
Neural Networks

Representations



Learning in the net

• Problem: Given a collection of input-output 
pairs, learn the function



Learning for classification

• When the net must learn to classify..
– Learn the classification boundaries that separate 

the training instances
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Learning for classification

• In reality
– In general not really cleanly separated

• So what is the function we learn?
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In reality: Trivial linear example

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors
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Non-linearly separable data: 1-D example

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots
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Undesired Function

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots
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What if?

• One-dimensional example for visualization
– All (red) dots at Y=1 represent instances of class Y=1
– All (blue) dots at Y=0 are from class Y=0
– The data are not linearly separable

• In this 1-D example, a linear separator is a threshold
• No threshold will cleanly separate red and blue dots
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What if?

• What must the value of the function be at this 
X?
– 1  because red dominates?

– 0.9 :  The average?
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10

x

y

10 instances

90 instances

Estimate: 
Potentially much more useful than
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• What must the value of the function be at this 
X?
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– 0.9 :  The average?
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10 instances

90 instances

Estimate: 
Potentially much more useful than
a simple 1/0 decision
Also, potentially more realistic

Should an infinitesimal nudge
of the red dot change the function
estimate entirely?

If not, how do we estimate 𝑃(1|𝑋)?
(since the positions of the red and blue X
Values are different)



The probability of y=1

• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of Y=1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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• Consider this differently: at each point look at a small 
window around that point

• Plot the average value within the window
– This is an approximation of the probability of 1 at that point
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The logistic regression model
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y=0

y=1

x

• Class 1 becomes increasingly probable going left to right
– Very typical in many problems



The logistic perceptron

• A sigmoid perceptron with a single input models 
the a posteriori probability of the class given the 
input
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Non-linearly separable data

• Two-dimensional example
– Blue dots (on the floor) on the “red” side
– Red dots (suspended at Y=1) on the “blue” side
– No line will cleanly separate the two colors
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Logistic regression

• This the perceptron with a sigmoid activation
– It actually computes the probability that the input belongs to class 1
– Decision boundaries may be obtained by comparing the probability to a threshold

• These boundaries will be lines (hyperplanes in higher dimensions)
• The sigmoid perceptron is a linear classifier
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Estimating the model

• Given the training data (many pairs 
represented by the dots), estimate and 
for the curve
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Estimating the model
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• Easier to represent using a y = +1/-1 notation



Estimating the model

• Given: Training data

• s are vectors, s are binary (0/1) class values
• Total probability of data

 బ
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Estimating the model

• Likelihood

 బ




• Log likelihood
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Maximum Likelihood Estimate

బ భ

• Equals (note argmin rather than argmax)

• Identical to minimizing the KL divergence 
between the desired output and actual output 

• Cannot be solved directly, needs gradient descent
33



So what about this one?

• Non-linear classifiers..
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First consider the separable case..

• When the net must learn to classify..
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First consider the separable case..

• For a “sufficient” net
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First consider the separable case..

• For a “sufficient” net
• This final perceptron is a linear classifier
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First consider the separable case..

• For a “sufficient” net
• This final perceptron is a linear classifier over 

the output of the penultimate layer
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First consider the separable case..

• For perfect classification the
output of the penultimate layer must be 
linearly separable

x1 x2

y2

y1



ଵ ଶ

First consider the separable case..

• The rest of the network may be viewed as a transformation that 
transforms data from non-linear classes to linearly separable features
– We can now attach any linear classifier above it for perfect classification
– Need not be a perceptron
– In fact, slapping on an SVM on top of the features may be more generalizable!
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First consider the separable case..

• The rest of the network may be viewed as a transformation that transforms data 
from non-linear classes to linearly separable features
– We can now attach any linear classifier above it for perfect classification
– Need not be a perceptron
– In fact, for binary classifiers an SVM on top of the features may be more generalizable!
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First consider the separable case..

• This is true of any sufficient structure
– Not just the optimal one

• For insufficient structures, the network may attempt to transform the inputs to 
linearly separable features
– Will fail to separate
– Still, for binary problems, using an SVM with slack may be more effective than a final perceptron!
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Mathematically..

• ௨௧
ଵ

ଵାୣ୶୮ ାௐ

ଵ

ଵାୣ୶୮ ାௐ()

• The data are (almost) linearly separable in the space of 
• The network until the second-to-last layer is a non-linear function 

that converts the input space of into the feature space 
where the classes are maximally linearly separable
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Story so far

• A classification MLP actually comprises two 
components
– A “feature extraction network” that converts the 

inputs into linearly separable features
• Or nearly linearly separable features

– A final linear classifier that operates on the 
linearly separable features



An SVM at the output?

• For binary problems, using an SVM with slack may be more effective than a final 
perceptron!

• How does that work??
– Option 1: First train the MLP with a perceptron at the output, then detach the feature extraction, 

compute features, and train an SVM
– Option 2: Directly employ a max-margin rule at the output, and optimize the entire network

• Left as an exercise for the curious
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How about the lower layers?

