
Training Neural Networks:
Optimization

Intro to Deep Learning, Spring 2019

1

Quick Recap

• Gradient descent, Backprop

2

Quick Recap: Training a network

• Define a total “loss” over all training instances
– Quantifies the difference between desired output and the actual

output, as a function of weights

• Find the weights that minimize the loss

Total loss

Average over all
training instances

Divergence between desired output and
actual output of net for a given input

Output of net in
response to input

Desired output
in response to input

3

Quick Recap: Training networks by
gradient descent

• The gradient of the total loss is the average of the gradients of the
loss for the individual instances

• The total gradient can be plugged into gradient descent update to
learn the network

Solved through
gradient descent as

4

Quick Recap: Training networks by
gradient descent

• The gradient of the total loss is the average of the gradients of the
loss for the individual instances

• The gradient can be plugged into gradient descent update to learn
the network parameters

Solved through
gradient descent as

Computed using
backpropagation

5

Quick recap of backprop: forward pass

6

• Forward pass: Compute output and all intermediate variables in the
network, for the input

7

𝟏 𝟏 ଵ

𝟏
ଵ ଵ

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

8

ଵ ଵ 1

𝟏 𝟏
ଵ ଵ

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

9

ଶ 2 ଵ ଶ

𝟏 𝟏 𝟐
ଵ ଵ ଶ ଶ

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

10

𝟏 𝟐
ଵ ଵ ଶ ଶ

𝟐

ଶ ଶ 2

𝟏

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

11

𝟏
ଵ ଵ ଶ ଶ

𝟐 ேିଵ

N

ே ே

ே N ேିଵ ே

𝟐𝟏

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

12

𝟏
ଵ ଵ

𝟐 ேିଵ

N

ே ே

ே 𝑁

𝟐𝟏

Quick recap of backprop: forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

So
ft

m
ax

The Forward Pass
• Set

• For layer k = 1 to N:
– Recursion:

• Output:

13

ଵ ଵ

ே ே

ேିଵ ேିଵ

Quick Recap: Backprop. Forward pass

• Forward pass: Compute output and all intermediate
variables in the network, for the input

• Compute the divergence w.r.t. desired output

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

𝟏 ேିଵ

N

𝟏 ேିଵேିଶ ேିଶ

14

ଵ ଵ

ே ே

ேିଵ ேିଵ

Quick Recap: Backpropagation

• Now work your way backward through the net to
compute the derivative w.r.t each intermediate
variable and each weight/bias

𝟏 ேିଵ

N

𝟏 ேିଵ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ ேିଶ

15

Backprop
ଵ ଵ

ே ே

ேିଵ ேିଵ

First compute the gradient of the divergence w.r.t. .
The actual gradient depends on the divergence function.

𝟏 ேିଵ

N

𝟏 ேିଵ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ ேିଶ

16

ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ

ಿ

Backprop

𝟏 ேିଵ

N

𝟏 ேିଵ

Chain rule (vector format; note order of multiplication)

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ ேିଶ

17

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿ ಿ

ಿ ಿ

ே

𝟏 ேିଵ𝟏

ே N ேିଵ ே

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ ேିଶ

18

ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభಿషభ ಿ

ே

Backprop

𝟏 ேିଵ𝟏

Chain rule (vector format; note order of multiplication)

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ ேିଶ

19

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషభ

ಿషభ ಿషభ ಿషభ

ே

ேିଵ

The Jacobian will be a diagonal
matrix for scalar activations

Chain rule (vector format; note order of multiplication)

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ

20

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ಿషభ ಿషభ

ಿషభ ಿషభ

ேିଵேିଵ

ேିଵ ேିଵ

ேିଵ ேିଵ ேିଶ ேିଵ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

21

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషభ

ே

ேିଵேିଵ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

22

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ಿషమ

ಿషమ ಿషమ ಿషమ

ே

ேିଵேିଵேିଶ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

23

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

భ భ భ

ே

ேିଵேିଵ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

ேିଶ ேିଶ

24

The backward pass
ଵ ଵ

ே ே

ேିଵ ேିଵ

ே

ேିଵேିଵ

భ భ

భ భ

In some problems we will also want to compute
the derivative w.r.t. the input

ଵ

𝐷
𝑖𝑣

(𝑌
,𝑑

)

