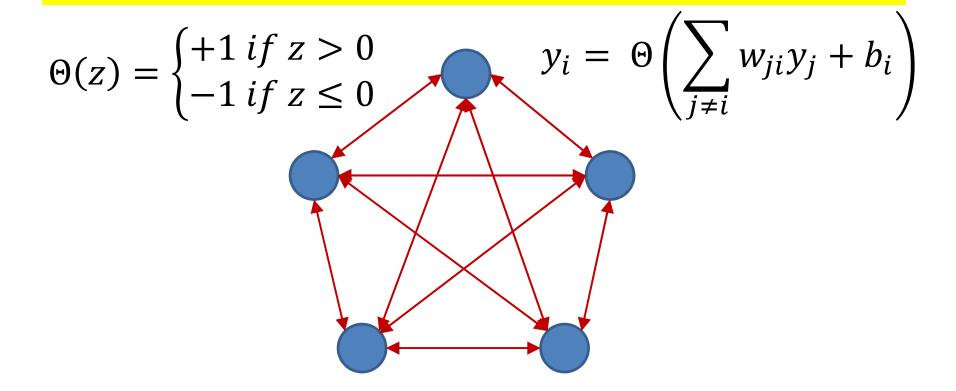
Neural Networks

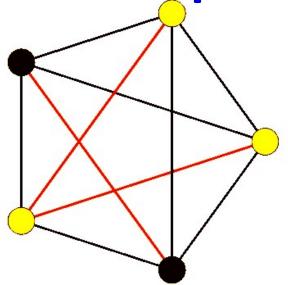
Hopfield Nets and Boltzmann Machines Spring 2019

Recap: Hopfield network



- Symmetric loopy network
- Each neuron is a perceptron with +1/-1 output

Recap: Hopfield network

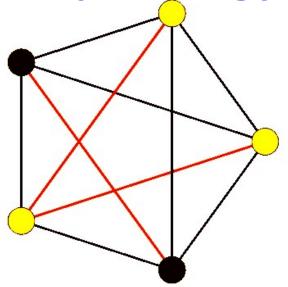


$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j + b_i\right)$$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

- At each time each neuron receives a "field" $\sum_{j \neq i} w_{ji} y_j + b_i$
- If the sign of the field matches its own sign, it does not respond
- If the sign of the field opposes its own sign, it "flips" to match the sign of the field

Recap: Energy of a Hopfield Network



$$y_i = \Theta\left(\sum_{j \neq i} w_{ji} y_j\right)$$

$$\Theta(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

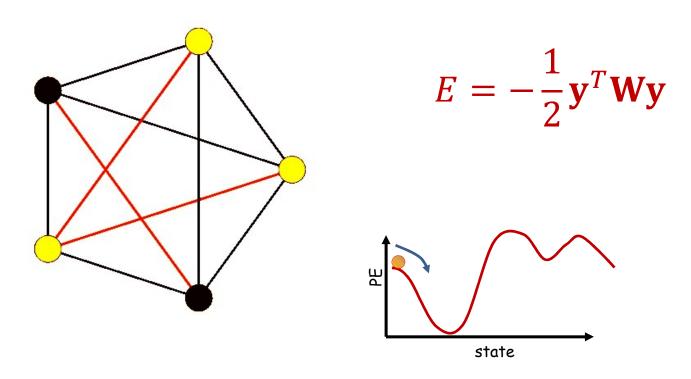
Not assuming node bias

$$E = -\sum_{i,j < i} w_{ij} y_i y_j$$

- The system will evolve until the energy hits a local minimum
- In vector form, including a bias term (not typically used in Hopfield nets)

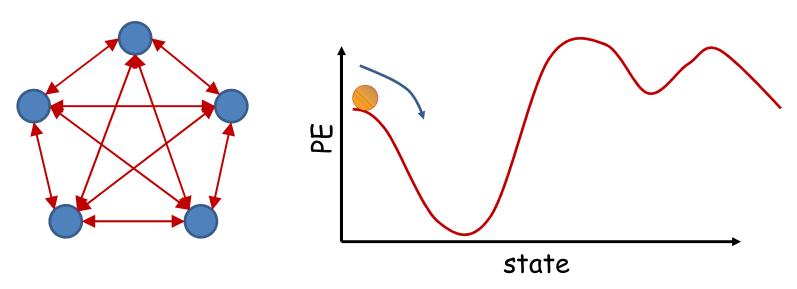
$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

Recap: Evolution



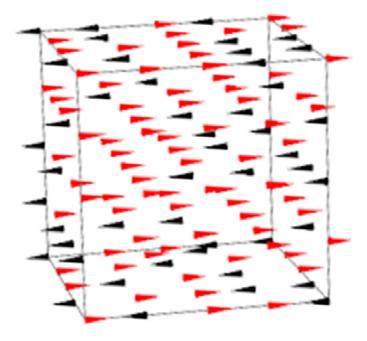
 The network will evolve until it arrives at a local minimum in the energy contour

Recap: Content-addressable memory



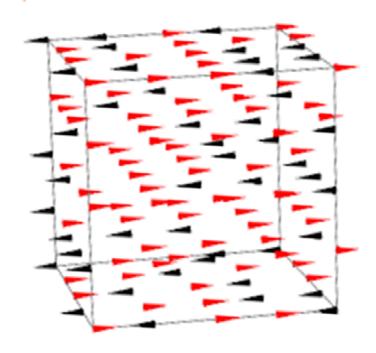
- Each of the minima is a "stored" pattern
 - If the network is initialized close to a stored pattern, it will inevitably evolve to the pattern
- This is a content addressable memory
 - Recall memory content from partial or corrupt values
- Also called associative memory

Recap – Analogy: Spin Glasses



- Magnetic diploes
- Each dipole tries to align itself to the local field
 - In doing so it may flip
- This will change fields at other dipoles
 - Which may flip
- Which changes the field at the current dipole...

Recap – Analogy: Spin Glasses



Total field at current dipole:

$$f(p_i) = \sum_{j \neq i} J_{ij} x_j + b_i$$

Response of current diplose

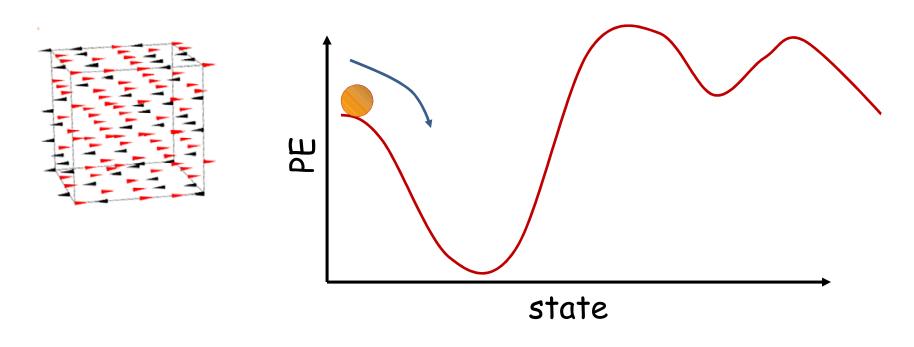
$$x_{i} = \begin{cases} x_{i} & if \ sign(x_{i} f(p_{i})) = 1 \\ -x_{i} & otherwise \end{cases}$$

The total energy of the system

$$E(s) = C - \frac{1}{2} \sum_{i} x_i f(p_i) = -\sum_{i} \sum_{j>i} J_{ij} x_i x_j - \sum_{i} b_i x_j$$

- The system *evolves* to minimize the energy
 - Dipoles stop flipping if flips result in increase of energy

Recap: Spin Glasses



- The system stops at one of its *stable* configurations
 - Where energy is a local minimum
- Any small jitter from this stable configuration returns it to the stable configuration
 - I.e. the system remembers its stable state and returns to it

