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Recap: The MLP can represent any 
function

• The MLP can be constructed to represent anything
• But how do we construct it?

– I.e. how do we determine the weights (and biases) of the network to 
best represent a target function
• Assuming that the architecture of the network is given 2



Recap: How to learn the function

• By minimizing expected error
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Recap: Sampling the function

• is unknown, so sample it
– Basically, get input-output pairs for a number of samples of 

input 

– Good sampling: the samples of will be drawn from 

• Estimate function from the samples
4
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The Empirical risk

• The empirical estimate of the expected error is the average error over the samples

 

்

ୀଵ

• This approximation is an unbiased estimate of the expected divergence that we 
actually want to estimate
– We can hope that minimizing the empirical loss will minimize the true loss
– Caveat:  This hope is generally not based on anything but, well, hope.. 5
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Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:   

– Empirical average error on all training data:

 

 



• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 6



Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:   

– Empirical average error on all training data:

 

 



• Estimate the parameters to minimize the empirical estimate of expected 
error

ௐ

– I.e. minimize the empirical error over the drawn samples 7

This is an instance of 
function minimization
(optimization)



• A CRASH COURSE ON FUNCTION 
OPTIMIZATION
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Finding the minimum of a scalar 
function of a multi-variate input

• The optimum point is a turning point – the 
gradient will be 0
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Unconstrained Minimization of 
function (Multivariate)

1. Solve for the where the gradient equation equals to 
zero

2. Compute the Hessian Matrix at the candidate 
solution and verify that
– Hessian is positive definite (eigenvalues positive)  -> to 

identify local minima 
– Hessian is negative definite (eigenvalues negative) -> to 

identify local maxima

10
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Closed Form Solutions are not always 
available

• Often it is not possible to simply solve 
– The function to minimize/maximize may have an 

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it 

iteratively until the correct value is obtained
11

X

f(X)



Iterative solutions

• Iterative solutions
– Start from an initial guess  for the optimal 
– Update the guess towards a (hopefully) “better” value of 
– Stop when no longer decreases

• Problems: 
– Which direction to step in
– How big must the steps be

12
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The Approach of Gradient Descent

• Iterative solution:  Trivial algorithm
– Initialize 

– While (or while )

• ାଵ  
௫



– is the “step size”

f(x)

x
x0 x1 x2 x3

x4

x5



Overall Gradient Descent Algorithm

• Initialize: 
–

–

• While 
–

–
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Convergence of Gradient Descent
• For appropriate step 

size, for convex (bowl-
shaped) functions 
gradient descent will 
always find the 
minimum.

• For non-convex 
functions it will find a 
local minimum or an 
inflection point
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• Returning to our problem..
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Problem Statement
• Given a training set of input-output pairs 

• Minimize the following function

w.r.t 

• This is problem of function minimization
– An instance of optimization
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Preliminaries

• Before we proceed: the problem setup
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

19

What are these input-output pairs?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

20

What are these input-output pairs?

What is f() and 
what are its 
parameters W?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

21

What are these input-output pairs?

What is f() and 
what are its 
parameters W?

What is the 
divergence div()?



Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

22

What is f() and 
what are its 
parameters W?



What is f()? Typical network

• Multi-layer perceptron
• A directed network with a set of inputs and outputs

– No loops

• Generic terminology
– We will refer to the inputs as the input units

• No neurons here – the “input units” are just the inputs

– We refer to the outputs as the output units
– Intermediate units are “hidden” units 23

Input
units Output
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Typical network

• We assume a “layered” network for simplicity
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer

– Intermediate layers are “hidden” layers
24
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The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A differentiable activation function applied to an 

affine combination of the input

𝑦 = 𝑓  𝑤

 



𝑥 + 𝑏

– More generally:  any differentiable function

ଵ ଶ ே 25



The individual neurons

• Individual neurons operate on a set of inputs and produce a single 
output
– Standard setup: A differentiable activation function applied to an 

affine combination of the input

𝑦 = 𝑓  𝑤

 