So
ft

m
ax

25

The Backward Pass
• Set ,
• Initialize: Compute

• For layer k = N downto 1:
– Recursion:

ೖ ೖ ೖ

ೖషభ ೖ

– Gradient computation:

ೖ ೖ

ೖ ೖ

26

Neural network training algorithm
• Initialize all weights and biases ଵ ଵ ଶ ଶ ே ே

• Do:
–

– For all , initialize 𝐖ೖ
, 𝐛ೖ

– For all
• Forward pass : Compute

– Output 𝒀(𝑿𝒕)

– Divergence 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝐸𝑟𝑟 += 𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

• Backward pass: For all 𝑘 compute:
– 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– 𝛻𝐖ೖ
𝐸𝑟𝑟 += 𝛻𝐖ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕); 𝛻𝐛ೖ
𝐸𝑟𝑟 += 𝛻𝐛ೖ

𝑫𝒊𝒗(𝒀𝒕, 𝒅𝒕)

– For all update:

𝐖 = 𝐖 −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

; 𝐛 = 𝐛 −
ఎ

்
𝛻𝐖ೖ

𝐸𝑟𝑟
்

• Until has converged

27

Quick Recap

• Gradient descent, Backprop
• The issues with backprop and gradient descent

– 1. Minimizes a loss which relates to classification
accuracy, but is not actually classification accuracy
• The divergence is a continuous valued proxy to

classification error
• Minimizing the loss is expected to, but not guaranteed to

minimize classification error

– 2. Simply minimizing the loss is hard enough..

28

Quick recap: Problem with gradient descent

• A step size that assures fast convergence for a given eccentricity can result in
divergence at a higher eccentricity

• .. Or result in extremely slow convergence at lower eccentricity

ଵ ଶ ଶ

ଵ

ଵ ଶ ଶ

ଵ

𝑊 = 𝑊ିଵ − 𝜂𝛻௪𝐿 𝑊 𝑇

29

Quick recap: Problem with gradient
descent

• The loss is a function of many weights (and biases)
– Has different eccentricities w.r.t different weights

• A fixed step size for all weights in the network can result in
the convergence of one weight, while causing a divergence
of another

ଶ

ଵ

ଶ

ଵ

30

Solutions for problem with gradient
descent

• Try to normalize curvature in all directions
– Second order methods, e.g. Newton’s method
– Too expensive: require inversion of a giant Hessian

• Treat each dimension independently:
– Rprop, quickprop
– Works, but ignores dependence between dimensions

• Can result in unexpected behavior

– Can still be too slow

31

Quick Recap

• Gradient descent, Backprop
• The issues with backprop and gradient descent
• Momentum methods..

32

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

33

A closer look at the convergence
problem

• With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

• Proposal:
– Keep track of oscillations
– Emphasize steps in directions that converge smoothly
– Shrink steps in directions that bounce around..

34

The momentum methods
• Maintain a running average of all

past steps
– In directions in which the

convergence is smooth, the
average will have a large value

– In directions in which the
estimate swings, the positive and
negative swings will cancel out in
the average

• Update with the running
average, rather than the current
gradient

35

Momentum Update

• The momentum method maintains a running average of all gradients until
the current step

() (ିଵ) ௐ
(ିଵ)

() (ିଵ) ()

– Typical value is 0.9

• The running average steps
– Get longer in directions where gradient stays in the same sign
– Become shorter in directions where the sign keeps flipping

Plain gradient update With momentum

36

Training by gradient descent

• Initialize all weights

• Do:
– For all , initialize

ೖ

– For all
• For every layer :

– Compute ௐೖ ௧ ௧

– Compute ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer :
 ௐೖ

• Until has converged
37

Training with momentum

• Initialize all weights
• Do:

– For all layers , initialize
ೖ

,

– For all
• For every layer :

– Compute gradient ௐೖ ௧ ௧

– ௐೖ

ଵ

் ௐೖ ௧ ௧

– For every layer
 ௐೖ

• Until has converged
38

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

39

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the historical average step

40

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location

– Then adds in the scaled previous step
• Which is actually a running average

41

Momentum Update

• The momentum method

• At any iteration, to compute the current step:
– First computes the gradient step at the current location
– Then adds in the scaled previous step

• Which is actually a running average

– To get the final step
42

Momentum update

• Takes a step along the past running average
after walking along the gradient

• The procedure can be made more optimal by
reversing the order of operations..