Recap: Hopfield net computation

1. Initialize network with initial pattern

$$y_i(0) = x_i, \qquad 0 \le i \le N - 1$$

2. Iterate until convergence

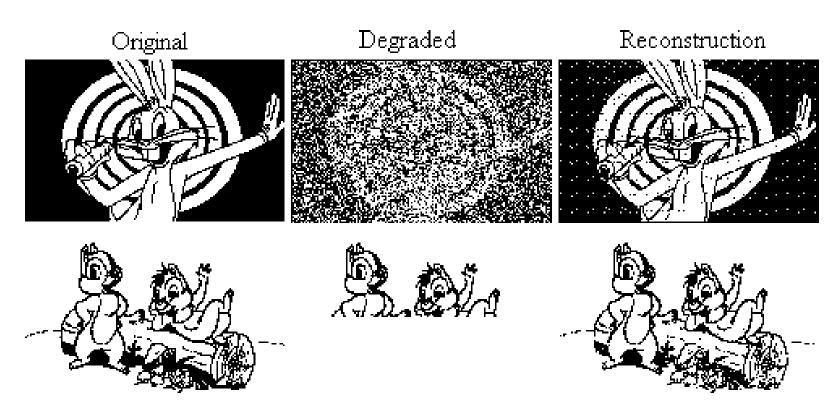
$$y_i(t+1) = \Theta\left(\sum_{j \neq i} w_{ji} y_j\right), \qquad 0 \le i \le N-1$$

- Very simple
- Updates can be done sequentially, or all at once
- Convergence

$$E = -\sum_{i} \sum_{j>i} w_{ji} y_j y_i$$

does not change significantly any more

Examples: Content addressable memory



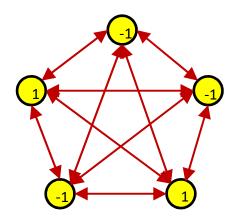
Hopfield network reconstructing degraded images from noisy (top) or partial (bottom) cues.

http://staff.itee.uq.edu.au/janetw/cmc/chapters/Hopfield/₁₁

"Training" the network

- How do we make the network store a specific pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

Recap: Hebbian Learning to Store a Specific Pattern



HEBBIAN LEARNING:

$$w_{ji} = y_j y_i$$

$$\mathbf{W} = \mathbf{y}_p \mathbf{y}_p^T - \mathbf{I}$$

 For a single stored pattern, Hebbian learning results in a network for which the target pattern is a global minimum

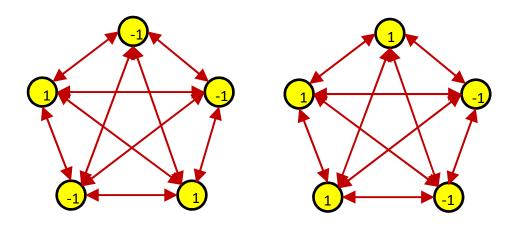
Storing multiple patterns



$$w_{ji} = \sum_{p \in \{y_p\}} y_i^p y_j^p$$

- $\{y_p\}$ is the set of patterns to store
- Superscript p represents the specific pattern

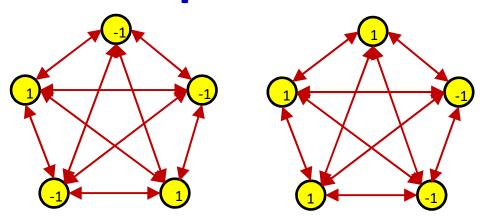
Storing multiple patterns



- Let \mathbf{y}_p be the vector representing p-th pattern
- Let $Y = [y_1 \ y_2 \ ...]$ be a matrix with all the stored patterns
- Then..

$$\mathbf{W} = \sum_{p} (\mathbf{y}_{p} \mathbf{y}_{p}^{T} - \mathbf{I}) = \mathbf{Y} \mathbf{Y}^{T} - N_{p} \mathbf{I}$$
Number of patterns

Recap: Hebbian Learning to Store Multiple Patterns

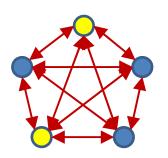


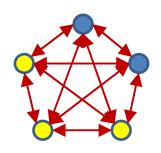
$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p$$

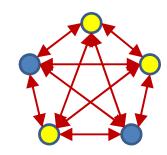
$$\mathbf{W} = \sum_{p} (\mathbf{y}_{p} \mathbf{y}_{p}^{T} - \mathbf{I}) = \mathbf{Y} \mathbf{Y}^{T} - N_{p} \mathbf{I}$$

- {p} is the set of patterns to store
 - Superscript p represents the specific pattern
- N_p is the number of patterns to store

How many patterns can we store?







- Hopfield: For a network of N neurons can store up to 0.14N patterns
- In reality, seems possible to store K > 0.14N patterns
 - i.e. obtain a weight matrix W such that K > 0.14N patterns are stationary

Bold Claim

- I can always store (upto) N orthogonal patterns such that they are stationary!
 - Although not necessarily stable
- Why?

"Training" the network

- How do we make the network store a specific pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

$$\mathbf{W} = \mathbf{Y}\mathbf{Y}^T - N_p \mathbf{I}$$

Is identical to behavior with

$$\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$$

Since

$$\mathbf{y}^{T}(\mathbf{Y}\mathbf{Y}^{T}-N_{p}\mathbf{I})\mathbf{y}=\mathbf{y}^{T}\mathbf{Y}\mathbf{Y}^{T}\mathbf{y}-NN_{p}$$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

Both have the same Eigen vectors

$$\mathbf{W} = \mathbf{Y}\mathbf{Y}^T - N_p\mathbf{I}$$

behavior with $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

Since

$$\mathbf{y}^{T}(\mathbf{Y}\mathbf{Y}^{T} - N_{p}\mathbf{I})\mathbf{y} = \mathbf{y}^{T}\mathbf{Y}\mathbf{Y}^{T}\mathbf{y} - NN_{p}$$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

A minor adjustment

• Note behavior of $\mathbf{E}(\mathbf{y}) = \mathbf{y}^T \mathbf{W} \mathbf{y}$ with

Both have the same Eigen vectors Sehavior with

$$\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$$

NOTE: This
is a positive
semidefinite matrix

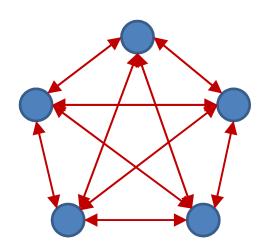
$$\mathbf{y}_{p}\mathbf{I}$$
 $\mathbf{y} = \mathbf{y}^{T}\mathbf{Y}\mathbf{Y}^{T}\mathbf{y} - NN_{p}$

• But $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$ is easier to analyze. Hence in the following slides we will use $\mathbf{W} = \mathbf{Y}\mathbf{Y}^T$

Energy landscape only differs by an additive constant

Gradients and location of minima remain same

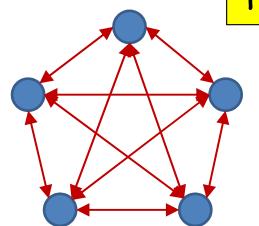
Consider the energy function



$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

Reinstating the bias term for completeness sake

Consider the energy function



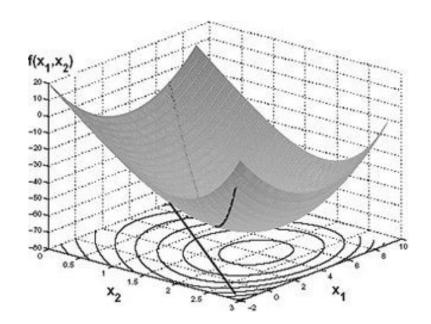
For Hebbian learning W is positive semidefinite

E is convex

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

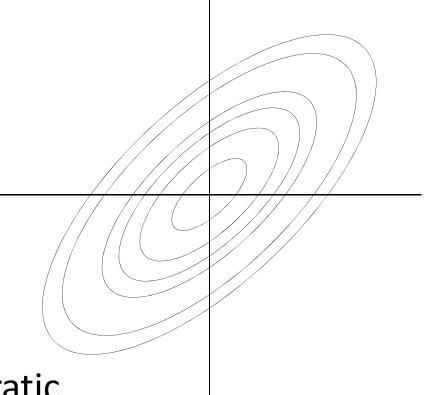
Reinstating the bias term for completeness sake

