
Neural Networks
Learning the network: Backprop

11-785, Spring 2019
Lecture 4

1

Recap: The MLP can represent any
function

• The MLP can be constructed to represent anything
• But how do we construct it?

– I.e. how do we determine the weights (and biases) of the network to
best represent a target function
• Assuming that the architecture of the network is given 2

Recap: How to learn the function

• By minimizing expected error

3

Recap: Sampling the function

• is unknown, so sample it
– Basically, get input-output pairs for a number of samples of

input

– Good sampling: the samples of will be drawn from

• Estimate function from the samples
4

Xi

di

The Empirical risk

• The empirical estimate of the expected error is the average error over the samples

்

ୀଵ

• This approximation is an unbiased estimate of the expected divergence that we
actually want to estimate
– We can hope that minimizing the empirical loss will minimize the true loss
– Caveat: This hope is generally not based on anything but, well, hope.. 5

Xi

di

Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:

– Empirical average error on all training data:

• Estimate the parameters to minimize the empirical estimate of expected
error

ௐ

– I.e. minimize the empirical error over the drawn samples 6

Empirical Risk Minimization

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

– Error on the i-th instance:

– Empirical average error on all training data:

• Estimate the parameters to minimize the empirical estimate of expected
error

ௐ

– I.e. minimize the empirical error over the drawn samples 7

This is an instance of
function minimization
(optimization)

• A CRASH COURSE ON FUNCTION
OPTIMIZATION

8

Finding the minimum of a scalar
function of a multi-variate input

• The optimum point is a turning point – the
gradient will be 0

9

Unconstrained Minimization of
function (Multivariate)

1. Solve for the where the gradient equation equals to
zero

2. Compute the Hessian Matrix at the candidate
solution and verify that
– Hessian is positive definite (eigenvalues positive) -> to

identify local minima
– Hessian is negative definite (eigenvalues negative) -> to

identify local maxima

10

0)(Xf

Closed Form Solutions are not always
available

• Often it is not possible to simply solve
– The function to minimize/maximize may have an

intractable form

• In these situations, iterative solutions are used
– Begin with a “guess” for the optimal and refine it

iteratively until the correct value is obtained
11

X

f(X)

Iterative solutions

• Iterative solutions
– Start from an initial guess for the optimal
– Update the guess towards a (hopefully) “better” value of
– Stop when no longer decreases

• Problems:
– Which direction to step in
– How big must the steps be

12

f(x)

x
x0 x1 x2 x3

x4

x5

ଵ

ଶ

The Approach of Gradient Descent

• Iterative solution: Trivial algorithm
– Initialize

– While (or while)

• ାଵ
௫

– is the “step size”

f(x)

x
x0 x1 x2 x3

x4

x5

Overall Gradient Descent Algorithm

• Initialize:
–

–

• While
–

–

11-755/18-797 14

Convergence of Gradient Descent
• For appropriate step

size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

• For non-convex
functions it will find a
local minimum or an
inflection point

15

• Returning to our problem..

16

Problem Statement
• Given a training set of input-output pairs

• Minimize the following function

w.r.t

• This is problem of function minimization
– An instance of optimization

17

Preliminaries

• Before we proceed: the problem setup

18

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

19

What are these input-output pairs?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

20

What are these input-output pairs?

What is f() and
what are its
parameters W?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

21

What are these input-output pairs?

What is f() and
what are its
parameters W?

What is the
divergence div()?

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

22

What is f() and
what are its
parameters W?

What is f()? Typical network

• Multi-layer perceptron
• A directed network with a set of inputs and outputs

– No loops

• Generic terminology
– We will refer to the inputs as the input units

• No neurons here – the “input units” are just the inputs

– We refer to the outputs as the output units
– Intermediate units are “hidden” units 23

Input
units Output

units

Hidden units

Typical network

• We assume a “layered” network for simplicity
– We will refer to the inputs as the input layer

• No neurons here – the “layer” simply refers to inputs

– We refer to the outputs as the output layer

– Intermediate layers are “hidden” layers
24

Input
Layer Output

Layer

Hidden Layers

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A differentiable activation function applied to an

affine combination of the input

𝑦 = 𝑓 𝑤

𝑥 + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 25

The individual neurons

• Individual neurons operate on a set of inputs and produce a single
output
– Standard setup: A differentiable activation function applied to an

affine combination of the input

𝑦 = 𝑓 𝑤

𝑥 + 𝑏

– More generally: any differentiable function

ଵ ଶ ே 26

We will assume this
unless otherwise
specified

Parameters are weights
 and bias

Activations and their derivatives

• Some popular activation functions and their
derivatives 27

ଶ

[*]