43

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend by the (scaled) historical average

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
44

Nestorov’s Accelerated Gradient

• Change the order of operations

• At any iteration, to compute the current step:
– First extend the previous step

– Then compute the gradient at the resultant position

– Add the two to obtain the final step
45

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

46

Nestorov’s Accelerated Gradient

• Change the order of operations
• At any iteration, to compute the current step:

– First extend the previous step
– Then compute the gradient step at the resultant

position
– Add the two to obtain the final step

47

Nestorov’s Accelerated Gradient

• Nestorov’s method

48

Nestorov’s Accelerated Gradient

• Comparison with momentum (example from Hinton)
– Blue: Momentum

• Dotted line is the final update at each iteration

– Brown/ochre/green: Nestorov
• Brown is (scaled) previous update, ochre is gradient, green is the final update

• Converges much faster

49

Training with Nestorov
• Initialize all weights
• Do:

– For all layers , initialize ௐೖ
,

– For every layer
𝑊 = 𝑊 + 𝛽Δ𝑊

– For all
• For every layer :

– Compute gradient 𝛻ௐೖ
𝑫𝒊𝒗(𝑌௧, 𝑑௧)

– 𝛻ௐೖ
𝐸𝑟𝑟 +=

ଵ

்
𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

– For every layer
𝑊 = 𝑊 − 𝜂𝛻ௐೖ

𝐸𝑟𝑟

Δ𝑊 = 𝛽Δ𝑊 − 𝜂𝛻ௐೖ
𝐸𝑟𝑟

• Until has converged
50

Momentum and trend-based
methods..

• We will return to this topic again, very soon..

51

Story so far : Convergence
• Gradient descent can miss obvious answers

– And this may be a good thing

• Vanilla gradient descent may be too slow or unstable due to the
differences between the dimensions

• Second order methods can normalize the variation across
dimensions, but are complex

• Adaptive or decaying learning rates can improve convergence

• Methods that decouple the dimensions can improve convergence

• Momentum methods which emphasize directions of steady
improvement are demonstrably superior to other methods

52

Momentum methods: principle

• Ideally: Have component-specific step size
– Too many independent parameters (maintain a step size for every weight/bias)

• Adaptive solution: Start with a common step size
– Shrink step size in directions where the weight oscillates
– Expand step size in directions where the weight moves consistently in one direction

ଵ

Increase stepsize because
previous updates consistently
moved weight right

ଶ

Decrease stepsize because
previous updates kept
changing direction

ଶ

ଵ

Stepsize shrinks along w2
but increases along w1

k=1

k=2

k=3

𝑊 = 𝑊ିଵ − 𝜂𝛻௪𝐿 𝑊 𝑇

53

Quick recap: Momentum methods

• Momentum: Retain gradient value, but smooth out
gradients by maintaining a running average
– Cancels out steps in directions where the weight value oscillates
– Adaptively increases step size in directions of consistent change

() (ିଵ) ௐ
(ିଵ)

Momentum Nestorov

௫௧ௗ
() (ିଵ) (ିଵ)

() (ିଵ) ௐ ௫௧ௗ
()

() (ିଵ) ()

54

Recap

• Neural networks are universal approximators

• We must train them to approximate any
function

• Networks are trained to minimize total “error”
on a training set
– We do so through empirical risk minimization

• We use variants of gradient descent to do so
– Gradients are computed through backpropagation

55

Recap
• Vanilla gradient descent may be too slow or unstable

• Better convergence can be obtained through
– Second order methods that normalize the variation across

dimensions

– Adaptive or decaying learning rates that can improve
convergence

– Methods like Rprop that decouple the dimensions can
improve convergence

– Momentum methods which emphasize directions of
steady improvement and deemphasize unstable directions

56

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

57

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

58

The training formulation

• Given input output pairs at a number of
locations, estimate the entire function