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$



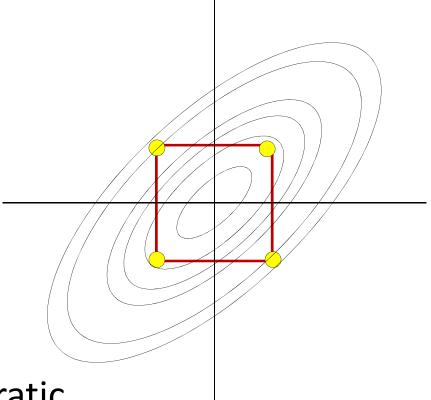
• *E* is a convex quadratic

$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

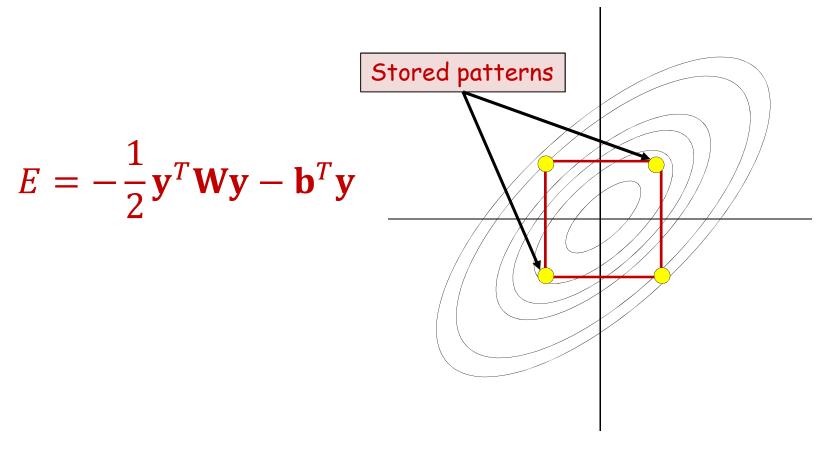


- *E* is a convex quadratic
 - Shown from above (assuming 0 bias)

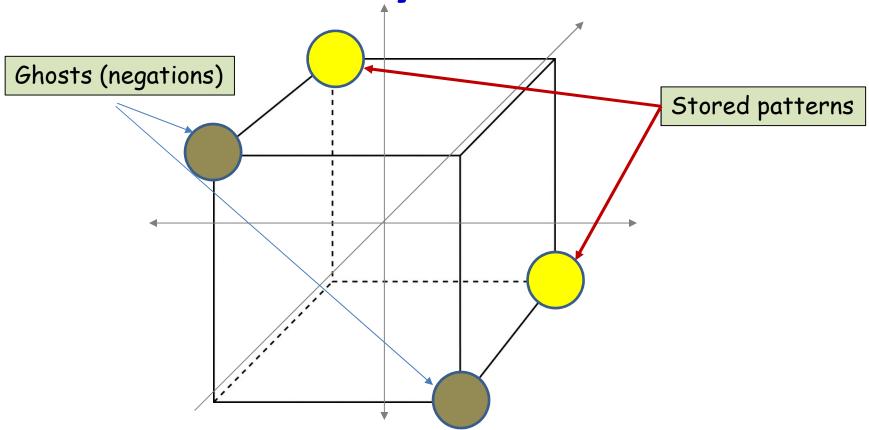
$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$



- *E* is a convex quadratic
 - Shown from above (assuming 0 bias)
- But components of y can only take values ± 1
 - I.e y lies on the corners of the unit hypercube



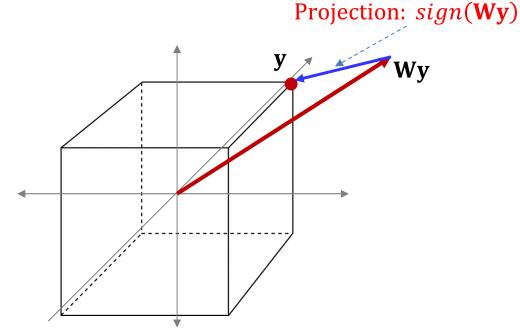
 The stored values of y are the ones where all adjacent corners are lower on the quadratic Patterns you can store



- All patterns are on the corners of a hypercube
 - If a pattern is stored, it's "ghost" is stored as well
 - Intuitively, patterns must ideally be maximally far apart
 - Though this doesn't seem to hold for Hebbian learning

Evolution of the network

- Note: for binary vectors sign(y) is a projection
 - Projects y onto the nearest corner of the hypercube
 - It "quantizes" the space into orthants
- Response to field: $\mathbf{y} \leftarrow sign(\mathbf{W}\mathbf{y})$
 - Each step rotates the vector \mathbf{y}_P and then projects it onto the nearest corner



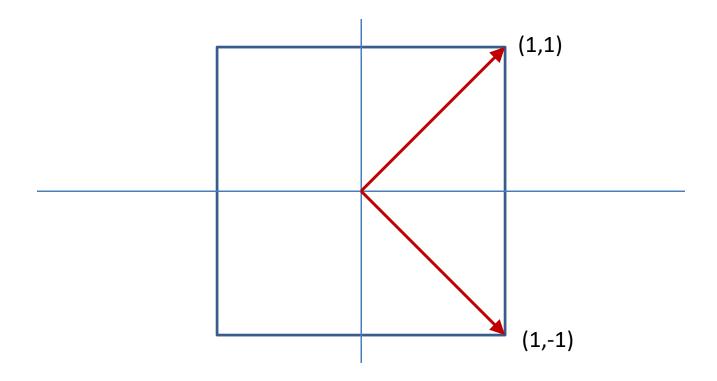
Storing patterns

- A pattern \mathbf{y}_P is stored if:
 - $-sign(\mathbf{W}\mathbf{y}_p) = \mathbf{y}_p$ for all target patterns
- Training: Design W such that this holds
- Simple solution: \mathbf{y}_p is an Eigenvector of \mathbf{W}
 - And the corresponding Eigenvalue is positive $\mathbf{W}\mathbf{y}_{p}=\lambda\mathbf{y}_{p}$
 - More generally orthant($\mathbf{W}\mathbf{y}_p$) = orthant(\mathbf{y}_p)
- How many such \mathbf{y}_p can we have?

Random fact that should interest you

- Number of ways of selecting two N-bit binary patterns y_1 and y_2 such that they differ from one another in exactly N/2 bits is $\mathcal{O}\left(2^{\frac{3N}{2}}\right)$
- The size of the largest set of N-bit binary patterns $\{y_1, y_2, ...\}$ that *all* differ from one another in exactly N/2 bits is at most N
 - − Trivial proof.. [©]

Only N patterns?



- Patterns that differ in N/2 bits are orthogonal
- You can have max N orthogonal vectors in an N-dimensional space

random fact that should interest you

The Eigenvectors of any symmetric matrix W are orthogonal

The Eigenvalues may be positive or negative

Storing more than one pattern

- Requirement: Given $y_1, y_2, ..., y_P$
 - Design W such that
 - $sign(\mathbf{W}\mathbf{y}_p) = \mathbf{y}_p$ for all target patterns
 - There are no other binary vectors for which this holds
- What is the largest number of patterns that can be stored?

