

Training Neural Networks: Optimization: Part 2

Intro to Deep Learning, Spring 2019

- SGD: Presenting training instances one-at-a-time can be more effective than full-batch training
	- Provided they are provided in random order
- For SGD to converge, the learning rate must shrink sufficiently rapidly with iterations • For SGD to converge, the learning rate must shrink sufficiently rapidly with
• For SGD to converge, the learning rate must shrink sufficiently rapidly with
iterations
• Otherwise the learning will continuously "chase" th
	- Otherwise the learning will continuously "chase" the latest sample
- SGD estimates have higher variance than batch estimates
- -
	- Convergence rate is theoretically worse than SGD
	- But we compensate by being able to perform batch processing

Training and minibatches

- Convergence depends on learning rate
	- Simple technique: fix learning rate until the error plateaus, then reduce learning rate by a fixed factor (e.g. 10)
	- **Advanced methods**: Adaptive updates, where the learning rate is itself determined as part of the estimation

Moving on: Topics for the day

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
	- Divergences..
	- Activations
	- Normalizations

Recall: Momentum

• The momentum method

$$
\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err \big(W^{(k-1)} \big)
$$

• Updates using a running average of the gradient

Momentum and incremental updates

- The momentum method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)})$
- Incremental SGD and mini-batch gradients tend to have high variance
- Momentum smooths out the variations
	- Smoother and faster convergence

Incremental Update: Mini-batch update **ncremental Update: Min**
 update
 $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

ize all weights $W_1, W_2, ..., W_K$; $j = 0, \Delta W_k = 0$

andomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

or $t = 1:b:T$

• $j = j + 1$

• For every layer k:

– $V_{W_kErr} = 0$

• **update**
 (X_2, d_2) ,..., (X_T, d_T)

ights $W_1, W_2, ..., W_K$; $j = 0, \Delta W_k = 0$

ermute $(X_1, d_1), (X_2, d_2)$,..., (X_T, d_T)
 $b: T$

layer k:

Err = 0

t+b-1

very layer k:

Compute $\overline{V}_{W_k}Div(Y_t, d_t)$

- Given (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)
- Initialize all weights $W_1, W_2, ..., W_K$; $j = 0, \Delta W_k = 0$
- Do:
	- Randomly permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)
	- $-$ For $t = 1:b:T$
		-
		- For every layer k:
			- $\nabla_{W_k} Err=0$
		- For $t' = t : t + b 1$
			- $-$ For every layer k :
				- » Compute $\nabla_{W_k} Div(Y_t, d_t)$) and the set of \overline{a}

$$
\mathbf{W}_{W_k} Err \mathbf{F} = \frac{1}{b} \nabla_{W_k} \mathbf{Div}(Y_t, d_t)
$$

- Update
	- For every layer k:

$$
\begin{aligned}\n\text{Per } k: \\
\text{Due } \nabla_{W_k} \text{Div}(Y_t, d_t) \\
\text{For } t = \frac{1}{b} \nabla_{W_k} \text{Div}(Y_t, d_t) \\
\text{Per } k: \\
\Delta W_k &= \beta \Delta W_k - \eta_j \nabla_{W_k} \text{Err} \\
W_k &= W_k + \Delta W_k \\
\text{reged}\n\end{aligned}
$$
\n134

• Until *Err* has converged

Nestorov's Accelerated Gradient

- At any iteration, to compute the current step:
	- First extend the previous step
	- Then compute the gradient at the resultant position
	- Add the two to obtain the final step
- This also applies directly to incremental update methods
	- The accelerated gradient smooths out the variance in the gradients

Nestorov's Accelerated Gradient

• Nestorov's method $\Delta W^{(k)} = \beta \Delta W^{(k-1)} - \eta \nabla_W Err(W^{(k-1)} + \beta \Delta W^{(k-1)})$ $W^{(k)} = W^{(k-1)} + \Lambda W^{(k)}$

Incremental Update: Mini-batch update **Incremental Update: Mini-batch**
 update

• Given (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)

• Initialize all weights $W_1, W_2, ..., W_K$; $j = 0$, $\Delta W_k = 0$

• Do:

– Randomly permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)

– For t **Incremental Update:** M
 update

iven (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)

iitialize all weights $W_1, W_2, ..., W_K$; $j = 0$, $\Delta W_k = 0$

io:

- Randomly permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)

- For $t = 1; b; T$
 $\cdot f = j +$ **ncremental Update: Mir**
 $\text{update}(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$

ze all weights $W_1, W_2, \dots, W_K; j = 0, \Delta W_k = 0$

andomly permute $(X_1, d_1), (X_2, d_2), \dots, (X_T, d_T)$
 $\text{rate} = 1; b; T$
 $\text{for every layer k:}$
 $\text{For every layer k:}$
 $\text{For } W_k = W_k + \beta \Delta W_k$ **update**
 $(X_2, d_2),..., (X_T, d_T)$

thts $W_1, W_2, ..., W_K$; $j = 0, \Delta W_k = 0$

mute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

T

ayer k:
 $= W_k + \beta \Delta W_k$
 Err = 0

t+b-1

avery layer k:

