
Deep Neural Networks
Scanning for patterns

(aka convolutional networks)

Bhiksha Raj

1

Story so far

• MLPs are universal function approximators
– Boolean functions, classifiers, and regressions

• MLPs can be trained through variations of
gradient descent
– Gradients can be computed by backpropagation

2

input
layer

output layer

The model so far

• Can recognize patterns in data
– E.g. digits
– Or any other vector data

Or, more generally
a vector input

An important observation

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 4

x2

AND AND

OR

x1 x1 x2

An important observation

• The neurons in an MLP build up complex patterns from simple pattern
hierarchically
– Each layer learns to “detect” simple combinations of the patterns detected by

earlier layers

• This is because the basic units themselves are simple
– Typically linear classifiers or thresholding units
– Incapable of individually holding complex patterns 5

x2

AND AND

OR

x1 x1 x2

What do the neurons capture?

• What do the weights tell us?
– Using example of threshold activation

• The perceptron “fires” if the correlation between the weights and
the inputs exceeds a threshold
– The perceptron fires if the input pattern looks like pattern of weights

6

x1

x2

x3

xN

்

The weights as a correlation filter

• The green pattern looks more like the weights
pattern (black) than the red pattern
– The green pattern is more correlated with the weights

7

W X X

Correlation = 0.57 Correlation = 0.82
𝑦 = ൞

1 𝑖𝑓 𝑤x ≥ 𝑇

0 𝑒𝑙𝑠𝑒

The MLP as a function over feature
detectors

• The input layer comprises “feature detectors”
– Detect if certain patterns have occurred in the input

• The network is a function over the feature detectors
• I.e. it is important for the first layer to capture relevant patterns 8

DIGIT OR NOT?

Distributed representations: The MLP
as a cascade of feature detectors

• The network is a cascade of feature detectors
– Higher level neurons compose complex templates from

features represented by lower-level neurons 9

DIGIT OR NOT?

Story so far
• Perceptrons are correlation filters

– They detect patterns in the input

• Layers in an MLP are detectors of increasingly complex patterns
– Patterns of lower-complexity patterns
– The representation of “acceptable” input patterns is distributed over the

layers of the network

• MLP in classification
– The network will fire if the combination of the detected basic features

matches an “acceptable” pattern for a desired class of signal
• E.g. Appropriate combinations of (Nose, Eyes, Eyebrows, Cheek, Chin) Face

– If the final complex pattern detected “matches” a desired pattern

10

Changing gears..

11

A problem

• Does this signal contain the word “Welcome”?
• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
12

Finding a Welcome

• Trivial solution: Train an MLP for the entire
recording

13

Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in
the top recording will not find it in the lower one
– Unless trained with both
– Will require a very large network and a large amount of training data

to cover every case
14

Finding a Welcome

• Need a simple network that will fire regardless
of the location of “Welcome”
– and not fire when there is none

15

Flowers

• Is there a flower in any of these images

16

A problem

• Will an MLP that recognizes the left image as a flower
also recognize the one on the right as a flower?

input
layer

output layer

17

A problem

• Need a network that will “fire” regardless of
the precise location of the target object

18

The need for shift invariance

• In many problems the location of a pattern is not important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the
pattern
– Moving it by one component results in an entirely different

input that the MLP wont recognize

• Requirement: Network must be shift invariant
19

The need for shift invariance

• In many problems the location of a pattern is not important
– Only the presence of the pattern

• Conventional MLPs are sensitive to the location of the
pattern
– Moving it by one component results in an entirely different

input that the MLP wont recognize

• Requirement: Network must be shift invariant
20

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

21

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

22

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

23

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

24

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

25

Solution: Scan

• Scan for the target word
– The spectral time-frequency components in a

“window” are input to a “welcome-detector” MLP

26

Solution: Scan

• “Does welcome occur in this recording?”
– We have classified many “windows” individually
– “Welcome” may have occurred in any of them

27

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

28

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find
noise

Perceptron

29

Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence

– Or even an MLP 30

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

31

Solution: Scan

• The entire operation can be viewed as one giant
network
– With many subnetworks, one per window
– Restriction: All subnets are identical 32

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

33

Just the final layer of the overall
MLP

Scanning with an MLP

Y = giantMLP(x)

34

The 2-d analogue: Does this picture
have a flower?