Vector Activations

• We can also have neurons that have multiple coupled
outputs

– Function operates on set of inputs to produce set of
outputs

– Modifying a single parameter in will affect all outputs
28

Input
Layer Output

Layer

Hidden Layers

Vector activation example: Softmax

• Example: Softmax vector activation

29

ଵ

ଶ

ଷ

s
o
f
t
m
a
x

ଵ

ଶ

ଵ

ଶ

Parameters are
weights
and bias

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
30

zx y

Parameters are
weights
and bias

Typical network

• In a layered network, each layer of
perceptrons can be viewed as a single vector
activation

31

Input
Layer Output

Layer

Hidden Layers

Notation

• The input layer is the 0th layer

• We will represent the output of the i-th perceptron of the kth layer as
()

– Input to network:
()

– Output of network:
(ே)

• We will represent the weight of the connection between the i-th unit of
the k-1th layer and the jth unit of the k-th layer as

()

– The bias to the jth unit of the k-th layer is
()

32

ଵ

ଵ
(ଵ)

ଵ
(ଶ)

ଵ

(ଵ)

(ଶ)

(ଷ)

(ସ)

ଵ
(ଷ)

(ଵ)

(ଶ)

(ଷ)

(ସ)

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

33

What are these input-output pairs?

Vector notation

• Given a training set of input-output pairs ଵ ଵ ଶ 2 ் ்

• ଵ ଶ is the nth input vector
• ଵ ଶ is the nth desired output
• ଵ ଶ is the nth vector of actual outputs of the

network
• We will sometimes drop the first subscript when referring to a specific

instance
34

ଵ

ଵ

Representing the input

• Vectors of numbers
– (or may even be just a scalar, if input layer is of size 1)
– E.g. vector of pixel values
– E.g. vector of speech features
– E.g. real-valued vector representing text

• We will see how this happens later in the course

– Other real valued vectors
35

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is real-valued, no special tricks are necessary
– Scalar Output : single output neuron

• d = scalar (real value)

– Vector Output : as many output neurons as the dimension of the
desired output
• d = [d1 d2 .. dL] (vector of real values)

36

Input
Layer Output

Layer

Hidden Layers

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

37

Representing the output

• If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

• Output activation: Typically a sigmoid
– Viewed as the probability of class value 1

• Indicating the fact that for actual data, in general a feature value X
may occur for both classes, but with different probabilities

• Is differentiable 38

𝜎(𝑧)

𝜎 𝑧 =
1

1 + 𝑒ି௭

Representing the output

• If the desired output is binary (is this a cat or not), use a simple 1/0 representation
of the desired output
– 1 = Yes it’s a cat
– 0 = No it’s not a cat.

• Sometimes represented by two independent outputs, one representing the desired
output, the other representing the negation of the desired output
– Yes: [1 0]
– No: [0 1]

39

Multi-class output: One-hot
representations

• Consider a network that must distinguish if an input is a cat, a dog, a
camel, a hat, or a flower

• We can represent this set as the following vector:
[cat dog camel hat flower]T

• For inputs of each of the five classes the desired output is:
cat: [1 0 0 0 0] T

dog: [0 1 0 0 0] T

camel: [0 0 1 0 0] T

hat: [0 0 0 1 0] T

flower: [0 0 0 0 1] T

• For an input of any class, we will have a five-dimensional vector output
with four zeros and a single 1 at the position of that class

• This is a one hot vector

40

Multi-class networks

• For a multi-class classifier with N classes, the one-hot
representation will have N binary outputs
– An N-dimensional binary vector

• The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

• More realistically, it will be a probability vector
– N probability values that sum to 1.

41

Input
Layer Output

Layer

Hidden Layers

Multi-class classification: Output

• Softmax vector activation is often used at the output of multi-class
classifier nets

()

(ିଵ)

• This can be viewed as the probability
42

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Typical Problem Statement

• We are given a number of “training” data instances
• E.g. images of digits, along with information about

which digit the image represents
• Tasks:

– Binary recognition: Is this a “2” or not
– Multi-class recognition: Which digit is this? Is this a digit in

the first place?
43

Typical Problem statement:
binary classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

44

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Input: vector of
pixel values

Output: sigmoid

Typical Problem statement:
multiclass classification

• Given, many positive and negative examples (training data),
– learn all weights such that the network does the desired job

45

(, 5)
(, 2)
(, 0)

(, 2)
(, 4)
(, 2)

Training data

Input: vector of
pixel values

Output: Class prob

Input
Layer Output

Layer

Hidden Layers

s
o
f
t
m
a
x

Problem Setup: Things to define
• Given a training set of input-output pairs

• Minimize the following function

46

What is the
divergence div()?