» Compute $V_{W_k}Div(Y_t, d_t)$

- Given (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)
-
- Do:
	- Randomly permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)
	- -
		- For every layer k:
			- $-W_k = W_k + \beta \Delta W_k$
			- $\nabla_{W_k} Err=0$
		- For $t' = t : t + b 1$
			- $-$ For every layer k :
				- » Compute $\nabla_{W_k} Div(Y_t, d_t)$) and the set of \mathcal{L} and \mathcal{L} and \mathcal{L} and \mathcal{L} and \mathcal{L}
				- » $\nabla_{W_k} Err$ += $\frac{1}{b}\nabla_{W_k}$ Div (Y_t, d_t)) and the contract of \mathcal{L}
		- Update
			- For every layer k:

$$
W_k = W_k - \eta_j \nabla_{W_k} Err
$$

$$
\Delta W_k = \beta \Delta W_k - \eta_j \nabla_{W_k} Err
$$

• Until Err has converged

More recent methods

- Several newer methods have been proposed that follow the general pattern of enhancing longterm trends to smooth out the variations of the mini-batch gradient
	- RMS Prop
	- Adagrad
	- AdaDelta
	- ADAM: very popular in practice

– …

• All roughly equivalent in performance

Smoothing the trajectory

- Simple gradient and acceleration methods still demonstrate oscillatory behavior in some directions
- Observation: Steps in "oscillatory" directions show large total movement
	- In the example, total motion in the vertical direction is much greater than in the horizontal direction
- Improvement: Dampen step size in directions with high motion
	- Second order term

Variance-normalized step

- In recent past
	- Total movement in Y component of updates is high
	- $-$ Movement in X components is lower
- Current update, modify usual gradient-based update:
	- Scale down Y component
	- Scale up X component
	- According to their variation (and not just their average)
- A variety of algorithms have been proposed on this premise
	- We will see a popular example $\frac{140}{140}$

RMS Prop

- Notation:
	- Updates are by parameter
	- Sum derivative of divergence w.r.t any individual parameter w is shown as $\partial_w D$
	- The squared derivative is $\partial^2_w D = (\partial_w D)^2$ W D $)$ $2 \left(\frac{1}{2} \right)$
		- Short-hand notation represents the squared derivative, not the second derivative
	- The *mean squared* derivative is a running estimate of the average squared derivative. We will show this as $E\big[\partial^2_w D\big]$
- Modified update rule: We want to
	- scale down updates with large mean squared derivatives
	- scale up updates with small mean squared derivatives

RMS Prop

- This is a variant on the basic mini-batch SGD algorithm
- Procedure:
	- Maintain a running estimate of the mean squared value of derivatives for each parameter
	- Scale update of the parameter by the *inverse* of the root mean squared derivative

$$
E\left[\partial_w^2 D\right]_k = \gamma E\left[\partial_w^2 D\right]_{k-1} + (1 - \gamma)\left(\partial_w^2 D\right)_k
$$

$$
w_{k+1} = w_k - \frac{\eta}{\sqrt{E\left[\partial_w^2 D\right]_k + \epsilon}} \partial_w D
$$

RMS Prop

- This is a variant on the *basic* mini-batch SGD algorithm
- Procedure:
	- Maintain a running estimate of the mean squared value of derivatives for each parameter
	- Scale update of the parameter by the inverse of the root mean squared derivative

$$
E\left[\partial_{w}^{2}D\right]_{k} = \gamma E\left[\partial_{w}^{2}D\right]_{k-1} + (1-\gamma)\left(\partial_{w}^{2}D\right)_{k}
$$

$$
w_{k+1} = w_{k} - \frac{\eta}{\sqrt{E\left[\partial_{w}^{2}D\right]_{k} + \epsilon}}\partial_{w}D
$$

The magnitude of the derivative is being normalized out $\,$ $\,$ Note similarity to RPROP

RMS Prop (updates are for each Do: **Weight of each layer) IMS Prop (updates are for each

weight of each layer)**

andomly shuffle inputs to change their order

itialize: $k = 1$; for all weights w in all layers, $E[\partial_w^2 D]_k = 0$

or all $t = 1: B: T$ (incrementing in blocks of B inp **IMS Prop (updates are for example 1)**
 Weight of each layer)

andomly shuffle inputs to change their order

itialize: $k = 1$; for all weights w in all layers, $E[\partial^2_w D]_k$

or all $t = 1: B:T$ (incrementing in blocks of B

- - Randomly shuffle inputs to change their order
	- Initialize: $k = 1$; for all weights w in all layers, $E[\partial^2_w D]_k = 0$ $k = 0$
	- For all $t = 1$: B : T (incrementing in blocks of B inputs)
		-
		- - - » Output $Y(X_{t+h})$
				- **Example 8** Solution Compute gradient $\frac{dDiv(Y(X_{t+b}),d_{t+b})}{dw}$

$$
\text{Compute} (\partial_w D)_k \text{ +} = \frac{1}{B} \frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}
$$

\n- For all weights in all layers initialize
$$
(\partial_w D)_k = 0
$$
\n- For $b = 0: B - 1$
\n- Compute\n
	\n- Output $Y(X_{t+b})$
	\n- Compute gradient $\frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$
	\n\n
\n- Compute gradient $\frac{dDiv(Y(X_{t+b}), d_{t+b})}{dw}$
\n- update:\n
	\n- update: $\mathbf{E}[\partial_w^2 D]_k = \gamma E[\partial_w^2 D]_{k-1} + (1 - \gamma)(\partial_w^2 D)_k$
	\n\n
\n- $k = k + 1$
\n- $E(W^{(1)}, W^{(2)}, ..., W^{(K)})$ has converged\n
\n