• Scan for the desired object
– “Look” for the target object at each position 35

Solution: Scan

• Scan for the desired object

36

Flower detector MLP

Solution: Scan

• Scan for the desired object

37

Flower detector MLP

Solution: Scan

• Scan for the desired object

38

Flower detector MLP

Solution: Scan

• Scan for the desired object

39

Flower detector MLP

Solution: Scan

• Scan for the desired object

40

Flower detector MLP

Solution: Scan

• Scan for the desired object

41

Flower detector MLP

Solution: Scan

• Scan for the desired object

42

Flower detector MLP

Solution: Scan

• Scan for the desired object

43

Flower detector MLP

Solution: Scan

• Scan for the desired object

44

Flower detector MLP

Solution: Scan

• Scan for the desired object

45

Flower detector MLP

Solution: Scan

• Scan for the desired object

46

Flower detector MLP

Solution: Scan

• Scan for the desired object

47

Flower detector MLP

Solution: Scan

• Scan for the desired object

48

Flower detector MLP

Solution: Scan

• Scan for the desired object

49

Flower detector MLP

Scanning

• Scan for the desired object

• At each location, the entire region is sent
through an MLP

Input
(the pixel data)

50

Scanning the picture to find a flower

• Determine if any of the locations had a flower
– We get one classification output per scanned location

• Each dot in the right represents the output of the MLP when it
classifies one location in the input figure

– The score output by the MLP

– Look at the maximum value

max

51

Its just a giant network with common
subnets

• Determine if any of the locations had a flower
• Each dot in the right represents the output of the MLP when it

classifies one location in the input figure
– The score output by the MLP

– Look at the maximum value
– Or pass it through a softmax or even an MLP 52

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1
For j = 1:H-K+1

ImgSegment = Img(i:i+W-1, j:j+W-1)
y(i,j) = MLP(ImgSegment)

Y = softmax(y(1,1)..y(W-K+1,H-K+1))

53

Its just a giant network with common
subnets

• The entire operation can be viewed as a single
giant network
– Composed of many “subnets” (one per window)
– With one key feature: all subnets are identical 54

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

For i = 1:W-K+1
For j = 1:H-K+1

ImgSegment = Img(i:i+W-1, j:j+W-1)
y(i,j) = MLP(ImgSegment)

Y = softmax(y(1,1)..y(W-K+1,H-K+1))

55

Just the final layer of the overall
MLP

Scanning with an MLP

Y = giantMLP(img)

56

Training the network

• These are really just large networks
• Can just use conventional backpropagation to learn the parameters

– Provide many training examples
• Images with and without flowers
• Speech recordings with and without the word “welcome”

– Gradient descent to minimize the total divergence between predicted and
desired outputs

• Backprop learns a network that maps the training inputs to the target binary
outputs 57

Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the
subnet must equally update all copies

58

Learning in shared parameter
networks

• Consider a simple network with
shared weights

– A weight
 is required to be

identical to the weight

• For any training instance , a small
perturbation of perturbs both

and identically
– Each of these perturbations will

individually influence the
divergence

Div

59

Computing the divergence of shared
parameters

𝒮

𝒮

𝒮

• Each of the individual terms can be computed
via backpropagation

Influence diagram

𝒮

Div

60

• Introduce transition matrix of a shared
parameter network
– Block diagonal

• Introduce benefits
– Far fewer parameters

• Introduce logic: where its meaningful
– When we expect to see repeated structure

• Can link this to later slide

61

• Explain the 1-D scan as a gigantic shared
parameter network

• Explain it without shared params (full
matrices)

• Explain it with shared params (block diagonal
matrices)

62

Computing the divergence of shared
parameters

• More generally, let be any set of edges that have a common value, and 𝒮 be
the common weight of the set