𝑥 + 𝑏

– More generally:  any differentiable function

ଵ ଶ ே 26

We will assume this
unless otherwise
specified

Parameters are weights
 and bias 



Activations and their derivatives

• Some popular activation functions and their 
derivatives 27
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Vector Activations

• We can also have neurons that have multiple coupled 
outputs

– Function operates on set of inputs to produce set of 
outputs

– Modifying a single parameter in will affect all outputs
28
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Vector activation example: Softmax

• Example: Softmax vector activation
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Parameters are 
weights 
and bias



Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
30
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Parameters are 
weights 
and bias



Typical network

• In a layered network, each layer of 
perceptrons can be viewed as a single vector 
activation

31
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Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as 
()

– Input to network: 
()



– Output of network:   
(ே)

• We will represent the weight of the connection between the i-th unit of 
the k-1th layer and the jth unit of the k-th layer as 

()

– The bias to the jth unit of the k-th layer is 
()
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

33

What are these input-output pairs?



Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

•  ଵ ଶ  is the nth input vector
•  ଵ ଶ  is the nth desired output
•  ଵ ଶ  is the nth vector of actual outputs of the 

network
• We will sometimes drop the first subscript when referring to a specific 

instance
34
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Representing the input

• Vectors of numbers 
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
35
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Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the 
desired output
• d = [d1 d2 .. dL] (vector of real values)

36
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Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

37



Representing the output

• If the desired output is binary (is this a cat or not), use 
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X 
may occur for both classes, but with different probabilities

• Is differentiable 38

𝜎(𝑧)

𝜎 𝑧 =
1
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Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation 
of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two independent outputs, one representing the desired 
output, the other representing the negation of the desired output
– Yes:  [1 0]
– No:  [0 1]

39



Multi-class output: One-hot 
representations

• Consider a network that must distinguish if an input is a cat, a dog, a 
camel, a hat, or a flower

• We can represent this set as the following vector:
[cat  dog  camel  hat flower]T

• For inputs of each of the five classes the desired output is:
cat:  [1 0 0 0 0] T

dog:   [0 1 0 0 0] T

camel:   [0 0 1 0 0] T

hat:   [0 0 0 1 0] T

flower:  [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output 
with four zeros and a single 1 at the position of that class

• This is a one hot vector

40



Multi-class networks

• For a multi-class classifier with N classes, the one-hot 
representation will have N binary outputs
– An N-dimensional binary vector

• The neural network’s output too must ideally be binary (N-1 zeros 
and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

41
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Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class 
classifier nets

 
()


(ିଵ)

 







 


• This can be viewed as the probability 
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Typical Problem Statement

• We are given a number of “training” data instances
• E.g. images of digits, along with information about 

which digit the image represents
• Tasks:

– Binary recognition:   Is this a “2” or not
– Multi-class recognition:  Which digit is this? Is this a digit in 

the first place?
43



Typical Problem statement: 
binary classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job

44
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Typical Problem statement: 
multiclass classification

• Given, many positive and negative examples (training data), 
– learn all weights such that the network does the desired job

45
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Problem Setup: Things to define
• Given a training set of input-output pairs 

• Minimize the following function

46

What is the 
divergence div()?



Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ
 

ଶ

 



– Squared Euclidean distance between true and desired output
– Note:  this is differentiable


 

 ଵ ଵ ଶ ଶ
47
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For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy 
between the probability distribution and the ideal output probability 

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0

48
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For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy 
between the probability distribution and the ideal output probability 

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
   𝑖𝑓  𝑑 = 1

1

1 − 𝑌
   𝑖𝑓 𝑑 = 0

49
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For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = −  𝑑 log 𝑦 = − log 𝑦

 



• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
= ൞

−
1

𝑦
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦
… 0 0 50
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Indicates increasing 

will reduce divergence



For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, … 

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = −  𝑑 log 𝑦 = − log 𝑦

 



• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
= ൞

−
1

𝑦
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0   𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
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𝑦
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For multi-class classification

• It is sometimes useful to set the target output to 
with the value in the -th position (for class ) and elsewhere for 
some small 
– “Label smoothing” -- aids gradient descent

• The cross-entropy remains:

 

 



• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1 − (𝐾 − 1)𝜖

𝑦
   𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

52
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Problem Setup
• Given a training set of input-output pairs 

• The error on the ith instance is 
• The total error

• Minimize w.r.t 
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Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t. 
• Initialize: 

–

–

• While 
–

–
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Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t. 
• Initialize: 

–

–

• While 
– For every component 

•


–
11-755/18-797 55

Explicitly stating it by component



Training Neural Nets through Gradient 
Descent

• Gradient descent algorithm:

• Initialize all weights and biases 
– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• ,
()

,
() ௗா

ௗ௪
,ೕ
(ೖ)

• Until has converged
56

Total training error:

Assuming the bias is also
represented as a weight



Training Neural Nets through Gradient 
Descent

• Gradient descent algorithm:

• Initialize all weights 

• Do:
– For every layer for all update:

• ,
()

,
() ௗா

ௗ௪
,ೕ
(ೖ)

• Until has converged
57

Total training error:



The derivative

• Computing the derivative

58

Total derivative:

Total training error:



Training by gradient descent

• Initialize all weights 
()

• Do:

– For all ,  initialize ௗா

ௗ௪
,ೕ
(ೖ)

– For all 
• For every layer 𝑘 for all 𝑖, 𝑗:

– Compute  ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕) 
ௗ௪

,ೕ
(ೖ)

–
ௗா

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕) 
ௗ௪

,ೕ
(ೖ)

– For every layer for all :

𝑤,
()

= 𝑤,
()

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤,
()

• Until has converged
59



The derivative

• So we must first figure out how to compute the 
derivative of divergences of individual training 
inputs

60

Total derivative:

Total training error:



Calculus Refresher: Basic rules of 
calculus

61

For any differentiable function

with derivative 
ௗ௬

ௗ௫

the following must hold for sufficiently small 

For any differentiable function
ଵ ଶ ெ

with partial derivatives 
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Calculus Refresher: Chain rule

62

Check – we can confirm that :

For any nested function



Calculus Refresher: Distributed Chain 
rule

63

Check:

భ

భ

మ

మ

ಾ

ಾ

భ

భ

మ

మ

ಾ

ಾ



Distributed Chain Rule: Influence 
Diagram

• affects through each of 

64
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Distributed Chain Rule: Influence 
Diagram

• Small perturbations in cause small 
perturbations in each of each of 
which individually additively perturbs 65
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Returning to our problem

• How to compute 

66



A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons 

and inputs

67



+

+

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the weighted sum of inputs from the 
activation

68
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A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights and activations shown
• The overall function is differentiable w.r.t every weight, bias 

and input
69
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Computing the derivative for a single 
input

• Aim: compute derivative of w.r.t. each of the 
weights

• But first, lets label all our variables and activation functions

70
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Computing the derivative for a single 
input
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Computing the gradient

• What is: 

– Derive on board?
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Computing the gradient

• What is: 

• Derive on board?