• Until $E(W^{(1)}, W^{(2)}, ..., W^{(K)})$ has converged

ADAM: RMSprop with momentum
PRMS prop only considers a second-moment normalized version of the

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the *momentum-augmented* gradient
- Procedure:
	- Maintain a running estimate of the mean derivative for each parameter
	- Maintain a running estimate of the mean squared value of derivatives for each parameter
	- Scale update of the parameter by the inverse of the root mean squared derivative

$$
m_k = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k
$$

\n
$$
v_k = \gamma v_{k-1} + (1 - \gamma)(\partial_w^2 D)_k
$$

\n
$$
\hat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \hat{v}_k = \frac{v_k}{1 - \gamma^k}
$$

\n
$$
w_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \hat{m}_k
$$

ADAM: RMSprop with momentum
PRMS prop only considers a second-moment normalized version of the

- RMS prop only considers a second-moment normalized version of the current gradient
- ADAM utilizes a smoothed version of the *momentum-augmented* gradient
- Procedure:
	- Maintain a running estimate of the mean derivative for each parameter
	- Maintain a running estimate of the mean squared value parameter
	- Scale update of the parameter by the *inverse* of the derivative

$$
m_k = \delta m_{k-1} + (1 - \delta)(\partial_w D)_k
$$
 iterations

Ensures that the δ and ν terms do not dominate in early **iterations**

$$
v_k = \gamma v_{k-1} + (1 - \gamma) (\partial_w^2 D)_k
$$

$$
\widehat{m}_k = \frac{m_k}{1 - \delta^k}, \qquad \widehat{v}_k = \frac{v_k}{1 - \gamma^k}
$$

$$
k_{k+1} = w_k - \frac{\eta}{\sqrt{\hat{v}_k + \epsilon}} \hat{m}_k
$$

Other variants of the same theme

- Many:
	- Adagrad
	- AdaDelta
	- ADAM
	- AdaMax
	- …
- Generally no explicit learning rate to optimize
	- But come with other hyper parameters to be optimized
	- Typical params:
		- RMSProp: $\eta = 0.001$, $\gamma = 0.9$
		- ADAM: $\eta = 0.001$, $\delta = 0.9$, $\gamma = 0.999$

Visualizing the optimizers: Beale's Function

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Long Valley

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Visualizing the optimizers: Saddle Point

• http://www.denizyuret.com/2015/03/alec-radfords-animations-for.html

Story so far

- Gradient descent can be sped up by incremental updates
	- Convergence is guaranteed under most conditions
		- Learning rate must shrink with time for convergence
	- Stochastic gradient descent: update after each observation. Can be much faster than batch learning
	- Mini-batch updates: update after batches. Can be more efficient than SGD - Learning rate must shrink with time for convergence
- Stochastic gradient descent: update after each
observation. Can be much faster than batch learning
- Mini-batch updates: update after batches. Can be me
efficient tha
- Convergence can be improved using smoothed updates
	-

Moving on: Topics for the day

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
	- Divergences..
	- Activations
	- Normalizations

Tricks of the trade..

- To make the network converge better
	- The Divergence
	- Dropout
	- Batch normalization
	- Other tricks
		- Gradient clipping
		- Data augmentation
		- Other hacks..

Training Neural Nets by Gradient Descent: The Divergence

Total training error:

$$
Err = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, ..., W_K)
$$

- The convergence of the gradient descent depends on the divergence
	- Ideally, must have a shape that results in a significant gradient in the right direction outside the optimum
		- To "guide" the algorithm to the right solution

Desiderata for a good divergence

- Must be smooth and not have many poor local optima
- Low slopes far from the optimum $==$ bad
	- Initial estimates far from the optimum will take forever to converge
- High slopes near the optimum $==$ bad
	- Steep gradients

Desiderata for a good divergence

- Functions that are shallow far from the optimum will result in very small steps during optimization
	- Slow convergence of gradient descent
- Functions that are steep near the optimum will result in large steps and overshoot during optimization
	- Gradient descent will not converge easily
- The best type of divergence is steep far from the optimum, but shallow at the optimum
	- But not too shallow: ideally quadratic in nature

Choices for divergence

• Most common choices: The L2 divergence and the KL divergence the KL divergence

L2 or KL?