– E.g. the set of all red weights in the figure

𝒮

∈𝒮

• The individual terms in the sum can be computed via backpropagation

ଵ ଵ ே

63

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

• For every update:
𝑤,

()
= 𝑤𝒮

• Until has converged
64

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

• For every update:
𝑤,

()
= 𝑤𝒮

• Until has converged
65

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

• For every update:
𝑤,

()
= 𝑤𝒮

• Until has converged
66

• For every training instance
• For every set :

• For every :

𝒮

,
()

• 𝒮 𝒮

Training networks with shared
parameters

• Gradient descent algorithm:
• Initialize all weights
• Do:

– For every set :
• Compute:

𝒮 𝒮

𝒮 𝒮
𝒮

• For every update:
𝑤,

()
= 𝑤𝒮

• Until has converged
67

• For every training instance
• For every set :

• For every :

𝒮

,
()

• 𝒮 𝒮

Computed by
Backprop

Story so far
• Position-invariant pattern classification can be performed by

scanning
– 1-D scanning for sound
– 2-D scanning for images
– 3-D and higher-dimensional scans for higher dimensional data

• Scanning is equivalent to composing a large network with repeating
subnets
– The large network has shared subnets

• Learning in scanned networks: Backpropagation rules must be
modified to combine gradients from parameters that share the
same value
– The principle applies in general for networks with shared parameters

68

Scanning: A closer look

• The entire MLP operates on each “window” of
the input

69

Scanning

• At each location, each neuron computes a value based on its
inputs
– Which may either be the input image or the outputs of the

previous layer 70

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image

– 71

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image or the outputs of the previous

layer
72

Scanning

• At each location, each neuron computes a value based on its inputs
– Which may either be the input image or the outputs of the previous

layer
73

Scanning

• The same sequence of computations is performed at each location
– Producing the same set of values

• One value per neuron in each layer

74

Scanning

• The same sequence of computations is performed at each location
– Producing the same set of values

• One value per neuron in each layer

75

Scanning

• The same sequence of computations is performed at each location
– Producing the same set of values

• One value per neuron in each layer

76

Scanning

• The same sequence of computations is performed at each location
– Producing the same set of values

• One value per neuron in each layer

77

Scanning

• The same sequence of computations is performed at each location
– Producing the same set of values

• One value per neuron in each layer

78

Scanning the input

• We get a complete set of values (represented as
a column) at each location evaluated by the
MLP during the scan 79

Scanning the input

• We get a complete set of values (represented as a column) at each
location evaluated by the MLP during the scan
– Which we put through our final softmax to decide if the recording

includes the word “Welcome” 80

Softmax

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 81

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 82

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 83

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 84

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 85

Lets do it in an different order

• Let us do the computation in a different order
• The first neuron evaluates each image first

– “Scans” the input 86

Lets do it in an different order

• Subsequently the rest of the neurons in the first layer operate on the first block
– And the downstream layers as well

• Would the output of the MLP at the first block be different?
– The fact that the first neuron has already evaluated the future blocks does not affect the output

of that neuron, or the network itself, at the current block 87

Lets do it in an different order

• Subsequently the rest of the neurons in the first layer operate on the first block
– And the downstream layers as well

• Would the output of the MLP at the first block be different?
– The fact that the first neuron has already evaluated the future blocks does not affect the output

of that neuron, or the network itself, at the current block 88

Lets do it in an different order

• What about now?
• The second neuron too has fully evaluated the entire input before the rest of

the network evaluates the first block
– This too should not change the output of the network for the first block 89

Lets do it in an different order

• In fact if all of the neurons in the first layer fully evaluate the entire
input before the rest of the network evaluates the first block, this will
not change the output of the network at the first block

90

Lets do it in an different order

91

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

92

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

93

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

94

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

95

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

96

Lets do it in an different order

97

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

98

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

99

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

100

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

101

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

102

• But now, since the first layer neurons have already produced outputs for
every location, each neuron in the second layer can go ahead and produce
outputs for every position without waiting for the rest of the net
– “Scan” the outputs of the first layer neurons

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

103

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

104

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

105

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

106

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

107

Lets do it in an different order

• At each position the output layer neurons can now operate
on the outputs of the penultimate layer and produce the
correct classification for the corresponding block!