• Note: computation of the derivative requires 
intermediate and final output values of the 
network in response to the input

73



BP: Scalar Formulation

• The network again

ଵଵ ିଵ ேିଵ

ே

ே

Div(Y,d)

1 1 1 1 1



Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

Assuming  
()


() and 

() -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

Setting  
()

 for notational convenience

1



Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ
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ଵ

ଵ

ଵ
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ଶ
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ଶ
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1
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Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)
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Forward Computation

ITERATE FOR  k =  1:N for j = 1:layer-width
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Forward “Pass”
• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 

• 
()

,
()


(ିଵ)ೖషభ

ୀ

• 
()

 
()

• Output:

–
85

Dk is the size of the kth layer
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Computing derivatives

We have computed all these intermediate values in the 
forward computation

We must remember them – we will need them to compute 
the derivatives
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Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output 
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Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)
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Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine 
combination z(N) using the chain rule
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Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the ouput layer 
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Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the ouput layer 

Then continue with the chain rule to compute (ಿషభ) the derivative of the 
divergence w.r.t. the output of the N-1th layer
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Computing derivatives

We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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We continue our way backwards in the order shown
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Backward Gradient Computation

• Lets actually see the math..
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Computing derivatives
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Computing derivatives

The derivative w.r.t the actual output of the 
network is simply the derivative w.r.t to the 
output of the final layer of the network
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Computing derivatives
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1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives


(ேିଵ) 

(ே)

 

 
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We continue our way backwards in the order shown


(ேିଵ) ேିଵ

ᇱ

(ேିଵ)


(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଵ) 

(ேିଶ)


(ேିଵ)

For the bias term 
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଶ) 

(ேିଵ)

 

 
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ேିଶ

y(N-2)

z(N-2)

ேିଶ

ேିଶ

ேିଶ

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown


(ேିଶ) ேିଶ

ᇱ

(ேିଶ)


(ேିଶ)



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

ଵ
(ଵ) 

(ଶ)

 

 
(ଶ)



fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ


(ଵ) ଵ

ᇱ

(ଵ)


(ଵ)



y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ


(ଵ) 

(ଵ)


(ଵ)



Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient 
w.r.t  network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)


() 

ᇱ

()


()


() 

(ାଵ)

 

 
(ାଵ)


(ାଵ) 

()


(ାଵ)

Div(Y,d)



(ே)

Figure assumes, but does not show
the “1” bias nodes


(ே) 

ᇱ

(ே)


(ே)



Backward Pass
• Output layer (N) :

– For ே

•
డ

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ) 


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖశభ) 

() డ

డ௭

(ೖశభ)    for ାଵ
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Backward Pass
• Output layer (N) :

– For ே

•
డ௩

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

• For layer 
– For 

•
డ

డ௬

(ೖ) 

(ାଵ) 


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ) 

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖశభ) 

() డ௩

డ௭

(ೖశభ)    for ାଵ
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Called “Backpropagation” because
the derivative of the error is
propagated “backwards” through
the network

Backward weighted combination 
of next layer

Backward equivalent of activation

Very analogous to the forward pass:



For comparison: the forward pass 
again

• Input: dimensional vector 
• Set:

– ,  is the width of the 0th (input) layer

– ;       

• For layer 
– For 

• 
()

,
()


(ିଵ)ேೖ

ୀ

• 
()

 
()

• Output:

–
129



Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect 

computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Not discussed in class, but explained in slides
– Will appear in quiz.  Please read the slides

130



Special Case 1. Vector activations

• Vector activations: all outputs are functions of 
all inputs

131

z(k)y(k-1) y(k) z(k)y(k-1) y(k)



Special Case 1. Vector activations

132

z(k)y(k-1)

y(k)

Scalar activation: Modifying a 
only changes corresponding 

Vector activation: Modifying a
potentially changes all, 

z(k)y(k-1)

y(k)



“Influence” diagram

133

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each  
influences one 

Vector activation: Each 
influences all, 

y(k-1)



The number of outputs

134

z(k) y(k)

• Note:  The number of outputs (y(k)) need not be the 
same as the number of inputs (z(k))
• May be more or fewer

z(k) y(k)y(k-1) y(k-1)



Scalar Activation: Derivative rule

• In the case of scalar activation functions, the 
derivative of the error w.r.t to the input to the 
unit is a simple product of derivatives

135

z(k)y(k-1) y(k)