- The L2 divergence has long been favored in most applications
- It is particularly appropriate when attempting to perform regression
	- Numeric prediction
- The KL divergence is better when the intent is classification
	- The output is a probability vector

L2 or KL

- Plot of L2 and KL divergences for a single perceptron, as function of weights
	- Setup: 2-dimensional input
	- 100 training examples randomly generated

L2 or KL

- Plot of L2 and KL divergences for a single perceptron, as function of weights
	- Setup: 2-dimensional input
	- 100 training examples randomly generated

A note on derivatives

- Note: For L2 divergence the derivative w.r.t. the pre-activation z of the output layer is: $\nabla_z \frac{1}{2} ||y - d||^2 = (y - d)_y(z)$
- We literally "propagate" the error $(y-d)$ backward
	- Which is why the method is sometimes called "error backpropagation"

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results

The problem of covariate shifts

- Training assumes the training data are all similarly distributed
	-
The problem of covariate shifts

- Training assumes the training data are all similarly distributed
	-
- -
	-

The problem of covariate shifts

- Training assumes the training data are all similarly distributed
	-
- -
- Covariate shifts can be large!
	- All covariate shifts can affect training badly 165

- "Move" all batches to have a mean of 0 and unit standard deviation
	- Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
	- Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
	- Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
	- Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
	- Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
	- Eliminates covariate shift between batches
	- Then move the entire collection to the appropriate location

Batch normalization

- Batch normalization is a covariate adjustment unit that happens after the weighted addition of inputs but before the application of activation
	- Is done independently for each unit, to simplify computation
- Training: The adjustment occurs over individual minibatches

- batch by them
- Normalized instances are "shifted" to a *unit-specific* location 173

- BN aggregates the statistics over a minibatch and normalizes the \bullet batch by them
- Normalized instances are "shifted" to a *unit-specific* location \bullet

- batch by them
- Normalized instances are "shifted" to a *unit-specific* location

- batch by them
- Normalized instances are "shifted" to a *unit-specific* location

A better picture for batch norm

A note on derivatives

- In conventional learning, we attempt to compute the derivative of the divergence for *individual* training instances w.r.t. parameters
- This is based on the following relations

$$
Div(minbatch) = \frac{1}{B} \sum_{t} Div(Y_{t}(X_{t}), d_{t}(X_{t}))
$$

$$
\frac{dDiv(minbatch)}{dw_{i,j}^{(k)}} = \frac{1}{T} \sum_{t} \frac{dDiv(Y_{t}(X_{t}), d_{t}(X_{t}))}{dw_{i,j}^{(k)}}
$$

• If we use Batch Norm, the above relation gets a little complicated

A note on derivatives

• The outputs are now functions of μ_B and σ_B^2 which are functions of the entire minibatch

$$
Div(MB) = \frac{1}{B} \sum_t Div(Y_t(X_t, \mu_B, \sigma_B^2), d_t(X_t))
$$

- The Divergence for each Y_t depends on all the X_t within the minibatch
- Specifically, within each layer, we get the relationship in the following slide

Batchnorm is a vector function over
the minibatch the minibatch

- Batch normalization is really a vector function applied over all the inputs from a minibatch
	- Every z_i affects every \hat{z}_i
	- Shown on the next slide
- To compute the derivative of the divergence w.r.t any z_i , we must consider all \hat{z}_j s in the batch

Batchnorm

- The complete dependency figure for Batchnorm
- Note : inputs and outputs are different *instances* in a minibatch
	- The diagram represents BN occurring at a single neuron
- You can use vector function differentiation rules to compute the derivatives
	- But the equations in the following slides summarize them for you
	- The actual derivation uses the simplified diagram shown in the next slide, but you could do it directly off the figure above and arrive at the same answers

Batchnorm

Influence diagram

• Simplified diagram for a single input in a minibatch

• Final step of backprop: compute $\frac{\partial Div}{\partial y}$

 $Div = function(u_i, \mu_B, \sigma_B^2)$

$$
\frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{\partial u_i}{\partial z_i} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial Div}{\partial \mu_B} \cdot \frac{\partial \mu_B}{\partial z_i}
$$

$$
\frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{\partial u_i}{\partial z_i} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial Div}{\partial \mu_B} \cdot \frac{\partial \mu_B}{\partial z_i}
$$
\n
$$
u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \qquad \frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i} (z_i - \mu_B)
$$

Dotted lines show dependence through other u_j s because Divergence is computed over a minibatch

$$
\frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{\partial u_i}{\partial z_i} + \frac{\partial Div}{\partial \sigma_B^2} \left(\frac{\partial \sigma_B^2}{\partial z_i}\right) + \frac{\partial Div}{\partial \mu_B} \cdot \frac{\partial \mu_B}{\partial z_i}
$$
\n
$$
\frac{\partial div}{\partial z_i} = \frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i} (z_i - \mu_B)
$$

 $u_i =$

$$
\sigma_B^2 = \frac{1}{B} \sum_{i=1}^B (z_i - \mu_B)^2 \left| \frac{\partial \sigma_B^2}{\partial z_i} \right| = \frac{2(z_i - \mu_B)}{B}
$$

$$
\frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{\partial u_i}{\partial z_i} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{\partial \sigma_B^2}{\partial z_i} + \left(\frac{\partial Div}{\partial \mu_B}\right) \frac{\partial \mu_B}{\partial z_i}
$$

$$
u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
$$

$$
\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2
$$

$$
\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}
$$

$$
\frac{\partial Div}{\partial z_i} = \frac{\partial Div}{\partial u_i} \cdot \frac{\partial u_i}{\partial z_i} + \frac{\partial Div}{\partial \sigma_B^2} \cdot \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial Div}{\partial \mu_B} \left(\frac{\partial \mu_B}{\partial z_i}\right)
$$