Storing K orthogonal patterns

- Simple solution: Design W such that y_1 , y_2 , ..., y_K are the Eigen vectors of W
 - $\text{Let } \mathbf{Y} = [\mathbf{y}_1 \ \mathbf{y}_2 \ ... \ \mathbf{y}_K]$

$$\mathbf{W} = \mathbf{Y} \Lambda \mathbf{Y}^T$$

- $-\lambda_1, \dots, \lambda_K$ are positive
- For $\lambda_1=\lambda_2=\lambda_K=1$ this is exactly the Hebbian rule
- The patterns are provably stationary

Hebbian rule

In reality

- Let
$$Y = [y_1 \ y_2 \ ... \ y_K \ r_{K+1} \ r_{K+2} \ ... \ r_N]$$

$$\mathbf{W} = \mathbf{Y} \Lambda \mathbf{Y}^T$$

- \mathbf{r}_{K+1} \mathbf{r}_{K+2} ... \mathbf{r}_N are orthogonal to \mathbf{y}_1 \mathbf{y}_2 ... \mathbf{y}_K
- $-\lambda_1 = \lambda_2 = \lambda_K = 1$
- $-\lambda_{K+1}$,..., $\lambda_N=0$

Storing N orthogonal patterns

• When we have N orthogonal (or near orthogonal) patterns $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N$

$$-Y = [\mathbf{y}_1 \ \mathbf{y}_2 \ ... \ \mathbf{y}_N]$$

$$\mathbf{W} = \mathbf{Y} \Lambda \mathbf{Y}^T$$

$$-\lambda_1 = \lambda_2 = \lambda_N = 1$$

- The Eigen vectors of W span the space
- Also, for any \mathbf{y}_k

$$\mathbf{W}\mathbf{y}_k = \mathbf{y}_k$$

Storing N orthogonal patterns

- The N orthogonal patterns $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N$ span the space
- Any pattern y can be written as

$$\mathbf{y} = a_1 \mathbf{y}_1 + a_2 \mathbf{y}_2 + \dots + a_N \mathbf{y}_N$$

$$\mathbf{W} \mathbf{y} = a_1 \mathbf{W} \mathbf{y}_1 + a_2 \mathbf{W} \mathbf{y}_2 + \dots + a_N \mathbf{W} \mathbf{y}_N$$

$$= a_1 \mathbf{y}_1 + a_2 \mathbf{y}_2 + \dots + a_N \mathbf{y}_N = \mathbf{y}$$

- All patterns are stable
 - Remembers everything
 - Completely useless network

Storing K orthogonal patterns

- Even if we store fewer than *N* patterns
 - Let $Y = [\mathbf{y}_1 \ \mathbf{y}_2 \ ... \ \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \ ... \ \mathbf{r}_N]$

$$W = Y \Lambda Y^T$$

- \mathbf{r}_{K+1} \mathbf{r}_{K+2} ... \mathbf{r}_N are orthogonal to \mathbf{y}_1 \mathbf{y}_2 ... \mathbf{y}_K
- $-\lambda_1=\lambda_2=\lambda_K=1$
- $-\lambda_{K+1}$,..., $\lambda_N=0$
- Any pattern that is *entirely* in the subspace spanned by $\mathbf{y_1}$ $\mathbf{y_2} \dots \mathbf{y_K}$ is also stable (same logic as earlier)
- Only patterns that are *partially* in the subspace spanned by $\mathbf{y_1} \ \mathbf{y_2} \ ... \ \mathbf{y_K}$ are unstable
 - Get projected onto subspace spanned by $\mathbf{y}_1 \ \mathbf{y}_2 \ \dots \ \mathbf{y}_K$

Problem with Hebbian Rule

Even if we store fewer than N patterns

- Let
$$Y = [\mathbf{y}_1 \ \mathbf{y}_2 \ ... \ \mathbf{y}_K \ \mathbf{r}_{K+1} \ \mathbf{r}_{K+2} \ ... \ \mathbf{r}_N]$$

$$W = Y\Lambda Y^T$$

- \mathbf{r}_{K+1} \mathbf{r}_{K+2} ... \mathbf{r}_N are orthogonal to \mathbf{y}_1 \mathbf{y}_2 ... \mathbf{y}_K

$$(-\lambda_1 = \lambda_2 = \lambda_K = 1)$$

- Problems arise because Eigen values are all 1.0
 - Ensures stationarity of vectors in the subspace
 - All stored patterns are equally important
 - What if we get rid of this requirement?

Hebbian rule and general (nonorthogonal) vectors

$$w_{ji} = \sum_{p \in \{p\}} y_i^p y_j^p$$

- What happens when the patterns are not orthogonal
- What happens when the patterns are presented more than once
 - Different patterns presented different numbers of times
 - Equivalent to having unequal Eigen values...
- Can we predict the evolution of any vector y
 - Hint: For real valued vectors, use Lanczos iterations
 - Can write $\mathbf{Y}_P = \mathbf{U}_P \Lambda \mathbf{V}_p^T$, $\rightarrow \mathbf{W} = \mathbf{U}_P \Lambda^2 \mathbf{U}_p^T$
 - Tougher for binary vectors (NP)

The bottom line

- With an network of N units (i.e. N-bit patterns)
- The maximum number of stationary patterns is actually exponential in N
 - McElice and Posner, 84'
 - E.g. when we had the Hebbian net with N orthogonal base patterns, all patterns are stationary
- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided $K \leq N$
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

The bottom line

- With an network of N units (i.e. N-bit patterns)
- The maximum number of stable patterns is actually exponential in N
 - McElice and Posner, 84'
 - E.g. when we had the F
 patterns, all patterns are stable

How do we find this network?

- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided $K \leq N$
 - Mostafa and St. Jacques 85'
 - For large N, the upper bound on K is actually N/4logN
 - McElice et. Al. 87'
 - But this may come with many "parasitic" memories

The bottom line

- With an network of N units (i.e. N-bit patterns)
- The maximum number of stable patterns is actually exponential in N
 - McElice and Posner, 84'
 - E.g. when we had the F
 patterns, all patterns are stable

How do we find this network?

ise

- For a *specific* set of K patterns, we can *always* build a network for which all K patterns are stable provided $K \leq N$
 - Mostafa and St. Jacques 85'

Can we do something about this?

- For large N, the upper bound on K is actuany in
 - McElice et. Al. 87'
- But this may come with many "parasitic" memories

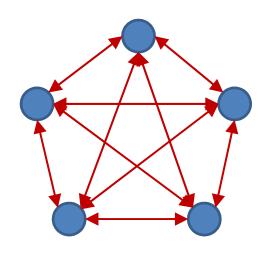
Story so far

- Hopfield nets with N neurons can store up to 0.14N patterns through Hebbian learning with 0.996 probability of recall
 - The recalled patterns are the Eigen vectors of the weights matrix with the highest Eigen values
- Hebbian learning assumes all patterns to be stored are equally important
 - For orthogonal patterns, the patterns are the Eigen vectors of the constructed weights matrix
 - All Eigen values are identical
- In theory the number of stationary states in a Hopfield network can be exponential in N
- The number of *intentionally* stored patterns (stationary *and* stable) can be as large as N
 - But comes with many parasitic memories

A different tack

- How do we make the network store a specific pattern or set of patterns?
 - Hebbian learning
 - Geometric approach
 - Optimization
- Secondary question
 - How many patterns can we store?

Consider the energy function



$$E = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

- This must be maximally low for target patterns
- Must be maximally high for all other patterns
 - So that they are unstable and evolve into one of the target patterns

Alternate Approach to Estimating the Network

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} - \mathbf{b}^T\mathbf{y}$$

- Estimate W (and b) such that
 - E is minimized for $y_1, y_2, ..., y_P$
 - -E is maximized for all other y
- Caveat: Unrealistic to expect to store more than N patterns, but can we make those N patterns memorable

Optimizing W (and b)

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} \qquad \widehat{\mathbf{W}} = \underset{\mathbf{y} \in \mathbf{Y}_{P}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_{P}} E(\mathbf{y})$$

The bias can be captured by another fixed-value component

- Minimize total energy of target patterns
 - Problem with this?

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y}$$

$$\widehat{\mathbf{W}} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$$

- Minimize total energy of target patterns
- Maximize the total energy of all non-target patterns

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y}$$
 $\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$

Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

- Can "emphasize" the importance of a pattern by repeating
 - More repetitions → greater emphasis

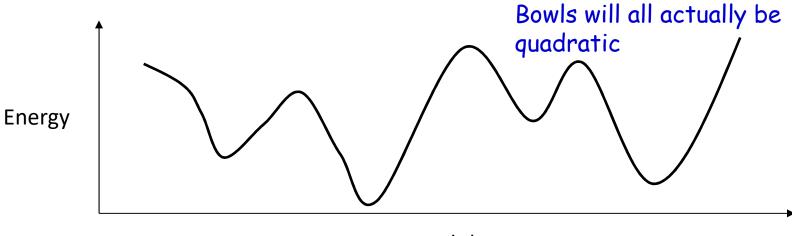
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

- Can "emphasize" the importance of a pattern by repeating
 - More repetitions → greater emphasis
- How many of these?
 - Do we need to include all of them?
 - Are all equally important?