• How do the lower layers respond?
– They too compute features
– But how do they look

• Manifold hypothesis: For separable classes, the classes are linearly separable on a 
non-linear manifold

• Layers sequentially “straighten” the data manifold
– Until the final hidden layer, which fully linearizes it
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The behavior of the layers

• Synthetic example: Feature space



The behavior of the layers

• CIFAR



The behavior of the layers

• CIFAR



When the data are not separable and 
boundaries are not linear..

• More typical setting for classification 
problems
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Inseparable classes with an output 
logistic perceptron

• The “feature extraction” layer transforms the data 
such that the posterior probability may now be 
modelled by a logistic
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Inseparable classes with an output 
logistic perceptron

• The “feature extraction” layer transforms the data such that 
the posterior probability may now be modelled by a logistic
– The output logistic computes the posterior probability of the class 

given the input
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When the data are not separable and 
boundaries are not linear..

• The output of the network is 
– For multi-class networks, it will be the vector of a 

posteriori class probabilities 
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Everything in this book may be wrong!
- Richard Bach (Illusions)



There’s no such thing as inseparable 
classes

• A sufficiently detailed architecture can separate nearly any 
arrangement of points
– “Correctness” of the suggested intuitions subject to various 

parameters, such as regularization, detail of network, training 
paradigm, convergence etc..
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Changing gears..



x1 x2

We’ve seen what the network learns here

But what about here?

Intermediate layers



Recall: The basic perceptron

• What do the weights tell us?
– The neuron fires if the inner product between the 

weights and the inputs exceeds a threshold
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Recall: The weight as a “template”

• The perceptron fires if the input is within a specified angle of the weight
– Represents a convex region on the surface of the sphere!
– The network is a Boolean function over these regions.

• The overall decision region can be arbitrarily nonconvex

• Neuron fires if the input  vector is close enough to the weight vector.
– If the input pattern matches the weight pattern closely enough
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Recall: The weight as a template

• If the correlation between the weight pattern 
and the inputs exceeds a threshold, fire

• The perceptron is a correlation filter!
60

W X X

Correlation = 0.57 Correlation = 0.82
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Recall: MLP features

• The lowest layers of a network detect significant features in the 
signal

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal 61

DIGIT OR NOT?



Making it explicit

• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal

• Simply recompose the detected features
– Will this work?
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• The signal could be (partially) reconstructed using these features
– Will retain all the significant components of the signal

• Simply recompose the detected features
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Making it explicit: an autoencoder

• A neural network can be trained to predict the input itself
• This is an autoencoder
• An encoder learns to detect all the most significant patterns in the signals
• A decoder recomposes the signal from the patterns 64



The Simplest Autencoder

• A single hidden unit
• Hidden unit has linear activation
• What will this learn?
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The Simplest Autencoder

• This is just PCA!
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Training: Learning by minimizing 
L2 divergence



The Simplest Autencoder

• The autoencoder finds the direction of maximum 
energy
– Variance if the input is a zero-mean RV

• All input vectors are mapped onto a point on the 
principal axis 67
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The Simplest Autencoder

• Simply varying the hidden representation will 
result in an output that lies along the major 
axis
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The Simplest Autencoder
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• Simply varying the hidden representation will result in 
an output that lies along the major axis

• This will happen even if the learned output weight is 
separate from the input weight
– The minimum-error direction is the principal eigen vector



For more detailed AEs without a non-
linearity

• This is still just PCA
– The output of the hidden layer will be in the principal subspace

• Even if the recomposition weights are different from the “analysis” 
weights 70

Find W to minimize Avg[E]



Terminology

• Terminology: 
– Encoder: The “Analysis” net which computes the hidden 

representation
– Decoder: The “Synthesis” which recomposes the data from the 

hidden representation 
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Introducing nonlinearity

• When the hidden layer has a linear activation the decoder represents the best linear manifold to fit 
the data
– Varying the hidden value will move along this linear manifold

• When the hidden layer has non-linear activation, the net performs nonlinear PCA
– The decoder represents the best non-linear manifold to fit the data
– Varying the hidden value will move along this non-linear manifold 72
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The AE

• With non-linearity
– “Non linear” PCA

– Deeper networks can capture more complicated manifolds
• “Deep” autoencoders
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Some examples

• 2-D input
• Encoder and decoder have 2 hidden layers of 100 

neurons, but hidden representation is unidimensional
• Model seems to learn underlying helix structure



The learned manifold

• Not a “clean” function even in range of training points (Red)
– Color shows value of 
– does not vary smoothly along the curve, but bounces back and forth
– Learns manifold structure (bar) that is not represented in training data

• Does not generalize outside the range of training points (Blue)
– Extending the range towards the center of the spiral resulted in decoded 

values outside the page!