$$
u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
$$

$$
\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}
$$

$$
\frac{\partial Div}{\partial z_i} \underbrace{\underbrace{\partial Div}_{\partial u_i} \cdot \frac{\partial u_i}{\partial z_i}}_{\text{or} \underline{\partial} \underline{\partial} \underline{\partial} \underline{\partial} \underline{\partial} \underline{\partial}} \cdot \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial Div}{\partial \mu_B} \cdot \frac{\partial \mu_B}{\partial z_i}
$$

$$
u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}
$$

$$
\frac{\partial Div}{\partial u_i}\cdot \frac{1}{\sqrt{\sigma_B^2+\epsilon}}
$$

$$
\frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i} (z_i - \mu_B)
$$

$$
\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}
$$

$$
\frac{\partial Div}{\partial \sigma_B^2} = \frac{-1}{2} (\sigma_B^2 + \epsilon)^{-3/2} \sum_{i=1}^B \frac{\partial Div}{\partial u_i} (z_i - \mu_B)
$$

$$
\frac{\partial Div}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \sum_{i=1}^B \frac{\partial Div}{\partial u_i}
$$

- On test data, BN requires μ_B and σ_B^2 . \bullet
- We will use the average over all training minibatches \bullet

$$
\mu_{BN} = \frac{1}{Nbatches} \sum_{batch} \mu_B(batch)
$$

$$
\sigma_{BN}^2 = \frac{B}{(B-1)Nbatches} \sum_{batch} \sigma_B^2(batch)
$$

- Note: these are neuron-specific \bullet
	- $\mu_B(batch)$ and $\sigma_B^2(batch)$ here are obtained from the final converged network $\overline{}$
	- The $B/(B-1)$ term gives us an unbiased estimator for the variance $\,$

Batch normalization $\bigoplus \qquad \qquad \bigoplus$ \bigoplus X_1^{\prime} \bigoplus \longrightarrow \bigoplus \longrightarrow \bigoplus $\bigoplus \longrightarrow \bigotimes \longrightarrow \bigotimes \oplus \oplus$ \bigoplus \bigodot \bigwedge X_2

- Batch normalization may only be applied to some layers
	- Or even only selected neurons in the layer
- Improves both convergence rate and neural network performance
	- Anecdotal evidence that BN eliminates the need for dropout
	- To get maximum benefit from BN, learning rates must be increased and learning rate decay can be faster
		- Since the data generally remain in the high-gradient regions of the activations
	- Also needs better randomization of training data order
Batch Normalization: Typical result

2015

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results
- Covariate shift between training and test may cause problems and may be handled by batch normalization

The problem of data underspecification

• The figures shown to illustrate the learning problem so far were fake news..

Learning the network

• We attempt to learn an entire function from just a few snapshots of it

General approach to training

Blue lines: error when function is below desired output

Black lines: error when function is above desired output

$$
E = \sum_{i} (y_i - f(\mathbf{x}_i, \mathbf{W}))^2
$$

- Define an error between the actual network output for any parameter value and the *desired* output
	- Error typically defined as the sum of the squared error over individual training instances

Overfitting

- Problem: Network may just learn the values at the inputs
	- Learn the red curve instead of the dotted blue one
		- Given only the red vertical bars as inputs

Data under-specification

- Consider a binary 100-dimensional input
- There are 2^{100} =10³⁰ possible inputs
- Complete specification of the function will require specification of 10^{30} output values
- A training set with only 10^{15} training instances will be off by a factor of 10^{15}

Data under-specification in learning

- Consider a binary 100-dimensional input
- There are 2^{100} =10³⁰ possible inputs
- Complete specification of the function will require specification of 10^{30} output values
- A training set with only 10^{15} training instances will be off by a factor of 10^{15}

Need "smoothing" constraints

- Need additional constraints that will "fill in" the missing regions acceptably
	- Generalization

• Illustrative example: Simple binary classifier – The "desired" output is generally smooth

- Illustrative example: Simple binary classifier
	- The "desired" output is generally smooth
		- Capture statistical or average trends
	- An unconstrained model will model individual instances instead

- Illustrative example: Simple binary classifier
	- The "desired" output is generally smooth
		- Capture statistical or average trends
	- An unconstrained model will model individual instances instead

Why overfitting

in output

The individual perceptron

• Using a sigmoid activation

 $-$ As $|w|$ increases, the response becomes steeper

Smoothness through weight manipulation

Smoothness through weight manipulation

-
- Constraining the weights w to be low will force slower

Objective function for neural networks **Objective function for ne

networks**
 $\sum_{t, v, w_2, \ldots, w_k}^{n} \sum_{w_i, w_i, w_i, w_i}^{w_i} Y_t$ Desired output of r

Error on i-th training input: $Div(Y_t, d_t; W_1, W_2)$

tch training error:

Desired output of network: d_t

Batch training error:

$$
Err(W_1, W_2, ..., W_K) = \frac{1}{T} \sum_t Div(Y_t, d_t; W_1, W_2, ..., W_K)
$$

• Conventional training: minimize the total error:

$$
\widehat{W}_1, \widehat{W}_2, ..., \widehat{W}_K = \underset{W_1, W_2, ..., W_K}{\text{argmin}} Err(W_1, W_2, ..., W_K)
$$