Input (X)

output (y)

59

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

60

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

61

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

62

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

63

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

64

Gradient descent

• Start with an initial function
• Adjust its value at all points to make the outputs closer to the required

value
– Gradient descent adjusts parameters to adjust the function value at all points
– Repeat this iteratively until we get arbitrarily close to the target function at the

training points

65

Effect of number of samples

• Problem with conventional gradient descent: we try to
simultaneously adjust the function at all training points
– We must process all training points before making a single

adjustment
– “Batch” update

66

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

67

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

68

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

69

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

70

Alternative: Incremental update

• Alternative: adjust the function at one training point at a time
– Keep adjustments small
– Eventually, when we have processed all the training points, we will

have adjusted the entire function
• With greater overall adjustment than we would if we made a single “Batch”

update

71

Incremental Update: Stochastic
Gradient Descent

• Given , ,…,

• Initialize all weights

• Do:
– For all

• For every layer :

– Compute ௐೖ 𝒕 𝒕

– Update

ೖ

• Until has converged
72

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

73

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

74

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

75

Caveats: order of presentation

• If we loop through the samples in the same
order, we may get cyclic behavior

76

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

77

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

78

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

79

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

80

Caveats: order of presentation

• If we loop through the samples in the same order,
we may get cyclic behavior

• We must go through them randomly to get more
convergent behavior

81

Story so far

• In any gradient descent optimization problem,
presenting training instances incrementally
can be more effective than presenting them
all at once
– Provided training instances are provided in

random order
– “Stochastic Gradient Descent”

• This also holds for training neural networks

82

Explanations and restrictions

• So why does this process of incremental
updates work?

• Under what conditions?

• For “why”: first consider a simplistic
explanation that’s often given
– Look at an extreme example

83

The expected behavior of the gradient

• The individual training instances contribute different directions to the
overall gradient
– The final gradient points is the average of individual gradients
– It points towards the net direction

84

𝑑𝐸(𝑾(ଵ), 𝑾(ଶ), … , 𝑾)

𝒅𝑤,
()

=
𝟏

𝑻

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊; 𝑾(ଵ), 𝑾(ଶ), … , 𝑾())

𝒅𝑤,
()

𝒊

Extreme example

• Extreme instance of data clotting: all the
training instances are exactly the same

85

The expected behavior of the gradient

• The individual training instance contribute identical
directions to the overall gradient
– The final gradient points is simply the gradient for an individual

instance
86

𝑑𝑬

𝒅𝑤,
()

=
𝟏

𝑻

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊)

𝒅𝑤,
()

=
𝒅𝑫𝒊𝒗(𝒀(𝑿𝒊), 𝒅𝒊)

𝒅𝑤,
()

𝒊

Batch vs SGD

• Batch gradient descent operates over T training instances
to get a single update

• SGD gets T updates for the same computation
87

Batch SGD

Clumpy data..

• Also holds if all the data are not identical, but
are tightly clumped together

88

Clumpy data..

• As data get increasingly diverse, the benefits of incremental
updates decrease, but do not entirely vanish

89

When does it work

• What are the considerations?

• And how well does it work?

90

Incremental Update: Stochastic
Gradient Descent

• Given , ,…,
• Initialize all weights ;

• Do:
– Randomly permute , ,…,
– For all

•

• For every layer :
– Compute ௐೖ 𝒕 𝒕

– Update

 ௐೖ 𝒕 𝒕

• Until has converged
91

Caveats: learning rate

• Except in the case of a perfect fit, even an optimal overall
fit will look incorrect to individual instances
– Correcting the function for individual instances will lead to

never-ending, non-convergent updates
– We must shrink the learning rate with iterations to prevent this

• Correction for individual instances with the eventual miniscule
learning rates will not modify the function

Input (X)

output (y)

92

Incremental Update: Stochastic
Gradient Descent

• Given , ,…,
• Initialize all weights ;