108

Lets do it in an different order

• At each position the output layer neurons can now operate on the
outputs of the penultimate layer and produce the correct
classification for the corresponding block!
– The final softmax will give us the correct answer for the entire input 109

Softmax

Scanning with an MLP

• K = width of “patch” evaluated by MLP

For t = 1:T-K+1
XSegment = x(:, t:t+K-1)

y(t) = MLP(XSegment)

Y = softmax(y(1)..y(T-K+1))

110

Scanning with MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

111

Scanning with MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

112

Over time

Over layers

Scanning with MLP
for t = 1:T-K+1

for l = 1:L # layers operate at location t

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

113

Over time

Over layers

Scanning with MLP
for l = 1:L # layers operate at location t

for j = 1:Dl
for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

114

Over time

Over layers

Scanning with MLP
for l = 1:L # layers operate at location t

for t = 1:T-K+1

for j = 1:Dl
if (l == 1) #first layer operates on input

y(0,:,t) = x(:, t:t+K-1)

end

z(l,j,t) = 0

for i = 1:Dl-1
z(l,j,t) += w(l,i,j)y(l-1,i,t)

y(l,j,t) = activation(z(l,j,t))

Y = softmax(y(L,:,1)..y(L,:,T-K+1))

115

Scanning with MLP: Vector notation

for l = 1:L # layers operate at location t

for t = 1:T-K+1

if (l == 1) #first layer operates on input

y(0, t) = x(:, t:t+K-1)

end

z(l,t) = W(l)y(l-1,t)

y(l,t) = activation(z(l,t))

Y = softmax(y(L,1)..y(L,T-K+1))

116

Scanning in 2D: A closer look

• Scan for the desired object

• At each location, the entire region is sent
through an MLP

Input
(the pixel data)

117

Scanning: A closer look

• The “input layer” is just the pixels in the image
connecting to the hidden layer

Input layer Hidden layer

118

Scanning: A closer look

• Consider a single neuron

119

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the part of

the picture in the box as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture

,

120

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
121

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
122

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
123

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
124

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
125

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
126

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
127

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
128

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
129

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
130

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
131

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating

the picture as part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture
132

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the picture as

part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at the scanned
positions into a rectangle that’s proportional in size to the original picture133

Scanning: A closer look

• Consider a single perceptron
• At each position of the box, the perceptron is evaluating the picture as

part of the classification for that region
– We could arrange the outputs of the neurons for each position

correspondingly to the original picture

• Eventually, we can arrange the outputs from the response at the scanned
positions into a rectangle that’s proportional in size to the original picture134

Scanning: A closer look

• Similarly, each first-layer perceptron’s outputs
from the scanned positions can be arranged as
a rectangular pattern

135

Scanning: A closer look

• To classify a specific “patch” in the image, we
send the first level activations from the
positions corresponding to that position to the
next layer

136

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

137

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

138

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

139

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

140

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

141

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

142

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

143

Scanning: A closer look

• We can recurse the logic
– The second level neurons too are “scanning” the rectangular outputs

of the first-level neurons
– (Un)like the first level, they are jointly scanning multiple “pictures”

• Each location in the output of the second level neuron considers the
corresponding locations from the outputs of all the first-level neurons

144

Scanning: A closer look

• To detect a picture at any location in the original
image, the output layer must consider the
corresponding outputs of the last hidden layer

145

Detecting a picture anywhere in the
image?

• Recursing the logic, we can create a map for
the neurons in the next layer as well
– The map is a flower detector for each location of

the original image
146

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original image,
the output layer must consider the corresponding output of
the last hidden layer

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”

147

Detecting a picture anywhere in the
image?

• To detect a picture at any location in the original image,
the output layer must consider the corresponding output of
the last hidden layer

• Actual problem? Is there a flower in the image
– Not “detect the location of a flower”

148

Detecting a picture anywhere in the
image?

• Is there a flower in the picture?
• The output of the almost-last layer is also a grid/picture
• The entire grid can be sent into a final neuron that performs a logical “OR”

to detect a flower in the full picture
– Finds the max output from all the positions
– Or a softmax, or a full MLP..