Examples of divergence functions

• For real-valued output vectors, the (scaled) L2 divergence is popular

ଶ

ଶ

– Squared Euclidean distance between true and desired output
– Note: this is differentiable

 ଵ ଵ ଶ ଶ
47

L2 Div()

d1d2 d3 d4

Div

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy
between the probability distribution and the ideal output probability

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

48

KL Div

For binary classifier

• For binary classifier with scalar output, , d is 0/1, the cross entropy
between the probability distribution and the ideal output probability

is popular

– Minimum when d = 𝑌

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1

𝑌
 𝑖𝑓 𝑑 = 1

1

1 − 𝑌
 𝑖𝑓 𝑑 = 0

49

KL Div

Note: when the
derivative is not 0

Even though
(minimum) when y = d

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = − 𝑑 log 𝑦 = − log 𝑦

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
= ൞

−
1

𝑦
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦
… 0 0 50

KL Div()

d1d2 d3 d4

Div

If , the slope is
negative w.r.t.

Indicates increasing

will reduce divergence

For multi-class classification

• Desired output 𝑑 is a one hot vector 0 0 … 1 … 0 0 0 with the 1 in the 𝑐-th position (for class 𝑐)
• Actual output will be probability distribution 𝑦ଵ, 𝑦ଶ, …

• The cross-entropy between the desired one-hot output and actual output:

𝐷𝑖𝑣 𝑌, 𝑑 = − 𝑑 log 𝑦 = − log 𝑦

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
= ൞

−
1

𝑦
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

0 𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝛻𝐷𝑖𝑣(𝑌, 𝑑) = 0 0 …
−1

𝑦
… 0 0 51

KL Div()

d1d2 d3 d4

Div

Note: when the
derivative is not 0

Even though
(minimum) when y = d

If , the slope is
negative w.r.t.

Indicates increasing

will reduce divergence

For multi-class classification

• It is sometimes useful to set the target output to
with the value in the -th position (for class) and elsewhere for
some small
– “Label smoothing” -- aids gradient descent

• The cross-entropy remains:

• Derivative

𝑑𝐷𝑖𝑣(𝑌, 𝑑)

𝑑𝑌
=

−
1 − (𝐾 − 1)𝜖

𝑦
 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐 − 𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

−
𝜖

𝑦
𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

52

KL Div()

d1d2 d3 d4

Div

Problem Setup
• Given a training set of input-output pairs

• The error on the ith instance is
• The total error

• Minimize w.r.t

53

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• While
–

–

11-755/18-797 54

Recap: Gradient Descent Algorithm

• In order to minimize any function w.r.t.
• Initialize:

–

–

• While
– For every component

•

–
11-755/18-797 55

Explicitly stating it by component

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights and biases
– Using the extended notation: the bias is also a weight

• Do:
– For every layer for all update:

• ,
()

,
() ௗா

ௗ௪
,ೕ
(ೖ)

• Until has converged
56

Total training error:

Assuming the bias is also
represented as a weight

Training Neural Nets through Gradient
Descent

• Gradient descent algorithm:

• Initialize all weights

• Do:
– For every layer for all update:

• ,
()

,
() ௗா

ௗ௪
,ೕ
(ೖ)

• Until has converged
57

Total training error:

The derivative

• Computing the derivative

58

Total derivative:

Total training error:

Training by gradient descent

• Initialize all weights
()

• Do:

– For all , initialize ௗா

ௗ௪
,ೕ
(ೖ)

– For all
• For every layer 𝑘 for all 𝑖, 𝑗:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

,ೕ
(ೖ)

–
ௗா

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)
ௗ௪

,ೕ
(ೖ)

– For every layer for all :

𝑤,
()

= 𝑤,
()

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤,
()

• Until has converged
59

The derivative

• So we must first figure out how to compute the
derivative of divergences of individual training
inputs

60

Total derivative:

Total training error:

Calculus Refresher: Basic rules of
calculus

61

For any differentiable function

with derivative
ௗ௬

ௗ௫

the following must hold for sufficiently small

For any differentiable function
ଵ ଶ ெ

with partial derivatives
డ௬

డ௫భ

డ௬

డ௫మ

డ௬

డ௫ಾ

the following must hold for sufficiently small ଵ ଶ ெ

Calculus Refresher: Chain rule

62

Check – we can confirm that :

For any nested function

Calculus Refresher: Distributed Chain
rule

63

Check:

భ

భ

మ

మ

ಾ

ಾ

భ

భ

మ

మ

ಾ

ಾ

Distributed Chain Rule: Influence
Diagram

• affects through each of

64

ଵ

ଶ

ெ

ଵ

ଶ

ெ

Distributed Chain Rule: Influence
Diagram

• Small perturbations in cause small
perturbations in each of each of
which individually additively perturbs 65

ଵ

ଶ

ெ

ଵ
ଵ

ெ
ெ

Returning to our problem

• How to compute

66

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons

and inputs

67

+

+

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Explicitly separating the weighted sum of inputs from the
activation

68

+

+

+

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

A first closer look at the network

• Showing a tiny 2-input network for illustration
– Actual network would have many more neurons and inputs

• Expanded with all weights and activations shown
• The overall function is differentiable w.r.t every weight, bias

and input
69

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

Computing the derivative for a single
input

• Aim: compute derivative of w.r.t. each of the
weights

• But first, lets label all our variables and activation functions

70

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

Each yellow ellipse
represents a perceptron

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

𝑓(.)

Computing the derivative for a single
input

71

+

+

+

+

+

ଵ,ଵ
(ଵ)

ଶ,ଵ
(ଵ)

ଷ,ଵ
(ଵ)

ଵ,ଵ
(ଶ)

ଶ,ଵ
(ଶ)

ଷ,ଵ
(ଶ)

ଵ,ଵ
(ଷ)

ଶ,ଵ
(ଷ)

ଷ,ଵ
(ଷ)

ଷ,ଶ
(ଵ)

ଷ,ଶ
(ଶ)

ଶ,ଶ
(ଵ)

ଵ,ଶ
(ଵ)

ଶ,ଶ
(ଶ)

ଵ,ଶ
(ଶ)

ଵ
(ଵ)

ଵ
(ଶ)

ଶ
(ଵ)

ଶ
(ଶ)

ଵ
(ଷ)

ଵ
(ଵ)

ଶ
(ଵ)

ଶ
(ଵ)

ଶ
(ଶ)

1

1

2

2

3

Div

Computing the gradient

• What is:

– Derive on board?

72

Computing the gradient

• What is:

• Derive on board?

• Note: computation of the derivative requires
intermediate and final output values of the
network in response to the input

73

BP: Scalar Formulation

• The network again

ଵଵ ିଵ ேିଵ

ே

ே

Div(Y,d)

1 1 1 1 1

Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

Assuming
()

() and

() -- assuming the bias is a weight and extending
the output of every layer by a constant 1, to account for the biases

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

Setting
()

 for notational convenience

1

Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

Expanding it out

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

(ଵ)

()

1

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

(ଵ)

()

(ଵ)

ଵ
(ଵ)

1

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

1

(ଵ)

(ଵ)

()

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

(ଶ)

ଶ
(ଶ)

1

(ଵ)

(ଵ)

()

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

(ଶ)

ଶ
(ଶ)

(ଷ)

(ଷ)

(ଶ)

1

(ଵ)

(ଵ)

()

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ଵ)

ଵ
(ଵ)

(ଶ)

(ଶ)

(ଵ)

(ଶ)

ଶ
(ଶ)

(ଷ)

(ଷ)

(ଶ)

(ଷ)

ଷ
(ଷ)

1

(ଵ)

(ଵ)

()

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

(ே)

(ே)

(ேିଵ)

(ேିଵ)

ேିଵ
(ேିଵ) (ே)

ே
(ே)

1

Forward Computation

ITERATE FOR k = 1:N for j = 1:layer-width

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ଶ

y(2)z(2)

ଶ

ଶ

ଶ

1
ଷ

y(3)z(3)

ଷ

ଷ

ଷ

1

ேିଵ

ேିଵ

ேିଵ

1

Forward “Pass”
• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

•
()

,
()

(ିଵ)ೖషభ

ୀ

•
()

()

• Output:

–
85

Dk is the size of the kth layer

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Computing derivatives

We have computed all these intermediate values in the
forward computation

We must remember them – we will need them to compute
the derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

First, we compute the divergence between the output of the net y = y(N) and the
desired output

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We then compute (ಿ) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute ௭(ಿ) the derivative of the divergence w.r.t. the pre-activation affine
combination z(N) using the chain rule

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the ouput layer

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Continuing on, we will compute ௐ(ಿ) the derivative of the divergence with respect
to the weights of the connections to the ouput layer

Then continue with the chain rule to compute (ಿషభ) the derivative of the
divergence w.r.t. the output of the N-1th layer

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

Backward Gradient Computation

• Lets actually see the math..