• Do:
– Randomly permute , ,…,
– For all

•

• For every layer :
– Compute ௐೖ 𝒕 𝒕

– Update

 ௐೖ 𝒕 𝒕

• Until has converged
93

Randomize input order

Learning rate reduces with j

Stochastic Gradient Descent

• The iterations can make multiple passes over
the data

• A single pass through the entire training data
is called an “epoch”
– An epoch over a training set with samples

results in updates of parameters

94

SGD convergence
• SGD converges “almost surely” to a global or local minimum for most

functions
– Sufficient condition: step sizes follow the following conditions

 𝜂 = ∞

• Eventually the entire parameter space can be searched

 𝜂
ଶ < ∞

• The steps shrink

– The fastest converging series that satisfies both above requirements is

𝜂 ∝
1

𝑘
• This is the optimal rate of shrinking the step size for strongly convex functions

– More generally, the learning rates are heuristically determined

• If the loss is convex, SGD converges to the optimal solution
• For non-convex losses SGD converges to a local minimum

95

SGD convergence
• We will define convergence in terms of the number of iterations taken to

get within of the optimal solution

– () ∗

– Note: here is the error on the entire training data, although SGD itself
updates after every training instance

• Using the optimal learning rate , for strongly convex functions,

() ∗ () ∗

– Strongly convex Can be placed inside a quadratic bowl, touching at any point

– Giving us the iterations to convergence as ଵ

ఢ

• For generically convex (but not strongly convex) function, various proofs
report an convergence of ଵ

 using a learning rate of ଵ

 .

96

Batch gradient convergence
• In contrast, using the batch update method, for strongly

convex functions,

– Giving us the iterations to convergence as

• For generic convex functions, iterations to convergence
is

• Batch gradients converge “faster”
– But SGD performs updates for every batch update

97

SGD Convergence: Loss value

If:
• is -strongly convex, and
• at step we have a noisy estimate of the

subgradient with for all ,
• and we use step size
Then for any :

98

SGD Convergence

• We can bound the expected difference between the
loss over our data using the optimal weights and
the weights at any single iteration to for

strongly convex loss or for convex loss

• Averaging schemes can improve the bound to

and

• Smoothness of the loss is not required

99

SGD Convergence and weight
averaging

Polynomial Decay Averaging:

With some small positive constant, e.g.

Achieves (strongly convex) and
(convex) convergence

100

SGD example

• A simpler problem: K-means
• Note: SGD converges slower
• Also note the rather large variation between runs

– Lets try to understand these results.. 101

Recall: Modelling a function

• To learn a network to model a function we
minimize the expected divergence

102

Recall: The Empirical risk

• In practice, we minimize the empirical error

𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋 =
1

𝑁
 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑑

ே

ୀଵ

𝑾 = argmin
ௐ

 𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋

• The expected value of the empirical error is actually the expected divergence
𝐸 𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋

103

Xi

di

Recap: The Empirical risk

• In practice, we minimize the empirical error

𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋 =
1

𝑁
 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑑

ே

ୀଵ

𝑾 = argmin
ௐ

 𝐸𝑟𝑟 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋

• The expected value of the empirical error is actually the expected error
𝐸 𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋 104

Xi

di

The empirical error is an unbiased estimate of the expected error
Though there is no guarantee that minimizing it will minimize the
expected error

Recap: The Empirical risk

• In practice, we minimize the empirical error

𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋 =
1

𝑁
 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑑

ே

ୀଵ

𝑾 = argmin
ௐ

 𝐸𝑟𝑟 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋

• The expected value of the empirical error is actually the expected error
𝐸 𝐸𝑟𝑟 𝑓 𝑋; 𝑊 , 𝑔 𝑋 = 𝐸 𝑑𝑖𝑣 𝑓 𝑋; 𝑊 , 𝑔 𝑋 105

Xi

di

The variance of the empirical error: var(Err) = 1/N var(div)
The variance of the estimator is proportional to 1/N

The larger this variance, the greater the likelihood that the W that
minimizes the empirical error will differ significantly from the W that
minimizes the expected error

The empirical error is an unbiased estimate of the expected error
Though there is no guarantee that minimizing it will minimize the
expected error

SGD

• At each iteration, SGD focuses on the divergence
of a single sample

• The expected value of the sample error is still the
expected divergence 106

Xi

di

SGD

• At each iteration, SGD focuses on the divergence
of a single sample

• The expected value of the sample error is still the
expected divergence 107

Xi

di

The sample error is also an unbiased estimate of the expected error

SGD

• At each iteration, SGD focuses on the divergence
of a single sample

• The expected value of the sample error is still the
expected divergence 108

Xi

di

The variance of the sample error is the variance of the divergence itself: var(div)
This is N times the variance of the empirical average minimized by batch update