Derivatives of vector activation

• For vector activations the derivative of the error w.r.t. 
to any input is a sum of partial derivatives

– Regardless of the number of outputs 
136

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector 

activations: 
డ௬ೕ

(ೖ)

డ௭

(ೖ)



Special cases

• Examples of vector activations and other 
special cases on slides
– Please look up
– Will appear in quiz!
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Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 138

z(k)y(k-1) y(k)


() 

()


() 




()


()


()


()

 




()


()


()


()








()


() 

()
 

()

 



Div



Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax), 

etc. 
139

z(k)y(k-1) y(k)



Special Case 2: Multiplicative 
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far 

• Seen in networks such as LSTMs, GRUs, attention models, 
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward: )1()1()(  k
l

k
j

k
i yyo



Backpropagation: Multiplicative 
Networks

• Some types of networks have multiplicative 
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward: 
)1()1()(  k

l
k
j

k
i yyo

Backward: 

)(
)1(

)()1(

)(

)1( k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div













 

 )(
)1(

)1( k
i

k
jk

l o

Div
y

y

Div






 




() 

(ାଵ)

 

 
(ାଵ)



Multiplicative combination as a case 
of vector activations

• A layer of multiplicative combination is a special case of vector activation
142

z(k)y(k-1) y(k)



Multiplicative combination: Can be 
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
143

z(k)y(k-1) y(k)


(ೖ)

ೕ
(ೖ)


(ೖ)

Y, Div



Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)


()

For k = N…1
For i = 1:layer width


()


()


()


()

 




(ିଵ) 

()

 

 
()


() 

(ିଵ)


()


()


()


()


()

If layer has vector activation Else if activation is scalar



Backward Pass for softmax output 
layer

• Output layer (N) :
– For 

•
డ௩

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩(,ௗ)

డ௬
ೕ
(ಿ) 

(ே)
 

(ே) 


• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ) 


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ) 

ᇱ

() డ௩

డ௬

(ೖ)

•
డ௩

డ௪
ೕ
(ೖశభ) 

() డ௩

డ௭

(ೖశభ)    for ାଵ
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z(N)
y(N)

KL Div

d

Div

so
ft

m
ax



Special Case 3: Non-differentiable 
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g.  The “max” function

• Must use “subgradients” where available
– Or “secants” 146

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y




z2

z3

z4



The subgradient

• A subgradient of a function at a point  is any vector such that


்



• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to 
increase

• If the function is differentiable at , the subgradient is the gradient
– The gradient is not always the subgradient though 147



Subgradients and the RELU

• Can use any subgradient
– At the differentiable points on the curve, this is the 

same as the gradient
– Typically, will use the equation given

148



Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

149

 

z1

y




z2

zN



Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of 
inputs
– Will be seen in convolutional networks

• Gradient for any output: 
– 1 for the specific component that is maximum in corresponding input 

subset
– 0 otherwise 150

ೕ

ೕ

 

z1 y1

z2

zN

y2

y3

yM



Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ௩

డ

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

డ௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭

(ಿ)

 
 (vector activation)

• For layer 
– For 

•
డ௩

డ௬

(ೖ) 

(ାଵ) 


డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

డ௬
(ೖ)

డ௭

(ೖ)

డ௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭

(ೖ)

 
 (vector activation)

•
డ௩

డ௪
ೕ
(ೖశభ) 

() డ௩

డ௭

(ೖశభ)    for ାଵ
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Overall Approach
• For each data instance

– Forward pass:  Pass instance forward through the net. Store all 
intermediate outputs of all computation

– Backward pass: Sweep backward through the net, iteratively compute 
all derivatives w.r.t weights

• Actual Error is the sum of the error over all training instances

• Actual gradient is the sum or average of the derivatives computed 
for each training instance

–



Training by  BackProp
• Initialize all weights ଵ ଶ 

• Do:

– Initialize ;  For all ,  initialize ௗா

ௗ௪
,ೕ
(ೖ)

– For all (Loop over training instances)
• Forward pass: Compute 

– Output 𝒀𝒕

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:

– Compute  ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

– Compute   
ௗா

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

– For all update:

𝑤,
()

= 𝑤,
()

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤,
()

• Until has converged
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Vector formulation

• For layered networks it is generally simpler to 
think of the process in terms of vector operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector terms
– On slides, please read
– This is what is actually used in any real system
– Will appear in quiz
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Vector formulation

• Arrange all inputs to the network in a vector 
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix 

– Similarly with biases
15

5

ଵ

ଶ



ଵଵ
(ଵ)

భ
(ଵ)

ଵ
(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ

ଶ



𝒌

ଵ
()

ଶ
()

ೖశభ

()


ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()



Vector formulation

• The computation of a single layer is easily expressed in matrix 
notation as  (setting 𝟎 ):

15
6

ଵ



ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

ଶ



ଵଵ
(ଵ)


(ଵ)

ଵ
(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ

ଶ



𝒌

ଵ
()

ଶ
()

ೖశభ

()

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌  𝒌



The forward pass: Evaluating the 
network

157

𝟎



The forward pass

158

𝟏 𝟏 ଵ

𝟏
ଵ ଵ
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ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation



The forward pass

160

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation



The forward pass

161

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏



The forward pass

162

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟐𝟏



The forward pass
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𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏



Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output



The Forward Pass
• Set 

• For layer k = 1 to N:
– Recursion:

• Output:
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The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The error for any is also a nested function



Calculus recap 2: The Jacobian

167

Using vector notation

Check:  

• The derivative of a vector function w.r.t. vector input is called 
a Jacobian

• It is the matrix of partial derivatives given below



Jacobians can describe the derivatives 
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 168

z y



• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

169

z y

Jacobians can describe the derivatives 
of neural activations w.r.t their input



For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs 

w.r.t individual inputs
170

z y



Special case: Affine functions

• Matrix and bias operating on vector to 
produce vector 

• The Jacobian of w.r.t is simply the matrix 
171



Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

172

Check

Note the order: The derivative of the outer function comes first



Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs ( is vector):

173

Check

Note the order: The derivative of the outer function comes first



Special Case

• Scalar functions of Affine functions

174

Note reversal of order.  This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a gradient (for scalar )
Or a Jacobian (for vector ) 



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .  
The actual gradient depends on the divergence function.



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿ
ಿ ಿ

ಿ ಿ

ே



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal 
matrix for scalar activations



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ



The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ



The Backward Pass
• Set , 
• Initialize:  Compute 

ಿ

• For layer k = N downto 1:
– Compute 

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ
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The Backward Pass
• Set , 
• Initialize:  Compute 

ಿ

• For layer k = N downto 1:
– Compute 

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

190

Note analogy to forward pass



For comparison: The Forward Pass
• Set 

• For layer k = 1 to N:
– Recursion:

• Output:
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Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all ,  initialize 𝐖ೖ
, 𝐛ೖ

– For all 
• Forward pass : Compute 

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕);  𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝛻𝐖ೖ
𝐸𝑟𝑟 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕);   𝛻𝐛ೖ
𝐸𝑟𝑟 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖 = 𝐖 −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

;        𝐛 = 𝐛 −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

• Until has converged
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Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation 

–

–

• Use KL divergence
• Backpropagation to learn network parameters 193

(   , 0)
(   , 1)
(   , 0)

(   , 1)
(   , 0)
(   , 1)

Training data

Sigmoid output
neuron



Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 194

(   , 0)
(   , 1)
(   , 0)

(   , 1)
(   , 0)
(   , 1)

Training data

Y1 Y2 Y3 Y4 Y0



Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training 
data)

• What does the output really mean?
• Etc..
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Next up

• Convergence and generalization
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