99

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

The derivative w.r.t the actual output of the
network is simply the derivative w.r.t to the
output of the final layer of the network

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ே
ᇱ

ଵ
(ே)

Derivative of
activation function

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ே
ᇱ

ଵ
(ே)

Derivative of
activation function

Computed in forward
pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே) Just computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே)

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ே)

ଵ
(ேିଵ)

Because

ଵ
(ே)

ଵଵ
(ே)

ଵ
(ேିଵ)

Computed in forward pass

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵଵ
(ே) ଵ

(ேିଵ)

ଵ
(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ே)

(ேିଵ)

(ே)

For the bias term
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

(ே)

ଵ
(ேିଵ)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

(ே)

ଵ
(ேିଵ)

(ே) Already computed

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ)

(ே)

ଵ
(ேିଵ)

(ே)

ଵ
(ேିଵ)

Because

(ே)

ଵ
(ே)

ଵ
(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

ଵ
(ேିଵ) ଵ

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

(ேିଵ)

(ே)

(ே)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

Computing derivatives

We continue our way backwards in the order shown

(ேିଵ) ேିଵ

ᇱ

(ேିଵ)

(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଵ)

(ேିଶ)

(ேିଵ)

For the bias term
(ேିଶ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଶ)

(ேିଵ)

(ேିଵ)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1
ேିଶ

y(N-2)

z(N-2)

ேିଶ

ேିଶ

ேିଶ

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

(ேିଶ) ேିଶ

ᇱ

(ேିଶ)

(ேିଶ)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

ଵ
(ଵ)

(ଶ)

(ଶ)

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

y(0)

ଵ

ଵ

ଵ

1

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

We continue our way backwards in the order shown

ேିଶ

ேିଶ

ேିଶ

ேିଶ

(ଵ) ଵ

ᇱ

(ଵ)

(ଵ)

y(0)

1

We continue our way backwards in the order shown

fN

fN

ேିଵ

y(N)z(N)

y(N-1)z(N-1)

ଵ

y(1)z(1)

ଵ

ଵ

ଵ

y(N-2)

z(N-2)

1

ேିଵ

ேିଵ

ேିଵ

1

Div(Y,d)

ேିଶ

ேିଶ

ேିଶ

ேିଶ

(ଵ)

(ଵ)

(ଵ)

Gradients: Backward Computation

Div(Y,d)

fN

fN

Initialize: Gradient
w.r.t network output

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

()

ᇱ

()

()

()

(ାଵ)

(ାଵ)

(ାଵ)

()

(ାଵ)

Div(Y,d)

(ே)

Figure assumes, but does not show
the “1” bias nodes

(ே)

ᇱ

(ே)

(ே)

Backward Pass
• Output layer (N) :

– For ே

•
డ

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖశభ)

() డ

డ௭

(ೖశభ) for ାଵ

127

Backward Pass
• Output layer (N) :

– For ே

•
డ௩

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

• For layer
– For

•
డ

డ௬

(ೖ)

(ାଵ)

డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

ᇱ

()

•
డ௩

డ௪
ೕ
(ೖశభ)

() డ௩

డ௭

(ೖశభ) for ାଵ

128

Called “Backpropagation” because
the derivative of the error is
propagated “backwards” through
the network

Backward weighted combination
of next layer

Backward equivalent of activation

Very analogous to the forward pass:

For comparison: the forward pass
again

• Input: dimensional vector
• Set:

– , is the width of the 0th (input) layer

– ;

• For layer
– For

•
()

,
()

(ିଵ)ேೖ

ୀ

•
()

()

• Output:

–
129

Special cases

• Have assumed so far that
1. The computation of the output of one neuron does not directly affect

computation of other neurons in the same (or previous) layers
2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
– All of these conditions are frequently not applicable

• Not discussed in class, but explained in slides
– Will appear in quiz. Please read the slides