The sample error is also an unbiased estimate of the expected error

Explaining the variance

• The blue curve is the function being approximated
• The red curve is the approximation by the model at a given
• The heights of the shaded regions represent the point-by-point error

– The divergence is a function of the error
– We want to find the that minimizes the average divergence

109

Explaining the variance

• Sample estimate approximates the shaded area with the
average length of the lines of these curves is the red curve
itself

• Variance: The spread between the different curves is the
variance

110

Explaining the variance

• Sample estimate approximates the shaded area
with the average length of the lines

• This average length will change with position of
the samples

111

Explaining the variance

• Sample estimate approximates the shaded area
with the average length of the lines

• This average length will change with position of
the samples

112

Explaining the variance

• Having more samples makes the estimate more
robust to changes in the position of samples
– The variance of the estimate is smaller

113

Explaining the variance

• Having very few samples makes the estimate
swing wildly with the sample position
– Since our estimator learns the to minimize this

estimate, the learned too can swing wildly

With only one sample

114

Explaining the variance

• Having very few samples makes the estimate
swing wildly with the sample position
– Since our estimator learns the to minimize this

estimate, the learned too can swing wildly

With only one sample

115

Explaining the variance

• Having very few samples makes the estimate
swing wildly with the sample position
– Since our estimator learns the to minimize this

estimate, the learned too can swing wildly

With only one sample

116

SGD example

• A simpler problem: K-means
• Note: SGD converges slower
• Also has large variation between runs 117

SGD vs batch

• SGD uses the gradient from only one sample
at a time, and is consequently high variance

• But also provides significantly quicker updates
than batch

• Is there a good medium?

118

Alternative: Mini-batch update

• Alternative: adjust the function at a small, randomly chosen subset of
points
– Keep adjustments small
– If the subsets cover the training set, we will have adjusted the entire function

• As before, vary the subsets randomly in different passes through the
training data

119

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ;

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊 = ∆𝑊 +
ଵ

𝛻ௐೖ

𝐷𝑖𝑣(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊 = 𝑊 − 𝜂∆𝑊

• Until has converged 120

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ;

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– ∆𝑊 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» ∆𝑊 = ∆𝑊 +
ଵ

𝛻ௐೖ

𝐷𝑖𝑣(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊 = 𝑊 − 𝜂∆𝑊

• Until has converged 121

Mini-batch size

Shrinking step size

Mini Batches

• Mini-batch updates compute and minimize a batch error

ୀଵ

• The expected value of the batch error is also the expected divergence

122

Xi

di

Mini Batches

• Mini-batch updates computes an empirical batch error

ୀଵ

• The expected value of the batch error is also the expected divergence

123

Xi

di

The batch error is also an unbiased estimate of the expected error

Mini Batches

• Mini-batch updates computes an empirical batch error

ୀଵ

• The expected value of the batch error is also the expected divergence

124

Xi

di

The variance of the batch error: var(Err) = 1/b var(div)
This will be much smaller than the variance of the sample error in SGD

The batch error is also an unbiased estimate of the expected error

Minibatch convergence
• For convex functions, convergence rate for SGD is .

• For mini-batch updates with batches of size , the
convergence rate is

– Apparently an improvement of over SGD
– But since the batch size is , we perform times as many

computations per iteration as SGD

– We actually get a degradation of

• However, in practice
– The objectives are generally not convex; mini-batches are more

effective with the right learning rates
– We also get additional benefits of vector processing

125

SGD example

• Mini-batch performs comparably to batch
training on this simple problem
– But converges orders of magnitude faster

126

Measuring Error
• Convergence is generally

defined in terms of the
overall training error
– Not sample or batch error

• Infeasible to actually measure the overall training error
after each iteration

• More typically, we estimate is as
– Divergence or classification error on a held-out set
– Average sample/batch error over the past

samples/batches
127

Training and minibatches

• In practice, training is usually performed using mini-
batches
– The mini-batch size is a hyper parameter to be optimized