Smoothness through weight constraints

• Regularized training: minimize the error while also minimizing the weights

$$
L(W_1, W_2, ..., W_K) = Err(W_1, W_2, ..., W_K) + \frac{1}{2}\lambda \sum_{k} ||W_k||_2^2
$$

$$
\widehat{W}_1, \widehat{W}_2, ..., \widehat{W}_K = \underset{W_1, W_2, ..., W_K}{\text{argmin}} L(W_1, W_2, ..., W_K)
$$

- λ is the regularization parameter whose value depends on how important it is for us to want to minimize the weights
- Increasing λ assigns greater importance to shrinking the weights
	- Make greater error on training data, to obtain a more acceptable network

Regularizing the weights

$$
L(W_1, W_2, ..., W_K) = \frac{1}{T} \sum_t Div(Y_t, d_t) + \frac{1}{2} \lambda \sum_k ||W_k||_2^2
$$

• Batch mode:

$$
\Delta W_k = \frac{1}{T} \sum_t \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k
$$

• SGD:

$$
\Delta W_k = \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k
$$

• Minibatch:

$$
\Delta W_k = \frac{1}{b} \sum_{\tau=t}^{t+b-1} V_{W_k} Div(Y_{\tau}, d_{\tau})^T + \lambda W_k
$$

• Update rule:

$$
W_k \leftarrow W_k - \eta \Delta W_k
$$

Incremental Update: Mini-batch update **Interference in the Update:** Window
 update
 l $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

lize all weights $W_1, W_2, ..., W_K$; $j = 0$

andomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$

or $t = 1: b: T$

• **for every layer k:**

- $\Delta W_k = 0$

• **UPOATE**

1, d_1), (X_2, d_2) ,..., (X_T, d_T)

all weights $W_1, W_2, ..., W_K$; $j = 0$

omly permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)

= 1: *b*: *T*

= *j* + 1

r every layer k:
 $\sim \Delta W_k = 0$

r t' = t : t+b-1

- For every l

- Given (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)
- Initialize all weights $W_1, W_2, ..., W_K$; $i = 0$
- Do:
- Randomly permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T) permute (X_1, d_1) , (X_2, d_2) ,..., (X_T, d_T)

: *b*: *T*

1

y layer k:
 $V_k = 0$

t: t+b-1

every layer k:

» Compute $\overline{V}_{W_k}Div(Y_t, d_t)$

» $\Delta W_k = \Delta W_k + \overline{V}_{W_k}Div(Y_t, d_t)$

every layer k:
 $W_k = W_k - \eta_i(\Delta W_k + \lambda W_k)$
	- $-$ For $t = 1:b:T$
		-
		- For every layer k:
			-
		- For $t' = t : t+b-1$
			- $-$ For every layer k :
				- » Compute $\nabla_{W_k} Div(Y_t, d_t)$) and the set of \overline{a}
				- $W_k = \Delta W_k + \nabla_{W_k} Div(Y_t, d_t)$) and the set of \overline{a}
		- Update
			- For every layer k:

$$
W_k = W_k - \eta_j (\Delta W_k + \lambda W_k)
$$

• Until Err has converged 219

Smoothness through network structure

- MLPs naturally impose constraints
- MLPs are universal approximators
	- Arbitrarily increasing size can give you arbitrarily wiggly functions
	- The function will remain ill-defined on the majority of the space

- For a given number of parameters deeper networks impose more smoothness than shallow ones
	- Each layer works on the already smooth surface output by the previous layer

Even when we get it all right

- Typical results (varies with initialization)
- usually get
- All the training tricks known to mankind \sum_{221}

But depth and training data help

4 layers

- Deeper networks seem to learn better, for the same number of total neurons
	- Implicit smoothness constraints
		- As opposed to explicit constraints from more conventional classification models
- Similar functions not learnable using more usual pattern-recognition models!! 222

10000 training instances

Regularization..

- Other techniques have been proposed to improve the smoothness of the learned function
	- L₁ regularization of network activations
	- Regularizing with added noise..
- Possibly the most influential method has been "dropout"

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results
- Covariate shift between training and test may cause problems and may be handled by batch normalization
- Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates
• The choice of divergence affects both the learned network
and results
• Covariate shift between training and t must be handled by regularization and more constrained (generally deeper) network architectures

A brief detour.. Bagging

- Popular method proposed by Leo Breiman:
	- Sample training data and train several different classifiers
	- Classify test instance with entire ensemble of classifiers
	- Vote across classifiers for final decision
	- Empirically shown to improve significantly over training a single classifier from combined data
- Returning to our problem....