130

Special Case 1. Vector activations

• Vector activations: all outputs are functions of
all inputs

131

z(k)y(k-1) y(k) z(k)y(k-1) y(k)

Special Case 1. Vector activations

132

z(k)y(k-1)

y(k)

Scalar activation: Modifying a
only changes corresponding

Vector activation: Modifying a
potentially changes all,

z(k)y(k-1)

y(k)

“Influence” diagram

133

z(k)y(k-1)
y(k) z(k) y(k)

Scalar activation: Each
influences one

Vector activation: Each
influences all,

y(k-1)

The number of outputs

134

z(k) y(k)

• Note: The number of outputs (y(k)) need not be the
same as the number of inputs (z(k))
• May be more or fewer

z(k) y(k)y(k-1) y(k-1)

Scalar Activation: Derivative rule

• In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

135

z(k)y(k-1) y(k)

Derivatives of vector activation

• For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

– Regardless of the number of outputs
136

z(k)y(k-1) y(k)

Div
Note: derivatives of scalar activations
are just a special case of vector

activations:
డ௬ೕ

(ೖ)

డ௭

(ೖ)

Special cases

• Examples of vector activations and other
special cases on slides
– Please look up
– Will appear in quiz!

137

Example Vector Activation: Softmax

• For future reference

• is the Kronecker delta: 138

z(k)y(k-1) y(k)

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Div

Vector Activations

• In reality the vector combinations can be anything
– E.g. linear combinations, polynomials, logistic (softmax),

etc.
139

z(k)y(k-1) y(k)

Special Case 2: Multiplicative
networks

• Some types of networks have multiplicative combination
– In contrast to the additive combination we have seen so far

• Seen in networks such as LSTMs, GRUs, attention models,
etc.

z(k-1) y(k-1)

o(k)

W(k)

Forward:)1()1()(k
l

k
j

k
i yyo

Backpropagation: Multiplicative
Networks

• Some types of networks have multiplicative
combination

z(k-1) y(k-1)

o(k)

W(k)

Forward:
)1()1()(k

l
k
j

k
i yyo

Backward:

)(
)1(

)()1(

)(

)1(k
i

k
lk

i
k
j

k
i

k
j o

Div
y

o

Div

y

o

y

Div

)(
)1(

)1(k
i

k
jk

l o

Div
y

y

Div

()

(ାଵ)

(ାଵ)

Multiplicative combination as a case
of vector activations

• A layer of multiplicative combination is a special case of vector activation
142

z(k)y(k-1) y(k)

Multiplicative combination: Can be
viewed as a case of vector activations

• A layer of multiplicative combination is a special case of vector activation
143

z(k)y(k-1) y(k)

(ೖ)

ೕ
(ೖ)

(ೖ)

Y, Div

Gradients: Backward Computation

Div(Y,d)

fN

fN

Div

y(N)z(N)

y(N-1)z(N-1)y(k)z(k)y(k-1)z(k-1)

()

For k = N…1
For i = 1:layer width

()

()

()

()

(ିଵ)

()

()

()

(ିଵ)

()

()

()

()

()

If layer has vector activation Else if activation is scalar

Backward Pass for softmax output
layer

• Output layer (N) :
– For

•
డ௩

డ௬

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ௩(,ௗ)

డ௬
ೕ
(ಿ)

(ே)

(ே)

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

ᇱ

() డ௩

డ௬

(ೖ)

•
డ௩

డ௪
ೕ
(ೖశభ)

() డ௩

డ௭

(ೖశభ) for ାଵ

145

z(N)
y(N)

KL Div

d

Div

so
ft

m
ax

Special Case 3: Non-differentiable
activations

• Activation functions are sometimes not actually differentiable
– E.g. The RELU (Rectified Linear Unit)

• And its variants: leaky RELU, randomized leaky RELU

– E.g. The “max” function

• Must use “subgradients” where available
– Or “secants” 146

+.
.
.
.
.

xଵ

xଶ

xଷ

xே

𝑧
𝑦

𝑤ଵ

𝑤ଶ

𝑤ଷ

𝑤ே

𝑓(𝑧)

xேିଵ

𝑤ேିଵ

𝑤ேାଵ1

𝑧

𝑓(𝑧) = 𝑧

𝑓(𝑧) = 0

z1

y

z2

z3

z4

The subgradient

• A subgradient of a function at a point is any vector such that

்

• Guaranteed to exist only for convex functions
– “bowl” shaped functions
– For non-convex functions, the equivalent concept is a “quasi-secant”