• Convergence depends on learning rate
– Simple technique: fix learning rate until the error plateaus,

then reduce learning rate by a fixed factor (e.g. 10)

– Advanced methods: Adaptive updates, where the learning
rate is itself determined as part of the estimation

128

Story so far
• SGD: Presenting training instances one-at-a-time can be more effective

than full-batch training
– Provided they are provided in random order

• For SGD to converge, the learning rate must shrink sufficiently rapidly with
iterations
– Otherwise the learning will continuously “chase” the latest sample

• SGD estimates have higher variance than batch estimates

• Minibatch updates operate on batches of instances at a time
– Estimates have lower variance than SGD
– Convergence rate is theoretically worse than SGD
– But we compensate by being able to perform batch processing

129

Training and minibatches

• Convergence depends on learning rate
– Simple technique: fix learning rate until the error

plateaus, then reduce learning rate by a fixed
factor (e.g. 10)

– Advanced methods: Adaptive updates, where the
learning rate is itself determined as part of the
estimation

130

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

131

Recall: Momentum

• The momentum method

• Updates using a running average of the gradient

132

Momentum and incremental updates

• The momentum method

• Incremental SGD and mini-batch gradients tend
to have high variance

• Momentum smooths out the variations
– Smoother and faster convergence

133

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ; ,

• Do:
– Randomly permute ଵ ଵ , ଶ ଶ ,…, ் ்

– For
• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝛻ௐೖ

𝐸𝑟𝑟 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐸𝑟𝑟 +=

ଵ

𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

Δ𝑊 = 𝛽Δ𝑊 − 𝜂𝛻ௐೖ
𝐸𝑟𝑟

𝑊 = 𝑊 + ∆𝑊

• Until has converged
134

Nestorov’s Accelerated Gradient

• At any iteration, to compute the current step:
– First extend the previous step
– Then compute the gradient at the resultant position
– Add the two to obtain the final step

• This also applies directly to incremental update methods
– The accelerated gradient smooths out the variance in the

gradients

135

Nestorov’s Accelerated Gradient

• Nestorov’s method
 ()

136

Incremental Update: Mini-batch
update

• Given ଵ ଵ , ଶ ଶ ,…, ் ்

• Initialize all weights ଵ ଶ ; 𝑗 = 0, ∆𝑊 = 0

• Do:
– Randomly permute 𝑋ଵ, 𝑑ଵ , 𝑋ଶ, 𝑑ଶ ,…, 𝑋், 𝑑்

– For 𝑡 = 1: 𝑏: 𝑇

• 𝑗 = 𝑗 + 1

• For every layer k:
– 𝑊 = 𝑊 + 𝛽Δ𝑊

– 𝛻ௐೖ
𝐸𝑟𝑟 = 0

• For t’ = t : t+b-1
– For every layer 𝑘:

» Compute 𝛻ௐೖ
𝐷𝑖𝑣(𝑌௧, 𝑑௧)

» 𝛻ௐೖ
𝐸𝑟𝑟 +=

ଵ

𝛻ௐೖ

𝑫𝒊𝒗(𝑌௧, 𝑑௧)

• Update
– For every layer k:

𝑊 = 𝑊 − 𝜂𝛻ௐೖ
𝐸𝑟𝑟

Δ𝑊 = 𝛽Δ𝑊 − 𝜂𝛻ௐೖ
𝐸𝑟𝑟

• Until has converged

137

More recent methods

• Several newer methods have been proposed that
follow the general pattern of enhancing long-
term trends to smooth out the variations of the
mini-batch gradient
– RMS Prop
– Adagrad
– AdaDelta
– ADAM: very popular in practice
– …

• All roughly equivalent in performance
138

Smoothing the trajectory

• Simple gradient and acceleration methods still demonstrate oscillatory
behavior in some directions

• Observation: Steps in “oscillatory” directions show large total movement
– In the example, total motion in the vertical direction is much greater than in

the horizontal direction

• Improvement: Dampen step size in directions with high motion
– Second order term