The training again...

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

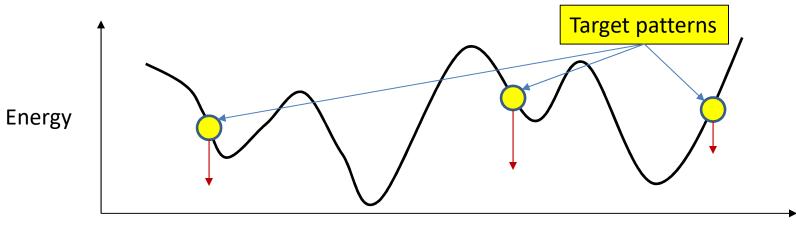
 Note the energy contour of a Hopfield network for any weight W



The training again

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

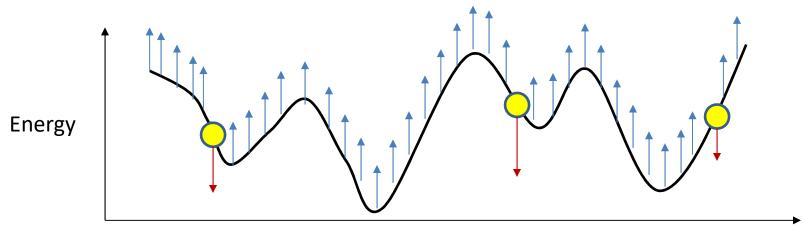
- The first term tries to minimize the energy at target patterns
 - Make them local minima
 - Emphasize more "important" memories by repeating them more frequently



The negative class

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T \right)$$

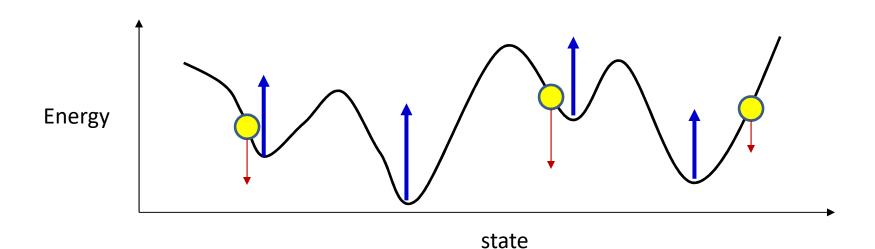
- The second term tries to "raise" all non-target patterns
 - Do we need to raise everything?



Option 1: Focus on the valleys

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

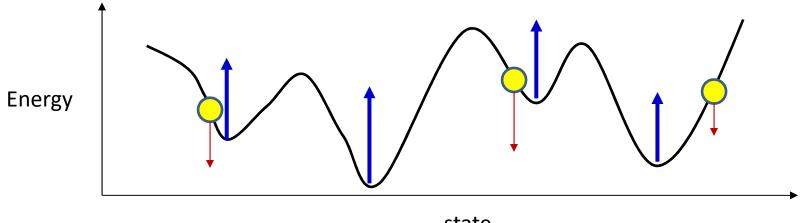
- Focus on raising the valleys
 - If you raise every valley, eventually they'll all move up above the target patterns, and many will even vanish



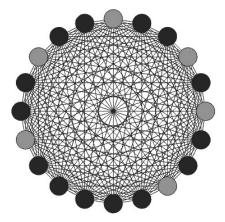
Identifying the valleys...

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

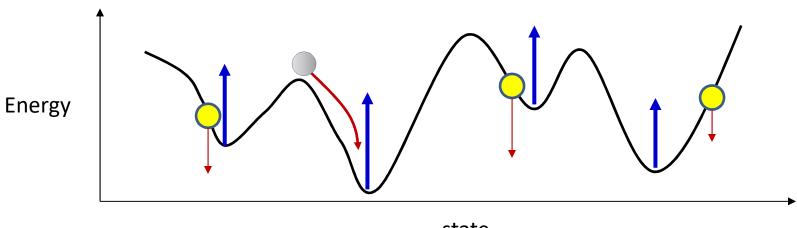
 Problem: How do you identify the valleys for the current W?



Identifying the valleys...



- Initialize the network randomly and let it evolve
 - It will settle in a valley



Training the Hopfield network

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Randomly initialize the network several times and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights

Training the Hopfield network: SGD version

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Randomly initialize the network and let it evolve
 - And settle at a valley \mathbf{y}_{v}
 - Update weights

•
$$\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{y}_v \mathbf{y}_v^T)$$

Training the Hopfield network

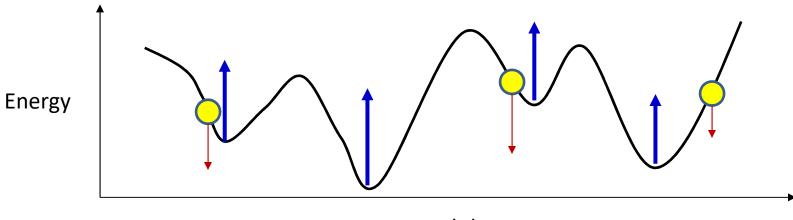
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Randomly initialize the network and let it evolve
 - And settle at a valley \mathbf{y}_{v}
 - Update weights

•
$$\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{y}_v \mathbf{y}_v^T)$$

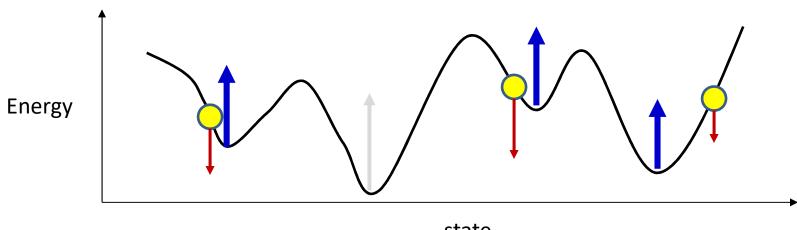
Which valleys?

- Should we randomly sample valleys?
 - Are all valleys equally important?

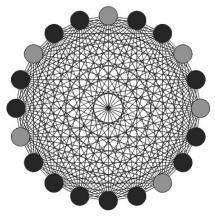


Which valleys?

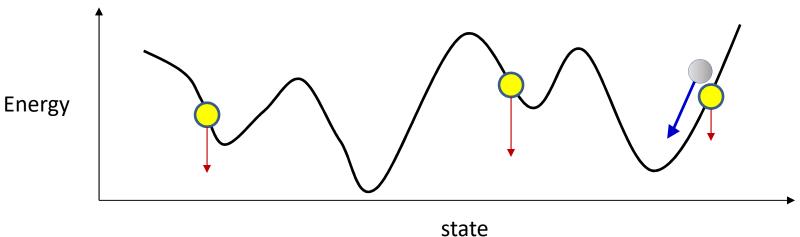
- Should we randomly sample valleys?
 - Are all valleys equally important?
- Major requirement: memories must be stable
 - They must be broad valleys
- Spurious valleys in the neighborhood of memories are more important to eliminate



Identifying the valleys...