• The subgradient is a direction in which the function is guaranteed to
increase

• If the function is differentiable at , the subgradient is the gradient
– The gradient is not always the subgradient though 147

Subgradients and the RELU

• Can use any subgradient
– At the differentiable points on the curve, this is the

same as the gradient
– Typically, will use the equation given

148

Subgradients and the Max

• Vector equivalent of subgradient
– 1 w.r.t. the largest incoming input

• Incremental changes in this input will change the output

– 0 for the rest
• Incremental changes to these inputs will not change the output

149

z1

y

z2

zN

Subgradients and the Max

• Multiple outputs, each selecting the max of a different subset of
inputs
– Will be seen in convolutional networks

• Gradient for any output:
– 1 for the specific component that is maximum in corresponding input

subset
– 0 otherwise 150

ೕ

ೕ

z1 y1

z2

zN

y2

y3

yM

Backward Pass: Recap
• Output layer (N) :

– For ே

•
డ௩

డ

డ௩(,ௗ)

డ௬

(ಿ)

•
డ௩

డ௭

(ಿ)

డ

డ௬

(ಿ)

డ௬
(ಿ)

డ௭

(ಿ)

డ௩

డ௬
ೕ
(ಿ)

డ௬ೕ
(ಿ)

డ௭

(ಿ)

 (vector activation)

• For layer
– For

•
డ௩

డ௬

(ೖ)

(ାଵ)

డ௩

డ௭
ೕ
(ೖశభ)

•
డ௩

డ௭

(ೖ)

డ௩

డ௬

(ೖ)

డ௬
(ೖ)

డ௭

(ೖ)

డ௩

డ௬
ೕ
(ೖ)

డ௬ೕ
(ೖ)

డ௭

(ೖ)

 (vector activation)

•
డ௩

డ௪
ೕ
(ೖశభ)

() డ௩

డ௭

(ೖశభ) for ାଵ

151

Overall Approach
• For each data instance

– Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation

– Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

• Actual Error is the sum of the error over all training instances

• Actual gradient is the sum or average of the derivatives computed
for each training instance

–

Training by BackProp
• Initialize all weights ଵ ଶ

• Do:

– Initialize ; For all , initialize ௗா

ௗ௪
,ೕ
(ೖ)

– For all (Loop over training instances)
• Forward pass: Compute

– Output 𝒀𝒕

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑖, 𝑗, 𝑘:

– Compute ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

– Compute
ௗா

ௗ௪
,ೕ
(ೖ) +=

ௗ𝑫𝒊𝒗(𝒀𝒕,𝒅𝒕)

ௗ௪
,ೕ
(ೖ)

– For all update:

𝑤,
()

= 𝑤,
()

−
𝜂

𝑇

𝑑𝐸𝑟𝑟

𝑑𝑤,
()

• Until has converged
153

Vector formulation

• For layered networks it is generally simpler to
think of the process in terms of vector operations
– Simpler arithmetic
– Fast matrix libraries make operations much faster

• We can restate the entire process in vector terms
– On slides, please read
– This is what is actually used in any real system
– Will appear in quiz

154

Vector formulation

• Arrange all inputs to the network in a vector
• Arrange the inputs to neurons of the kth layer as a vector 𝒌

• Arrange the outputs of neurons in the kth layer as a vector 𝒌

• Arrange the weights to any layer as a matrix

– Similarly with biases
15

5

ଵ

ଶ

ଵଵ
(ଵ)

భ
(ଵ)

ଵ
(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ

ଶ

𝒌

ଵ
()

ଶ
()

ೖశభ

()

ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

Vector formulation

• The computation of a single layer is easily expressed in matrix
notation as (setting 𝟎):

15
6

ଵ

ଵଵ
() ଶଵ

() ೖషభଵ
()

ଵଶ
()

ଶଶ
()

ೖషభଶ
()

ଵೖ

()
ଶೖ

()
ೖషభೖ

()

ଶ

ଵଵ
(ଵ)

(ଵ)

ଵ
(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

ଵ
(ଵ)

ଶ
(ଵ)

భ

(ଵ)

𝒌

ଵ
()

ଶ
()

ೖ

()

ଵ

ଶ

𝒌

ଵ
()

ଶ
()

ೖశభ

()