Dropout

• During training: For each input, at each iteration, "turn off" each neuron with a probability $1-\alpha$

Dropout Input **Output** X_1 $\boxed{\mathsf{Y}_1}$

- During training: For each input, at each iteration, "turn off" each neuron with a probability $1-\alpha$
	- Also turn off inputs similarly

- **During training:** For each input, at each iteration, "turn off" each neuron (including inputs) with a probability 1- α
	- In practice, set them to 0 according to the success of a Bernoulli random number generator with success probability $1-\alpha$

Dropout

The pattern of dropped nodes changes for each input i.e. in every pass through the net

- **During training:** For each input, at each iteration, "turn off" each neuron (including inputs) with a probability 1- α
	- In practice, set them to 0 according to the success of a Bernoulli random number generator with success probability $1-\alpha$

Dropout

The pattern of dropped nodes changes for each input i.e. in every pass through the net

• During training: Backpropagation is effectively performed only over the remaining network

- The effective network is different for different inputs
- Gradients are obtained only for the weights and biases from "On" nodes to "On" nodes
	- For the remaining, the gradient is just 0

Statistical Interpretation

- For a network with a total of N neurons, there are 2^N possible sub-networks
	- Obtained by choosing different subsets of nodes
	- $-$ Dropout samples over all 2^N possible networks
	- Effectively learns a network that averages over all possible networks
		- **Bagging**

Dropout as a mechanism to increase pattern density

- Dropout forces the neurons to learn "rich" and redundant patterns
- E.g. without dropout, a noncompressive layer may just "clone" its input to its output
	- Transferring the task of learning to the rest of the network upstream
- Dropout forces the neurons to learn denser patterns
	- With redundancy

The forward pass

- Input: *D* dimensional vector $\mathbf{x} = [x_j, j = 1...D]$
- Set:

$$
- D_0 = D
$$
, is the width of the 0th (input) layer

$$
- y_j^{(0)} = x_j, \ j = 1 \dots D; \qquad y_0^{(k=1 \dots N)} = x_0 = 1
$$

• For layer $k = 1 ... N$

Input: *D* dimensional vector
$$
\mathbf{x} = [x_j, j = 1 \dots D]
$$

\nSet:
\n $\begin{aligned}\n- D_0 &= D, \text{ is the width of the 0th (input) layer\n $\begin{aligned}\n-y_j^{(0)} &= x_j, j = 1 \dots D; \quad y_0^{(k=1\ldots N)} = x_0 = 1 \\
\text{For layer } k &= 1 \dots N \\
\hline\n-\text{ For } j = 1 \dots D_k \\
\begin{aligned}\n\cdot z_j^{(k)} &= \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)} + b_j^{(k)} \\
\hline\n\cdot y_j^{(k)} &= f_k(z_j^{(k)}) \\
\hline\n\cdot \text{ If } (k = dropout layer): \\
\hline\n-\text{mask}(k,j) &= \text{Bernoulli}(\alpha) \\
-\text{ If } \text{mask}(k,j) &= 0 \\
\hline\n\end{aligned}$ \nOutput:
\n $\begin{aligned}\n- Y &= y_j^{(N)}, j = 1 \dots D_N\n\end{aligned}$$

• Output:

$$
- Y = y_j^{(N)}, j = 1..D_N
$$

Backward Pass

• Output layer (N) :

$$
-\frac{\partial Div}{\partial Y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$

$$
- \frac{\partial Div}{\partial z_i^{(k)}} = f'_k\left(z_i^{(k)}\right) \frac{\partial Div}{\partial y_i^{(k)}}
$$

- For layer $k = N 1$ downto 0
	- For $i = 1 ... D_k$
		- If (not dropout layer OR $mask(k, i))$

t layer (N):
\n
$$
\frac{d}{dt} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}
$$
\n
$$
\frac{dy_i^{(N)}}{\partial y_i^{(N)}}
$$
\n
$$
Var \ k = N - 1 \, down to 0
$$
\n
$$
i = 1 ... D_k
$$
\nIf (not dropout layer OR mask(k, i))
\n
$$
-\frac{\partial Div}{\partial y_i^{(N)}} = \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}} \max(k + 1, j)
$$
\n
$$
-\frac{\partial Div}{\partial z_i^{(N)}} = f'_k (z_i^{(k)}) \frac{\partial Div}{\partial y_i^{(k)}}
$$
\n
$$
-\frac{\partial Div}{\partial w_{ij}^{(k+1)}} = y_i^{(k)} \frac{\partial Div}{\partial z_j^{(k+1)}} \max(k + 1, j) \text{ for } j = 1 ... D_{k+1}
$$
\nElse\n
$$
-\frac{\partial Di}{\partial z_i^{(k)}} = 0
$$

• Else

$$
-\frac{\partial D_i}{\partial z_i^{(k)}}=0
$$

What each neuron computes

• Each neuron actually has the following activation:

$$
y_i^{(k)} = D\sigma \left(\sum_j w_{ji}^{(k)} y_j^{(k-1)} + b_i^{(k)} \right)
$$

– Where D is a Bernoulli variable that takes a value 1 with probability α

• D may be switched on or off for individual sub networks, but over the ensemble, the *expected output* of the neuron is

$$
y_i^{(k)} = \alpha \sigma \left(\sum_j w_{ji}^{(k)} y_j^{(k-1)} + b_i^{(k)} \right)
$$

- During test time, we will use the *expected* output of the neuron
	- Which corresponds to the bagged average output
	- Consists of simply scaling the output of each neuron by α
Dropout during test: implementation

• Instead of multiplying every output by α , multiply all weights by α 236

Dropout : alternate implementation

- Alternately, during *training*, replace the activation of all neurons in the network by $\alpha^{-1}\sigma(.)$
	- This does not affect the dropout procedure itself
	- We will use $\sigma(.)$ as the activation during testing, and not modify the weights 237