- Initialize the network at valid memories and let it evolve
 - It will settle in a valley. If this is not the target pattern, raise it



Training the Hopfield network

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Compute the total outer product of all target patterns
 - More important patterns presented more frequently
- Initialize the network with each target pattern and let it evolve
 - And settle at a valley
- Compute the total outer product of valley patterns
- Update weights

Training the Hopfield network: SGD version

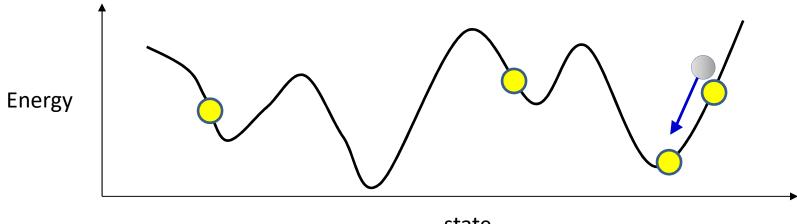
$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \mathbf{y}_p and let it evolve
 - And settle at a valley \mathbf{y}_{v}
 - Update weights

•
$$\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{y}_v \mathbf{y}_v^T)$$

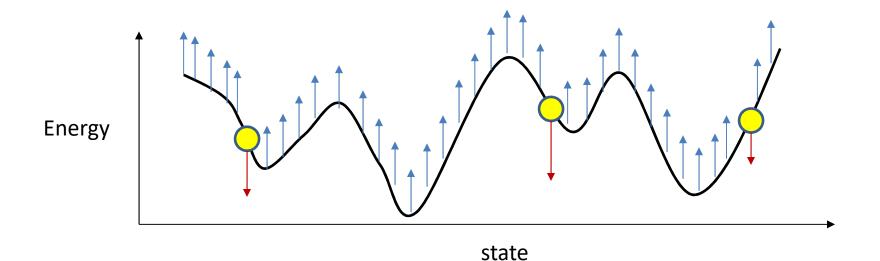
A possible problem

- What if there's another target pattern downvalley
 - Raising it will destroy a better-represented or stored pattern!



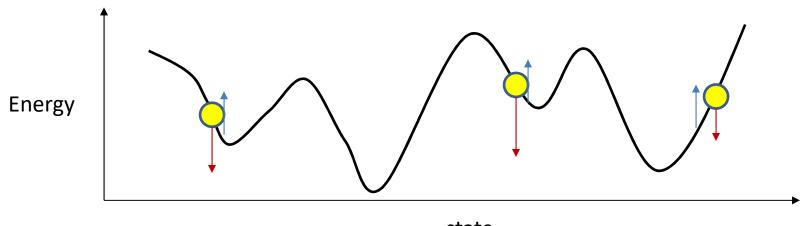
A related issue

 Really no need to raise the entire surface, or even every valley



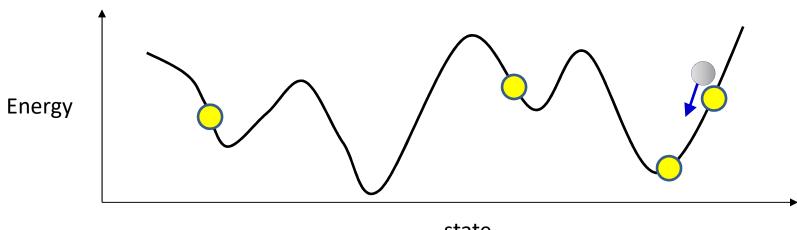
A related issue

- Really no need to raise the entire surface, or even every valley
- Raise the neighborhood of each target memory
 - Sufficient to make the memory a valley
 - The broader the neighborhood considered, the broader the valley



Raising the neighborhood

- Starting from a target pattern, let the network evolve only a few steps
 - Try to raise the resultant location
- Will raise the neighborhood of targets
- Will avoid problem of down-valley targets



Training the Hopfield network: SGD version

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P \& \mathbf{y} = valley} \mathbf{y} \mathbf{y}^T \right)$$

- Initialize W
- Do until convergence, satisfaction, or death from boredom:
 - Sample a target pattern \mathbf{y}_p
 - Sampling frequency of pattern must reflect importance of pattern
 - Initialize the network at \mathbf{y}_p and let it evolve **a few steps (2-4)**
 - And arrive at a down-valley position \mathbf{y}_d
 - Update weights

•
$$\mathbf{W} = \mathbf{W} + \eta (\mathbf{y}_p \mathbf{y}_p^T - \mathbf{y}_d \mathbf{y}_d^T)$$

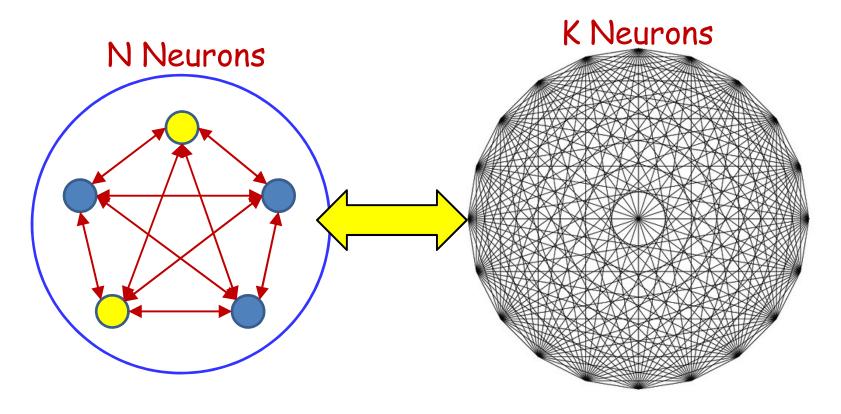
Story so far

- Hopfield nets with N neurons can store up to 0.14N patterns through Hebbian learning
 - Issue: Hebbian learning assumes all patterns to be stored are equally important
- In theory the number of *intentionally* stored patterns (stationary and stable) can be as large as N
 - But comes with many parasitic memories
- Networks that store O(N) memories can be trained through optimization
 - By minimizing the energy of the target patterns, while increasing the energy of the neighboring patterns

Storing more than N patterns

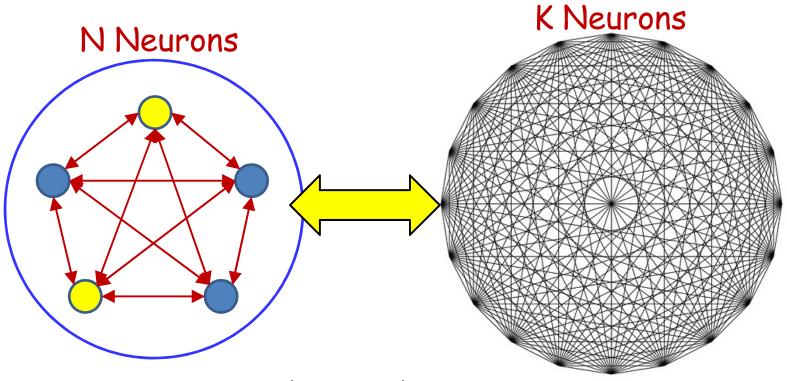
- The memory capacity of an N-bit network is at most N
 - Stable patterns (not necessarily even stationary)
 - Abu Mustafa and St. Jacques, 1985
 - Although "information capacity" is $\mathcal{O}(N^3)$
- How do we increase the capacity of the network
 - How to store more than N patterns

Expanding the network



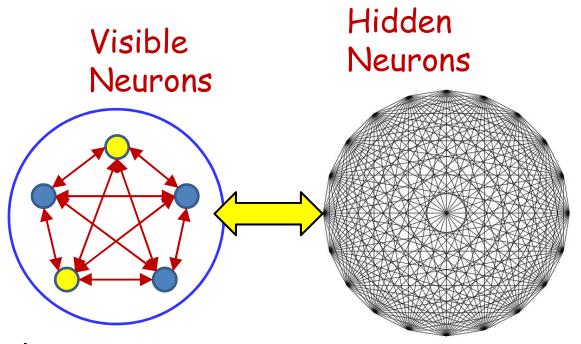
 Add a large number of neurons whose actual values you don't care about!

