += dz(t,1) W_r(1)
             dW_{c}(1) += h(t,1-1)dz(t,1)
             dW_{x}(1) += h(t-1,1)dz(t,1)
             db(1) += dz(t,1)
    return dWc, dWr, db, dh(-1) \# dh(-1) is actually dh(-1,1:L,:)
```

Bi-RNN gradient computatoin Assuming time-synchronous output

```
# Subscript f represents forward net, b is backward net
# First compute derivatives that directly relate to dY(t) for all t,
# then pass the derivatives into RNN bptt to compute forward and backward
# parameter derivatives
for t = 0:T-1 # The output combines forward and backward
    dz_o(t) = dY(t) Jacobian(Y(t), z_o(t))
    dh_{fo}(t) = dz_{o}(t)W_{fo}
    dh_{bo}(t) = dz_o(t)W_{bo}
    db_0 += dz_0(t)
    dW_{fo} += h_f(t,L)dz_o(t)
    dW_{bo} += h_b(t,L)dz_o(t)
#forward net
[dW_{fc}, dW_{fr}, db_f, dh_f(-1)] = RNN bptt(L, W_{fc}, W_{fr}, b_f, h_f(-1), x, T, dh_{fo}, h_f, z_f)
#backward net
x_{rev} = fliplr(x) # Flip it in time
[dW_{bc}, dW_{br}, db_{b}, dh_{b}(inf)] = RNN_bptt(L, W_{bc}, W_{br}, b_{b}, h_{b}(inf), x_{rev}, T, dh_{bo}, h_{b}, z_{b})
```

Story so far

- Time series analysis must consider past inputs along with current input
- Recurrent networks look into the infinite past through a state-space framework
 - Hidden states that recurse on themselves
- Training recurrent networks requires
 - Defining a divergence between the actual and desired output sequences
 - Backpropagating gradients over the entire chain of recursion
 - Backpropagation through time
 - Pooling gradients with respect to individual parameters over time
- Bidirectional networks analyze data both ways, begin → end → beginning to make predictions
 - In these networks, backprop must follow the chain of recursion (and gradient pooling) separately in the forward and reverse nets

RNNs..

- Excellent models for time-series analysis tasks
 - Time-series prediction
 - Time-series classification
 - Sequence prediction..

So how did this happen

```
Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]
```

So how did this happen

```
Naturalism and decision for the majority of Arab countries' capitalide was grounded
by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated
with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal
in the [[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom
of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known
in western [[Scotland]], near Italy to the conquest of India with the conflict.
Copyright was the succession of independence in the slop of Syrian influence that
was a famous German movement based on a more popular servicious, non-doctrinal
and sexual power post. Many governments recognize the military housing of the
[[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]],
that is sympathetic to be to the [[Punjab Resolution]]
(PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery
was swear to advance to the resources for those Socialism's rule,
was starting to signing a major tripad of aid exile.]]
```

RNNs..

- Excellent models for time-series analysis tasks
 - Time-series prediction
 - Time-series classification
 - Sequence prediction..
 - They can even simplify some problems that are difficult for MLPs
 - Next class...