The forward pass (testing) **ierce forward pass (test)**
 lensional vector $\mathbf{x} = [x_j, j = 1 \dots D]$
 lis the width of the Oth (input) layer
 $\begin{aligned} y_0^{(k=1 \dots N)} &= x_0 = 1 \\ &= 1 \dots N \\ &\dots D_k \\ &= \nabla^{N_k} \dots^{(k)} \cdot (k-1) + h^{(k)} \end{aligned}$ vard pass (testing)
 $\text{max} = [x_j, j = 1 \dots D]$
 $\text{min}(\text{input}) \text{ layer}$
 $\text{max}(\text{length}) = x_0 = 1$ **The forward pass (te**

nput: *D* dimensional vector $\mathbf{x} = [x_j, j = 1 ... D]$

et:
 $- D_0 = D$, is the width of the 0th (input) layer
 $- y_j^{(0)} = x_j$, $j = 1 ... D;$ $y_0^{(k=1...N)} = x_0 = 1$

or layer $k = 1 ... N$
 $-$ For $j = 1 ... D_k$
 $\cdot z_j^{($

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1...D]$
- Set:
	- $D_0 = D$, is the width of the 0th (input) layer

-
$$
y_j^{(0)} = x_j
$$
, $j = 1...D$; $y_0^{(k=1...N)} = x_0 = 1$

- For layer $k = 1...N$
	-

Input: *D* dimensional vector
$$
\mathbf{x} = [x_j, j = 1 ... D]
$$

\nSet:
\n $- D_0 = D$, is the width of the 0th (input) layer
\n $- y_j^{(0)} = x_j$, $j = 1 ... D$; $y_0^{(k=1...N)} = x_0 = 1$
\nFor layer $k = 1 ... N$
\n $- \text{For } j = 1 ... D_k$
\n $\cdot z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)} + b_j^{(k)}$
\n $\cdot y_j^{(k)} = f_k (z_j^{(k)})$
\n \cdot If $(k = dropout layer)$:
\n $\cdot y_j^{(k)} = y_j^{(k)}/\alpha$
\n $- \text{Else}$
\n $\cdot y_j^{(k)} = 0$
\nOutput:
\n $- Y = y_j^{(N)}, j = 1 ... D_N$

• **| Output:**

$$
-Y=y_j^{(N)}, j=1..D_N
$$

Dropout: Typical results

- From Srivastava et al., 2013. Test error for different architectures on MNIST with and without dropout
	- $-$ 2-4 hidden layers with 1024-2048 units 239

Variations on dropout

- Zoneout: For RNNs
	- Randomly chosen units remain unchanged across a time transition
- Dropconnect
	- Drop individual connections, instead of nodes
- Shakeout
	- Scale up the weights of randomly selected weights
		-
	- -
- Whiteout
- CONTRICITY CONTRIMITY CONTRIBUTED CONTRIBUTED CONTRIBUTED TRANSH

 Randomly chosen units remain unchanged across a time transition

 Drop individual connections, instead of nodes

hakeout

 Scale *up* the weights o – Add or multiply weight-dependent Gaussian noise to the signal on each connection

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results
- Covariate shift between training and test may cause problems and may be handled by batch normalization
- Gradient descent can be sped up by incremental updates
• Convergence can be improved using smoothed updates
• The choice of divergence affects both the learned network and
results
• Covariate shift between training and t handled by regularization and more constrained (generally deeper) network architectures
- "Dropout" is a stochastic data/model erasure method that sometimes forces the network to learn more robust models

- Continued training can result in over fitting to training data
	- Track performance on a held-out validation set
	- Apply one of several early-stopping criterion to terminate training when performance on validation set degrades significantly

- Often the derivative will be too high
	- When the divergence has a steep slope
	- This can result in instability
- Gradient clipping: set a ceiling on derivative value

if $\partial_w D > \theta$ then $\partial_w D = \theta$

- Typical θ value is 5

Additional heuristics: Data Augmentation

CocaColaZero1_1.png

CocaColaZero1_5.png

CocaColaZero1 2.pnc

CocaColaZero1_6.png

CocaColaZero1_7.png

CocaColaZero1_4.png

CocaColaZero1_8.png

- Available training data will often be small
- "Extend" it by distorting examples in a variety of ways to generate synthetic labelled examples
	- E.g. rotation, stretching, adding noise, other distortion

Other tricks

- Normalize the input:
	- Apply covariate shift to entire training data to make it 0 mean, unit variance
	- Equivalent of batch norm on input
- A variety of other tricks are applied
	- Initialization techniques
		- Typically initialized randomly
		- Key point: neurons with identical connections that are identically initialized will never diverge
	- Practice makes man perfect

Setting up a problem

- Obtain training data
	- Use appropriate representation for inputs and outputs
- Choose network architecture
	- More neurons need more data
	- Deep is better, but harder to train
- Choose the appropriate divergence function
	- Choose regularization
- Choose heuristics (batch norm, dropout, etc.)
- Choose optimization algorithm
	- E.g. Adagrad
- Perform a grid search for hyper parameters (learning rate, regularization parameter, …) on held-out data
- Train
	- Evaluate periodically on validation data, for early stopping if required

In closing

- Have outlined the process of training neural networks
	- Some history
	- A variety of algorithms
	- Gradient-descent based techniques
	- Regularization for generalization
	- Algorithms for convergence
	- Heuristics
- Practice makes perfect..