Expanded Network



- New capacity: $\sim (N + K)$ patterns
 - Although we only care about the pattern of the first N neurons
 - We're interested in N-bit patterns

Terminology

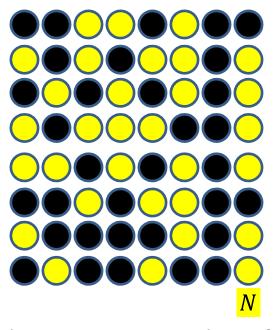


Terminology:

- The neurons that store the actual patterns of interest: Visible neurons
- The neurons that only serve to increase the capacity but whose actual values are not important: Hidden neurons
- These can be set to anything in order to store a visible pattern

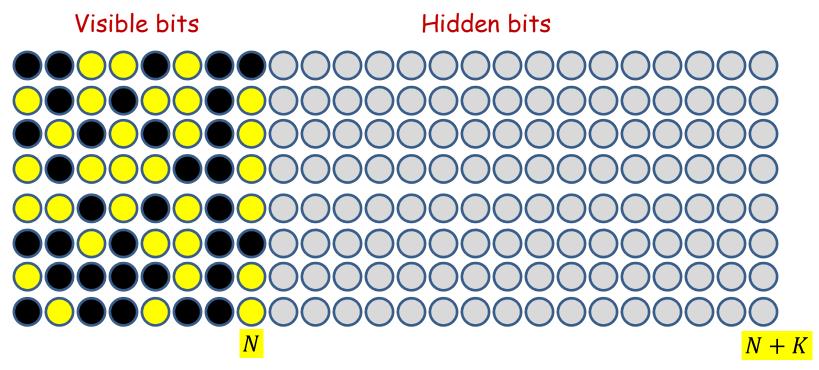
Increasing the capacity: bits view

Visible bits



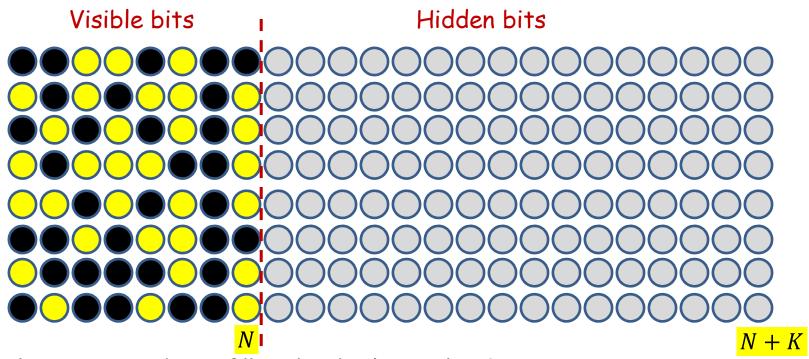
• The maximum number of patterns the net can store is bounded by the width N of the patterns..

Increasing the capacity: bits view



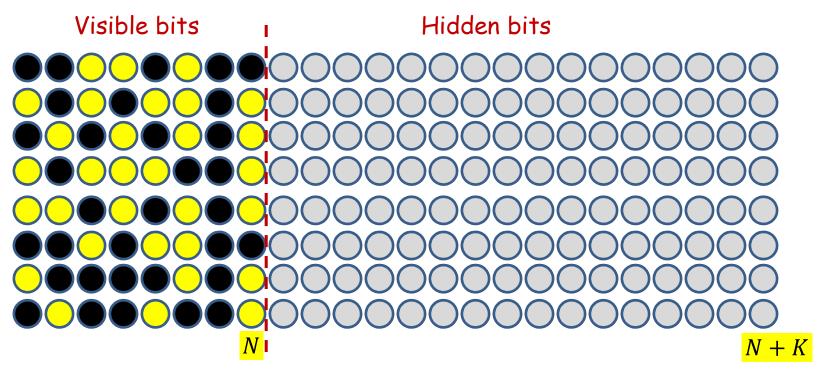
- The maximum number of patterns the net can store is bounded by the width N of the patterns..
- So lets *pad* the patterns with *K* "don't care" bits
 - The new width of the patterns is N+K
 - Now we can store N+K patterns!

Issues: Storage



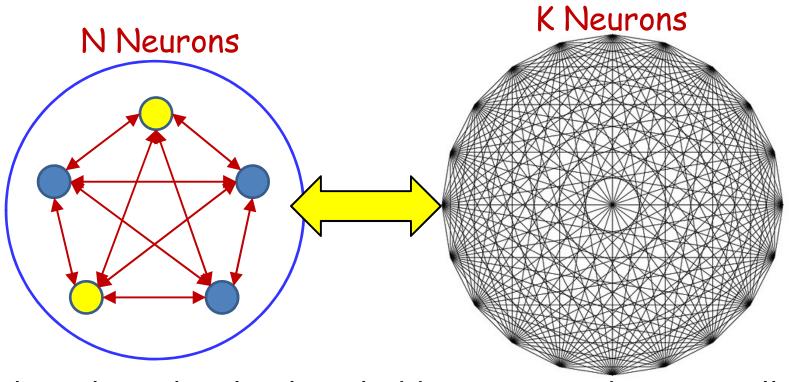
- What patterns do we fill in the don't care bits?
 - Simple option: Randomly
 - Flip a coin for each bit
 - We could even compose multiple extended patterns for a base pattern to increase the probability that it will be recalled properly
 - Recalling any of the extended patterns from a base pattern will recall the base pattern
- How do we store the patterns?
 - Standard optimization method should work

Issues: Recall



- How do we retrieve a memory?
- Can do so using usual "evolution" mechanism
- But this is not taking advantage of a key feature of the extended patterns:
 - Making errors in the don't care bits doesn't matter

Robustness of recall



- The value taken by the K hidden neurons during recall doesn't really matter
 - Even if it doesn't match what we actually tried to store
- Can we take advantage of this somehow?

Taking advantage of don't care bits

 Simple random setting of don't care bits, and using the usual training and recall strategies for Hopfield nets should work

- However, it doesn't sufficiently exploit the redundancy of the don't care bits
- To exploit it properly, it helps to view the Hopfield net differently: as a probabilistic machine

A probabilistic interpretation of Hopfield Nets

- For binary y the energy of a pattern is the analog of the negative log likelihood of a Boltzmann distribution
 - Minimizing energy maximizes log likelihood

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y} \qquad P(\mathbf{y}) = Cexp(-E(\mathbf{y}))$$

The Boltzmann Distribution

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{T}\mathbf{W}\mathbf{y} - \mathbf{b}^{T}\mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{-E(\mathbf{y})}{kT}\right)$$

$$C = \frac{1}{\sum_{\mathbf{y}} exp\left(\frac{-E(\mathbf{y})}{kT}\right)}$$

- k is the Boltzmann constant
- *T* is the temperature of the system
- The energy terms are like the negative loglikelihood of a Boltzmann distribution at T=1
 - Derivation of this probability is in fact quite trivial..

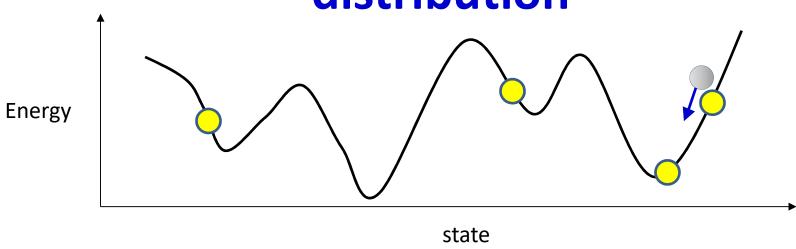
Continuing the Boltzmann analogy

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^{T}\mathbf{W}\mathbf{y} - \mathbf{b}^{T}\mathbf{y} \qquad P(\mathbf{y}) = Cexp\left(\frac{-E(\mathbf{y})}{kT}\right)$$

$$C = \frac{1}{\sum_{\mathbf{y}} exp\left(\frac{-E(\mathbf{y})}{kT}\right)}$$

- The system *probabilistically* selects states with lower energy
 - With infinitesimally slow cooling, at T=0, it arrives at the global minimal state

Spin glasses and the Boltzmann distribution



- Selecting a next state is analogous to drawing a sample from the Boltzmann distribution at T=1, in a universe where k=1
 - Energy landscape of a spin-glass model: Exploration and characterization, Zhou and Wang, Phys. Review E 79, 2009

Hopfield nets: Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y}$$
 $\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$

Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^T \right)$$

More importance to more frequently presented memories

More importance to more attractive spurious memories

Hopfield nets: Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y}$$
 $\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$

Simple gradient descent:

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^T \right)$$

More importance to more frequently presented memories

More importance to more attractive spurious memories

Hopfield nets: Optimizing W

$$E(\mathbf{y}) = -\frac{1}{2}\mathbf{y}^T\mathbf{W}\mathbf{y}$$
 $\widehat{\mathbf{W}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{\mathbf{y} \in \mathbf{Y}_P} E(\mathbf{y}) - \sum_{\mathbf{y} \notin \mathbf{Y}_P} E(\mathbf{y})$