𝒌 𝒌 𝒌ି𝟏 𝒌 𝒌 𝒌

The forward pass: Evaluating the
network

157

𝟎

The forward pass

158

𝟏 𝟏 ଵ

𝟏
ଵ ଵ

159

ଵ ଵ 1

𝟏 𝟏

The forward pass
ଵ ଵ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

160

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

ଵ ଵ ଵ ଵ

The Complete computation

The forward pass

161

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟏

The forward pass

162

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

ଶ ଶ ଶ ଵ ଵ ଵ ଶ

The Complete computation

𝟐𝟏

The forward pass

163

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

The Complete computation

𝟐𝟏

Forward pass

Div(Y,d)

Forward pass:

For k = 1 to N:

Initialize

Output

The Forward Pass
• Set

• For layer k = 1 to N:
– Recursion:

• Output:

165

The backward pass

• The network is a nested function

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

ଵ ଵ ଶ ଶ

ே ே

ே ே ேିଵ ଶ ଶ ଵ ଵ ଵ ଶ ே

• The error for any is also a nested function

Calculus recap 2: The Jacobian

167

Using vector notation

Check:

• The derivative of a vector function w.r.t. vector input is called
a Jacobian

• It is the matrix of partial derivatives given below

Jacobians can describe the derivatives
of neural activations w.r.t their input

• For Scalar activations
– Number of outputs is identical to the number of inputs

• Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs
– Not showing the superscript “(k)” in equations for brevity 168

z y

• For scalar activations (shorthand notation):
– Jacobian is a diagonal matrix
– Diagonal entries are individual derivatives of outputs w.r.t inputs

169

z y

Jacobians can describe the derivatives
of neural activations w.r.t their input

For Vector activations

• Jacobian is a full matrix
– Entries are partial derivatives of individual outputs

w.r.t individual inputs
170

z y

Special case: Affine functions

• Matrix and bias operating on vector to
produce vector

• The Jacobian of w.r.t is simply the matrix
171

Vector derivatives: Chain rule
• We can define a chain rule for Jacobians
• For vector functions of vector inputs:

172

Check

Note the order: The derivative of the outer function comes first

Vector derivatives: Chain rule
• The chain rule can combine Jacobians and Gradients
• For scalar functions of vector inputs (is vector):

173

Check

Note the order: The derivative of the outer function comes first

Special Case

• Scalar functions of Affine functions

174

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

Derivatives w.r.t
parameters

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

In the following slides we will also be using the notation 𝐳 to represent
the Jacobian 𝐘 to explicitly illustrate the chain rule

In general 𝐚 represents a derivative of w.r.t. and could be a gradient (for scalar)
Or a Jacobian (for vector)

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .
The actual gradient depends on the divergence function.

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ ಿ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ಿషభ ಿ ಿషభ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿ
ಿ ಿ

ಿ ಿ

ே

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ே

ேିଵ

ಿషభ ಿషభ ಿషభ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ ಿషమ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

189

The Backward Pass
• Set ,
• Initialize: Compute

ಿ

• For layer k = N downto 1:
– Compute

ೖ

• Will require intermediate values computed in the forward pass

– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

190

Note analogy to forward pass

For comparison: The Forward Pass
• Set

• For layer k = 1 to N:
– Recursion:

• Output:

191

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐲ೖ

𝐷𝑖𝑣 = 𝛻𝐳ೖାଵ𝐷𝑖𝑣 𝐖

– 𝛻𝐳ೖ
𝐷𝑖𝑣 = 𝛻𝐲ೖ

𝐷𝑖𝑣 𝐽𝐲ೖ
𝐳

– 𝛻𝐖ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝛻𝐖ೖ
𝐸𝑟𝑟 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐸𝑟𝑟 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖 = 𝐖 −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

; 𝐛 = 𝐛 −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

• Until has converged
192

Setting up for digit recognition

• Simple Problem: Recognizing “2” or “not 2”
• Single output with sigmoid activation

–

–

• Use KL divergence
• Backpropagation to learn network parameters 193

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Sigmoid output
neuron

Recognizing the digit

• More complex problem: Recognizing digit
• Network with 10 (or 11) outputs

– First ten outputs correspond to the ten digits
• Optional 11th is for none of the above

• Softmax output layer:
– Ideal output: One of the outputs goes to 1, the others go to 0

• Backpropagation with KL divergence to learn network 194

(, 0)
(, 1)
(, 0)

(, 1)
(, 0)
(, 1)

Training data

Y1 Y2 Y3 Y4 Y0

Issues

• Convergence: How well does it learn
– And how can we improve it

• How well will it generalize (outside training
data)

• What does the output really mean?
• Etc..

195

Next up

• Convergence and generalization

196