139

1 2
3

4
5

Step X component Y component

1 1 +2.5

2 1 -3

3 3 +2.5

4 1 -2

5 2 1.5

Variance-normalized step

• In recent past
– Total movement in Y component of updates is high
– Movement in X components is lower

• Current update, modify usual gradient-based update:
– Scale down Y component
– Scale up X component
– According to their variation (and not just their average)

• A variety of algorithms have been proposed on this premise
– We will see a popular example

140

RMS Prop
• Notation:

– Updates are by parameter

– Sum derivative of divergence w.r.t any individual parameter is
shown as ௪

– The squared derivative is ௪
ଶ

௪
ଶ

• Short-hand notation represents the squared derivative, not the
second derivative

– The mean squared derivative is a running estimate of the
average squared derivative. We will show this as ௪

ଶ

• Modified update rule: We want to
– scale down updates with large mean squared derivatives
– scale up updates with small mean squared derivatives

141

RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean

squared derivative

ାଵ
௪
ଶ

 ௪

142

RMS Prop
• This is a variant on the basic mini-batch SGD algorithm

• Procedure:
– Maintain a running estimate of the mean squared value of

derivatives for each parameter
– Scale update of the parameter by the inverse of the root mean

squared derivative

ାଵ
௪
ଶ

 ௪

143
Note similarity to RPROP
The magnitude of the derivative is being normalized out

RMS Prop (updates are for each
weight of each layer)

• Do:
– Randomly shuffle inputs to change their order
– Initialize: ; for all weights in all layers, ௪

ଶ

– For all (incrementing in blocks of inputs)
• For all weights in all layers initialize 𝜕௪𝐷 = 0

• For 𝑏 = 0: 𝐵 − 1
– Compute

» Output 𝒀(𝑿𝒕ା𝒃)

» Compute gradient 𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

» Compute 𝜕௪𝐷 +=
ଵ

𝒅𝑫𝒊𝒗(𝒀(𝑿𝒕శ𝒃),𝒅𝒕శ𝒃)

𝒅𝒘

• update:
𝑬 𝝏𝒘

𝟐 𝑫
𝒌

= 𝜸𝑬 𝝏𝒘
𝟐 𝑫

𝒌ି𝟏
+ 𝟏 − 𝜸 𝝏𝒘

𝟐 𝑫
𝒌

𝒘𝒌ା𝟏 = 𝒘𝒌 −
𝜼

𝑬 𝝏𝒘
𝟐 𝑫 𝒌 + 𝝐

𝝏𝒘𝑫

• 𝑘 = 𝑘 + 1

• Until ଵ ଶ has converged
144

ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the

current gradient
• ADAM utilizes a smoothed version of the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each

parameter
– Scale update of the parameter by the inverse of the root mean squared

derivative

 ିଵ ௪

 ିଵ ௪
ଶ

ାଵ

145

ADAM: RMSprop with momentum
• RMS prop only considers a second-moment normalized version of the

current gradient
• ADAM utilizes a smoothed version of the momentum-augmented gradient

• Procedure:
– Maintain a running estimate of the mean derivative for each parameter
– Maintain a running estimate of the mean squared value of derivatives for each

parameter
– Scale update of the parameter by the inverse of the root mean squared

derivative

 ିଵ ௪

 ିଵ ௪
ଶ

ାଵ

146

Ensures that the
and terms do

not dominate in
early

iterations

Other variants of the same theme

• Many:
– Adagrad
– AdaDelta
– ADAM
– AdaMax
– …

• Generally no explicit learning rate to optimize
– But come with other hyper parameters to be optimized
– Typical params:

• RMSProp: ,
• ADAM: , ,

147

Visualizing the optimizers: Beale’s Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

148

Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

149

Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

150

Story so far

• Gradient descent can be sped up by incremental
updates
– Convergence is guaranteed under most conditions

• Learning rate must shrink with time for convergence

– Stochastic gradient descent: update after each
observation. Can be much faster than batch learning

– Mini-batch updates: update after batches. Can be more
efficient than SGD

• Convergence can be improved using smoothed updates
– RMSprop and more advanced techniques

151

Moving on: Topics for the day

• Incremental updates
• Revisiting “trend” algorithms
• Generalization
• Tricks of the trade

– Divergences..
– Activations
– Normalizations

152