149

Detecting a picture in the image

• Redrawing the final layer
– “Flatten” the output of the neurons into a single

block, since the arrangement is no longer important

– Pass that through a max/softmax/MLP
150

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1
for y = 1:H-K+1

ImgSegment = Img(*, x:x+K-1, y:y+K-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax(Y(1,1)..Y(W-K+1,H-K+1))

151

Scanning with MLP
for x = 1:W-K+1

for y = 1:H-K+1

First layer operates on the input

Unwrap WxW patch at (x,y) into a D0x1 vector

ImgSegment = Img(1:C, x:x+K-1, y:y+K-1)

Y(0,:,x,y) = ImgSegment

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
152

Scanning with MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

153

Scanning with MLP
for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

154

Scanning with MLP
for l = 1:L

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

155

Scanning with MLP
for l = 1:L

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,:,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,j,x,y) = 0

for i = 1:Dl-1
z(l,j,x,y) += w(l,i,j)Y(l-1,i,x,y)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

156

Reordering the computation:
Vector notation

for l = 1:L # layers operate on vector at (x,y)

for x = 1:W-K+1

for y = 1:H-K+1

if (l == 1) #first layer operates on input

Y(0,x,y) = Img(1:C, x:x+K-1, y:y+K-1)

end

z(l,x,y) = W(l)Y(l-1,x,y)

Y(l,x,y) = activation(z(l,x,y))

Y = softmax(Y(L,1,1)..Y(L,W-K+1,H-K+1))

157

Recall: What does an MLP learn?

• The lowest layers of the network capture simple patterns
– The linear decision boundaries in this example

• The next layer captures more complex patterns
– The polygons

• The next one captures still more complex patterns.. 158

x2

AND AND

OR

x1 x1 x2

Recall: How does an MLP represent
patterns

• The neurons in an MLP build up complex patterns
from simple pattern hierarchically
– Each layer learns to “detect” simple combinations of the

patterns detected by earlier layers 159

DIGIT OR NOT?

Returning to our problem:
What does the network learn?

• The entire MLP looks for a flower-like pattern
at each location

160

The behavior of the layers

• The first layer neurons “look” at the entire “block” to extract block-level
features
– Subsequent layers only perform classification over these block-level features

• The first layer neurons is responsible for evaluating the entire block of
pixels
– Subsequent layers only look at a single pixel in their input maps

161

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

162

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

163

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

164

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

165

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

166

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

167

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

168

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

169

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

170

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

171

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer

172

Distributing the scan

• We can distribute the pattern matching over two layers and
still achieve the same block analysis at the second layer
– The first layer evaluates smaller blocks of pixels
– The next layer evaluates blocks of outputs from the first layer
– This effectively evaluates the larger block of the original image

173

Distributing the scan

• The higher layer implicitly learns the
arrangement of sub patterns that represents
the larger pattern (the flower in this case)

174

This is still just scanning with a shared
parameter network

• With a minor modification…

175

This is still just scanning with a shared
parameter network

• The network that analyzes individual blocks is
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Each arrow represents an entire set
of weights over the smaller cell

The pattern of weights going out of
any cell is identical to that from any
other cell.

176

This is still just scanning with a shared
parameter network

• The network that analyzes individual blocks is
now itself a shared parameter network..

Colors indicate neurons
with shared parameters Layer 1

Layer 2

No sharing at this level
within a block

177

This logic can be recursed

• Building the pattern over 3 layers

178

This logic can be recursed

• Building the pattern over 3 layers

179

This logic can be recursed

• Building the pattern over 3 layers

180

This logic can be recursed

• Building the pattern over 3 layers

181

This logic can be recursed

• Building the pattern over 3 layers

182

Does the picture have a flower

• Building the pattern over 3 layers

• The final classification for the entire image views the
outputs from all locations, as seen in the final map