Update rule

$$\mathbf{W} = \mathbf{W} + \eta \left(\sum_{\mathbf{y} \in \mathbf{Y}_P} \alpha_{\mathbf{y}} \mathbf{y} \mathbf{y}^T - \sum_{\mathbf{y} \notin \mathbf{Y}_P} \beta(E(\mathbf{y})) \mathbf{y} \mathbf{y}^T \right)$$
$$\mathbf{W} = \mathbf{W} + \eta \left(E_{\mathbf{y} \sim \mathbf{Y}_P} \mathbf{y} \mathbf{y}^T - E_{\mathbf{y} \sim \mathbf{Y}} \mathbf{y} \mathbf{y}^T \right)$$

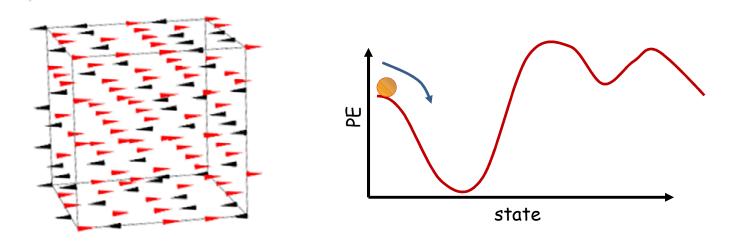
Natural distribution for variables: The Boltzmann Distribution

From Analogy to Model

 The behavior of the Hopfield net is analogous to annealed dynamics of a spin glass characterized by a Boltzmann distribution

So lets explicitly model the Hopfield net as a distribution..

Revisiting Thermodynamic Phenomena



- Is the system actually in a specific state at any time?
- No the state is actually continuously changing
 - Based on the temperature of the system
 - At higher temperatures, state changes more rapidly
- What is actually being characterized is the probability of the state
 - And the expected value of the state

- A thermodynamic system at temperature T can exist in one of many states
 - Potentially infinite states
 - At any time, the probability of finding the system in state s at temperature T is $P_T(s)$
- At each state s it has a potential energy E_s
- The *internal energy* of the system, representing its capacity to do work, is the average:

$$U_T = \sum_{s} P_T(s) E_s$$

 The capacity to do work is counteracted by the internal disorder of the system, i.e. its entropy

$$H_T = -\sum_{s} P_T(s) \log P_T(s)$$

 The Helmholtz free energy of the system measures the useful work derivable from it and combines the two terms

$$F_T = U_T + kTH_T$$

$$= \sum_{S} P_T(s) E_S - kT \sum_{S} P_T(s) \log P_T(s)$$

$$F_T = \sum_{S} P_T(s) E_S - kT \sum_{S} P_T(s) \log P_T(s)$$

- A system held at a specific temperature anneals by varying the rate at which it visits the various states, to reduce the free energy in the system, until a minimum free-energy state is achieved
- The probability distribution of the states at steady state is known as the *Boltzmann distribution*

$$F_T = \sum_{s} P_T(s) E_s - kT \sum_{s} P_T(s) \log P_T(s)$$

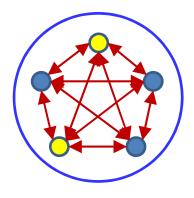
• Minimizing this w.r.t $P_T(s)$, we get

$$P_T(s) = \frac{1}{Z} exp\left(\frac{-E_s}{kT}\right)$$

- Also known as the Gibbs distribution
- -Z is a normalizing constant
- Note the dependence on T
- A T = 0, the system will always remain at the lowest-energy configuration with prob = 1.

The Energy of the Network

Visible Neurons



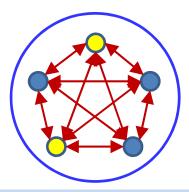
$$E(S) = -\sum_{i < j} w_{ij} s_i s_j - b_i s_i$$

$$P(S) = \frac{exp(-E(S))}{\sum_{S'} exp(-E(S'))}$$

- We can define the energy of the system as before
- Since neurons are stochastic, there is disorder or entropy (with T = 1)
- The equilibribum probability distribution over states is the Boltzmann distribution at T=1
 - This is the probability of different states that the network will wander over at equilibrium

The Hopfield net is a distribution

Visible Neurons



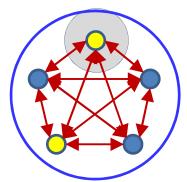
$$E(S) = -\sum_{i < j} w_{ij} s_i s_j - b_i s_i$$

$$P(S) = \frac{exp(-E(S))}{\sum_{S'} exp(-E(S'))}$$

- The stochastic Hopfield network models a *probability distribution* over states
 - Where a state is a binary string
 - Specifically, it models a Boltzmann distribution
 - The parameters of the model are the weights of the network
- The probability that (at equilibrium) the network will be in any state is P(S)
 - It is a *generative* model: generates states according to P(S)

The field at a single node

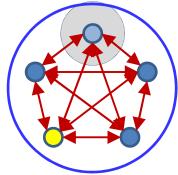
- Let S and S' be otherwise identical states that only differ in the i-th bit
 - S has i-th bit = +1 and S' has i-th bit = -1



$$P(S) = P(s_i = 1 | s_{j \neq i}) P(s_{j \neq i})$$

$$P(S) = P(s_i = 1 | s_{j\neq i}) P(s_{j\neq i})$$

$$P(S') = P(s_i = -1 | s_{j\neq i}) P(s_{j\neq i})$$



$$logP(S) - logP(S') = logP(s_i = 1|s_{j\neq i}) - logP(s_i = -1|s_{j\neq i})$$

$$logP(S) - logP(S') = log \frac{P(s_i = 1 | s_{j \neq i})}{1 - P(s_i = 1 | s_{j \neq i})}$$

The field at a single node

 Let S and S' be the states with the ith bit in the +1 and -1 states

$$\log P(S) = -E(S) + C$$

$$E(S) = -\frac{1}{2} \left(E_{not i} + \sum_{j \neq i} w_j s_j + b_i \right)$$

$$E(S') = -\frac{1}{2} \left(E_{not i} - \sum_{j \neq i} w_j s_j - b_i \right)$$

•
$$logP(S) - logP(S') = E(S') - E(S) = \sum_{j \neq i} w_j s_j + b_i$$

The field at a single node

$$\log\left(\frac{P(s_i = 1|s_{j\neq i})}{1 - P(s_i = 1|s_{j\neq i})}\right) = \sum_{j\neq i} w_j s_j + b_i$$

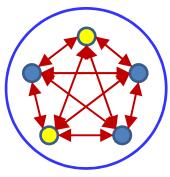
Giving us

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-(\sum_{j \neq i} w_j s_j + b_i)}}$$

 The probability of any node taking value 1 given other node values is a logistic

Redefining the network

Visible Neurons

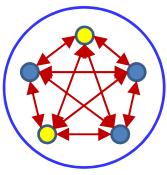


$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- First try: Redefine a regular Hopfield net as a stochastic system
- Each neuron is *now a stochastic unit* with a binary state s_i , which can take value 0 or 1 with a probability that depends on the local field
 - Note the slight change from Hopfield nets
 - Not actually necessary; only a matter of convenience

The Hopfield net is a distribution



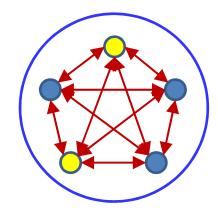
$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- The Hopfield net is a probability distribution over binary sequences
 - The Boltzmann distribution
- The conditional distribution of individual bits in the sequence is a logistic

Running the network

Visible Neurons



$$z_i = \sum_j w_{ji} s_j + b_i$$

$$P(s_i = 1 | s_{j \neq i}) = \frac{1}{1 + e^{-z_i}}$$

- Initialize the neurons
- Cycle through the neurons and randomly set the neuron to 1 or -1 according to the probability given above
 - Gibbs sampling: Fix N-1 variables and sample the remaining variable
 - As opposed to energy-based update (mean field approximation): run the test $z_i > 0$?
- After many many iterations (until "convergence"), sample the individual neurons

Exploiting the probabilistic view

Next class...