The learned manifold

• Not a “clean” function even in range of training points (Red)
– Color shows value of 
– does not vary smoothly along the curve, but bounces back and forth
– Learns manifold structure (bar) that is not represented in training data

• Does not generalize outside the range of training points (Blue)
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values outside the page!



Another example

• Learning to reconstruct a sinusoid
– Input (left):  data on a spiral manifold

– Output (right): Decoded data

• AE seems to “learn” the underlying curved manifold



Some examples

• The model is specific to the training data..
– Varying the hidden layer value only generates data along the 

learned manifold
• May be poorly learned

– Any input will result in an output along the learned manifold



The AE

• When the hidden representation is of lower dimensionality 
than the input, often called a “bottleneck” network
– Nonlinear PCA
– Learns the manifold for the data

• If properly trained
79
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The AE

• The decoder can only generate data on the 
manifold that the training data lie on

• This also makes it an excellent “generator” of the 
distribution of the training data
– Any values applied to the (hidden) input to the 

decoder will produce data similar to the training data
80
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The Decoder:

• The decoder represents a source-specific generative 
dictionary

• Exciting it will produce typical data from the source! 
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DECODER

The Decoder:

• The decoder represents a source-specific generative 
dictionary

• Exciting it will produce typical data from the source! 
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The Decoder:

• The decoder represents a source-specific generative 
dictionary

• Exciting it will produce typical data from the source! 
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A cute application..

• Signal separation…

• Given a mixed sound from multiple sources, 
separate out the sources



Dictionary-based techniques

• Basic idea:  Learn a dictionary of “building blocks” for 
each sound source

• All signals by the source are composed from entries 
from the dictionary for the source
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Dictionary-based techniques

• Learn a similar dictionary for all sources 
expected in the signal
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Dictionary-based techniques

• A mixed signal is the linear combination of 
signals from the individual sources
– Which are in turn composed of entries from its 

dictionary 
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Dictionary-based techniques

• Separation: Identify the combination of 
entries from both dictionaries that compose 
the mixed signal
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Dictionary-based techniques

• Separation: Identify the combination of entries from 
both dictionaries that compose the mixed signal
• The composition from the identified dictionary entries gives you 

the separated signals
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Learning Dictionaries

• Autoencoder dictionaries for each source
– Operating on (magnitude) spectrograms

• For a well-trained network, the “decoder” dictionary is 
highly specialized to creating sounds for that source

𝐷ଵ(0, 𝑡) 𝐷ଵ(𝐹, 𝑡)…
…

𝐷ଶ(0, 𝑡) 𝐷ଶ(𝐹, 𝑡)…
…

…
𝐷ଵ(0, 𝑡) 𝐷ଵ(𝐹, 𝑡) 𝐷ଶ(0, 𝑡) 𝐷ଶ(𝐹, 𝑡)… …

ୈଵ

ଵ

ୈ

ଶ
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Model for mixed signal

• The sum of the outputs of both neural 
dictionaries
– For some unknown input

ୈଵ ୈଶ

𝑌(0, 𝑡) Y(𝐹, 𝑡)…𝑌(1, 𝑡)

… …

𝐼ଵ(0, 𝑡) … 𝐼ଵ(𝐻, 𝑡)

… …

𝐼ଶ(0, 𝑡) … 𝐼ଶ(𝐻, 𝑡)

Estimate ଵ and ଶ to minimize cost function 

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 =  𝑋 𝑓, 𝑡 − 𝑌 𝑓, 𝑡 ଶ

 

 

𝛼 𝛽
𝛽

𝛽
𝛼

𝛼
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Separation

• Given mixed signal and source dictionaries, find 
excitation that best recreates mixed signal
– Simple backpropagation

• Intermediate results are separated signals

Test Process

ୈଵ ୈଶ

𝑌(0, 𝑡) Y(𝐹, 𝑡)…𝑌(1, 𝑡)

… …

𝐼ଵ(0, 𝑡) … 𝐼ଵ(𝐻, 𝑡)

… …

𝐼ଶ(0, 𝑡) … 𝐼ଶ(𝐻, 𝑡) 𝐻 : Hidden layer size

Estimate ଵ and ଶ to minimize cost function 

testset
𝑋(𝑓, 𝑡)

Cost function

𝐽 =  𝑋 𝑓, 𝑡 − 𝑌 𝑓, 𝑡 ଶ

 

 

𝛼 𝛽
𝛽

𝛽
𝛼

𝛼
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Example Results

• Separating music
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Story for the day
• Classification networks learn to predict the a posteriori 

probabilities of classes
– The network until the final layer is a feature extractor that 

converts the input data to be (almost) linearly separable
– The final layer is a classifier/predictor that operates on linearly 

separable data

• Neural networks can be used to perform linear or non-
linear PCA
– “Autoencoders”
– Can also be used to compose constructive dictionaries for data

• Which, in turn can be used to model data distributions