183

The 3-layer shared parameter net

• Building the pattern over 3 layers

184

Showing a simpler 2x2x1
network to fit on the slide

The 3-layer shared parameter net

• Building the pattern over 3 layers

All weights shown are unique

185

The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

186

The 3-layer shared parameter net

• Building the pattern over 3 layers
Colors indicate
shared parameters

187

This logic can be recursed

We are effectively evaluating the
yellow block with the shared parameter
net to the right

Every block is evaluated using the same
net in the overall computation

188

Using hierarchical build-up of features

• The individual blocks are now themselves shared-parameter
networks

• We scan the figure using the shared parameter network
• The entire operation can be viewed as a single giant network

– Where individual subnets are themselves shared-parameter nets
189

Scanning with an MLP

• KxK = size of “patch” evaluated by MLP
• W is width of image
• H is height of image

for x = 1:W-K+1
for y = 1:H-K+1

ImgSegment = Img(*, x:x+W-1, y:y+W-1)
Y(x,y) = MLP(ImgSegment)

Y = softmax(Y(1,1)..Y(W-K+1,H-K+1))

190

Scanning with an MLP

for x = 1:W-K+1

for y = 1:H-K+1

for l = 1:L # layers

for j = 1:Dl
Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

191

Reordering the computation

for l = 1:L # layers

for j = 1:Dl
for x = 1:W-K+1

for y = 1:H-K+1

Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

192

Reordering the computation

for l = 1:L # layers

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

Compute z(l,j,x,y) [not expanded]

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))

193

Each layer’s map is now a different
size: Maps progressively by Kl
in each layer

Reordering the computation
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
194

Reordering the computation
Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
195

This operation is a “convolution”

“Convolutional Neural Network”
(aka scanning with an MLP)

Y(0,:,:,:) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

z(l,j,x,y) = 0

for i = 1:Dl-1
for x’ = 1:Kl

for y’ = 1:Kl
z(l,j,x,y) += w(l,i,j,x’,y’)

Y(l-1,i,x+x’-1,y+y’-1)

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L,:,1,1)..Y(L,:,W-K+1,H-K+1))
196

Convolutional neural net:
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)

The product in blue is a tensor inner product with a
scalar output

Y(0) = Image

for l = 1:L # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax(Y(L))
197

Why distribute?

• Distribution forces localized patterns in lower
layers
– More generalizable

• Number of parameters…

198

Parameters in Undistributed network

• Only need to consider what happens in one block
– All other blocks are scanned by the same net

• ଶ
ଵ weights in first layer

• ଵ ଶweights in second layer
– ିଵ weights in subsequent ith layer

• Total parameters: ଶ
ଵ ଵ ଶ ଶ ଷ

– Ignoring the bias term

N1 units

N2 unitsblock

199

When distributed over 2 layers

• First layer: 𝑁ଵ lower-level units, each looks at 𝐿ଶ pixels
– 𝑁ଵ(𝐿ଶ + 1) weights

• Second layer needs (

ଶ
𝑁ଵ + 1)𝑁ଶ weights

• Subsequent layers needs 𝑁ିଵ𝑁 when distributed over 2 layers only

– Total parameters: 𝒪 𝐿ଶ𝑁ଵ +

ଶ
𝑁ଵ𝑁ଶ + 𝑁ଶ𝑁ଷ …

Colors indicate neurons
with shared parameters N1 groups

Layer 2

No sharing at this level
within a block

block

cell

200

When distributed over 3 layers

• First layer: 𝑁ଵ lower-level (groups of) units, each looks at 𝐿ଵ
ଶ pixels

– 𝑁ଵ(𝐿ଵ
ଶ + 1) weights

• Second layer: 𝑁ଶ (groups of) units looking at groups of 𝐿ଶ × 𝐿ଶ connections from each of 𝑁ଵ first-level
neurons

– (𝐿ଶ
ଶ 𝑁ଵ + 1)𝑁ଶ weights

• Third layer:

– (

భమ

ଶ
𝑁ଶ + 1)𝑁ଷ weights

• Subsequent layers need 𝑁ିଵ𝑁 neurons

– Total parameters: 𝒪 𝐿ଵ
ଶ𝑁ଵ + 𝐿ଶ

ଶ 𝑁ଵ𝑁ଶ +

భమ

ଶ
𝑁ଶ𝑁ଷ + ⋯ 201

Comparing Number of Parameters

• ଶ
ଵ ଵ ଶ ଶ ଷ

• For this example, let
ଵ ଶ ଷ

• Total 1034 weights

Conventional MLP, not distributed
Distributed (3 layers)

• ଵ
ଶ

ଵ ଶ
ଶ

ଵ ଶ

భమ

ଶ

ଶ ଷ

• Here, let ଵ ,
ଶ ଵ , ଶ ଷ

• Total 64+128+8 = 160 weights

202

Comparing Number of Parameters

•

Conventional MLP, not distributed
Distributed (3 layers)

• ଵ
ଶ

ଵ

ଶ

 ାଵ

ழ௩ିଵ

∏

ଶ

௩ ௩

 ାଵ

∈௧

These terms dominate..

203

Why distribute?
• Distribution forces localized patterns in lower layers

– More generalizable

• Number of parameters…
– Large (sometimes order of magnitude) reduction in parameters

• Gains increase as we increase the depth over which the blocks are distributed

• Key intuition: Regardless of the distribution, we can view the
network as “scanning” the picture with an MLP
– The only difference is the manner in which parameters are shared in

the MLP

204

Story so far

• Position-invariant pattern classification can be performed by scanning
the input for a target pattern
– Scanning is equivalent to composing a large network with shared subnets

• The operations in scanning the input with a full network can be
equivalently reordered as
– scanning the input with individual neurons in the first layer to produce

scanned “maps” of the input
– Jointly scanning the “map” of outputs by all neurons in the previous layers

by neurons in subsequent layers

• The scanning block can be distributed over multiple layers of the
network
– Results in significant reduction in the total number of parameters

205

Hierarchical composition: A different
perspective

• The entire operation can be redrawn as before
as maps of the entire image

206

Building up patterns

• The first layer looks at small sub regions of the
main image
– Sufficient to detect, say, petals

207

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

208

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

209

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
210

Some modifications

• The first layer looks at sub regions of the main image
– Sufficient to detect, say, petals

• The second layer looks at regions of the output of the first layer
– To put the petals together into a flower
– This corresponds to looking at a larger region of the original input image

• We may have any number of layers in this fashion
211

Terminology

• Each of the scanning neurons is generally called a
“filter”
– Its really a correlation filter as we saw earlier

– Each filter scans for a pattern in the map it operates
on 212

Terminology

• The pattern in the input image that each filter sees is its “Receptive Field”
– The squares show the sizes of the receptive fields for the first, second and third-layer neurons

• The actual receptive field for a first layer filter is simply its arrangement of weights
• For the higher level filters, the actual receptive field is not immediately obvious

and must be calculated
– What patterns in the input do the filters actually respond to?
– Will not actually be simple, identifiable patterns like “petal” and “inflorescence”

213

Some modifications

• The final layer may feed directly into a multi layer
perceptron rather than a single neuron

• This is exactly the shared parameter net we just
saw

214

Modification 1: Convolutional “Stride”

• The scans of the individual “filters” may advance by more than one pixel at a time
– The “stride” may be greater than 1
– Effectively increasing the granularity of the scan

• Saves computation, sometimes at the risk of losing information

• This will result in a reduction of the size of the resulting maps
– They will shrink by a factor equal to the stride

• This can happen at any layer
215

Convolutional neural net
The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming
square receptive fields)
Y(0) = Image
for l = 1:L # layers operate on vector at (x,y)
for j = 1:Dl

m = 1
for x = 1:stride:Wl-1-Kl+1

n = 1
for y = 1:stride:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor
z(l,j,m,n) = W(l,j).segment #tensor inner prod.
Y(l,j,m,n) = activation(z(l,j,m,n))
n++

m++

Y = softmax(Y(L))

216

Accounting for jitter

• We would like to account for some jitter in the
first-level patterns
– If a pattern shifts by one pixel, is it still a petal?

217

Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region
around it

– Max filtering or Max pooling

Max

Max

Max

Max

218

Accounting for jitter

• We would like to account for some jitter in the first-level patterns
– If a pattern shifts by one pixel, is it still a petal?
– A small jitter is acceptable

• Replace each value by the maximum of the values within a small region
around it

– Max filtering or Max pooling

Max

1 1

5 6

Max 6

219

The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted
sum of inputs, each neuron just computes the
maximum over all inputs

Max layer

220

The max operation is just a neuron

• The max operation is just another neuron

• Instead of applying an activation to the weighted
sum of inputs, each neuron just computes the
maximum over all inputs 221

Max layer

Accounting for jitter

• The max filtering can also be performed as a
scan

Max

1 1

5 6

Max 6

222

Accounting for jitter

• The “max filter” operation too “scans” the
picture

Max

1 3

6 5
Max

6 6

223

Accounting for jitter

Max

3 2

5 7
Max

6 6 7

• The “max filter” operation too “scans” the
picture

224

Accounting for jitter

Max

• The “max filter” operation too “scans” the
picture

225

Accounting for jitter

Max

• The “max filter” operation too “scans” the
picture

226

Accounting for jitter

Max

• The “max filter” operation too “scans” the
picture

227

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

228

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

229

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

230

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

231

Max pooling “Strides”

• The “max” operations may “stride” by more
than one pixel

Max

232

Max pooling “Strides”

• The “max” operations may “stride” by more than one pixel
– This will result in a shrinking of the map
– The operation is usually called “pooling”

• Pooling a number of outputs to get a single output
• When stride is greater than 1, also called “Down sampling”

Max

233

Shrinking with a max

• In this example we shrank the image after the
max
– Adjacent “max” operators did not overlap

– The stride was the size of the max filter itself

Max layer

234

Non-overlapped strides

• Non-overlapping strides: Partition the output of the
layer into blocks

• Within each block only retain the highest value
– If you detect a petal anywhere in the block, a petal is

detected..
235

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

Max Pooling

Higher layers

• The next layer works on the max-pooled maps

Max
pool

237

The overall structure

• In reality we can have many layers of “convolution” (scanning) followed by
max pooling (and reduction) before the final MLP
– The individual perceptrons at any “scanning” or “convolutional” layer are

called “filters”
• They “filter” the input image to produce an output image (map)

– The individual max operations are also called max pooling or max filters

238

The overall structure

• This entire structure is called a Convolutional
Neural Network

239

Convolutional Neural Network

Input image First layer filters

First layer maxpooling Second layer filters

Second layer maxpooling

240

1-D convolution

• The 1-D scan version of the convolutional neural
network is the time-delay neural network
– Used primarily for speech recognition 241

1-D scan version

• The 1-D scan version of the convolutional
neural network

242

1-D scan version

• The 1-D scan version of the convolutional
neural network

The spectrographic time-frequency components are
the input layer

243

1-D scan version

• The 1-D scan version of the convolutional
neural network

244

1-D scan version

• The 1-D scan version of the convolutional
neural network

245

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
246

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
247

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
248

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
249

1-D scan version

• The 1-D scan version of the convolutional neural network
– Max pooling optional

• Not generally done for speech
250

1-D scan version

• The 1-D scan version of the convolutional neural network
• A final perceptron (or MLP) to aggregate evidence

– “Does this recording have the target word”
251

Time-Delay Neural Network

• This structure is called the Time-Delay Neural
Network

252

Story so far
• Neural networks learn patterns in a hierarchical manner

– Simple to complex

• Pattern classification tasks such as “does this picture contain a cat” are best
performed by scanning for the target pattern

• Scanning for patterns can be viewed as classification with a large shared-
parameter network

• Scanning an input with a network and combining the outcomes is equivalent to
scanning with individual neurons

– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” layer (which may be a max, a perceptron, or an MLP) makes the final

decision

• The scanned “block” can be distributed over multiple layers for efficiency
• At each layer, a scan by a neuron may optionally be followed by a “max” (or any

other) “pooling” operation to account for deformation

• For 2-D (or higher-dimensional) scans, the structure is called a convnet
• For 1-D scan along time, it is called a Time-delay neural network 253

