Homework 3
Gated Recurrent Unit Cells and Beam Search Decoder

11-785: INTRODUCTION TO DEEP LEARNING (FALL 2019)

OUT: Sunday October 20th, 2019
DUE: November 9th, 2019

Start Here

e Collaboration policy:
— You are expected to comply with the University Policy on Academic Integrity and Plagiarisml
— You are allowed to talk with / work with other students on homework assignments

— You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

e Overview:

— Part 1: All of the problems in Part 1 will be graded on Autolab. You can download the starter
code from Autolab as well. This assignment has 100 points, total.

— Part 1 Bonus: All of the problems in Part 1 Bonus will be graded on Autolab. You can download
the starter code from Autolab as well. This assignment has 10 points, total.

— Part 2: This section of the homework is an open ended competition hosted on Kaggle.com, a
popular service for hosting predictive modeling and data analytics competitions. All of the details
for completing Part 2 can be found on the competition page.

e Submission:

— Part 1: The compressed handout folder hosted on Autolab contains two python files, gru.py and
BeamSearch.py. You need to the classes and functions according to the specification provided in
this write-up. Your submission must be titled handin.tar (gzip format) and it is minimally required
to contain a directory called hw3, which contains the implemented files gru.py and BeamSearch.py
files. Please do not import any other external libraries other than NumPy and the default python
packages, as extra packages that do not exist in the autograder image will cause a submission
failure.

— Part 1 Bonus: TBD
— Part 2: See the [the competition pagel for details.


https://www.cmu.edu/student-affairs/theword/acad_standards/creative/academic_integrity.html
https://theory.stanford.edu/~aiken/moss/
https://kaggle.com
https://kaggle.com

1 Part 1A: GRU

In this part of this assignment you will make a recurrent neural network, specifically you will replicate a
portion of the torch.nn.GRUCell interface. GRUs are used for a number of tasks such as Optical Character
Recognition and Speech Recognition on spectograms using transcripts of the dialog. This homework is to
develop your basic understanding of Backpropagating through a GRUCell, which can potentially be used for
GRU networks to grasp the concept of Backpropagation through time (BPTT).

1.1 GRU Formulation
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You will be implementing the forward pass and backward pass for a GRUCell using python and numpy in
this assignment, analogous to the Pytorch equivalent nn.GRUCell. The equations for a GRU cell looks like
the following:

z; = o(Wohi—1 + Woxy) (1)
r, = o(Wihy_ 1 + Wiexy) (2)
h; = tanh(Wy(r; @ hy_1) + W,x;) (3)
h, =(1—2)®h;_; +2 ®h, (4)

Where z; is the input vector at time ¢, and h; the output. There are other possible implementations,
you need to follow the equations for the forward pass as shown above. If you do not, you might
end up with a working GRU and zero points on autolab. Do not modify the init method, if you do, it
might result in lost points.

Similar to previous assignments, you will be implementing a Python class, GRU_Cell, found in gru.py.
Specifically, you will be implementing the forward and the backward methods.

1.2 GRU Cell Forward (25 Points)

In this section, you will implement the forward method of the GRU_Cell. This method takes 2 inputs: the
observation at the current time-step, x;, and the hidden state at the previous time-step h;_;.

Use Equations 1-4 to implement the forward method, and return the value of h;.

Hint: Store all relevant intermediary values in the forward pass.



1.3 GRU Cell Backward (25 Points)

The backward method of the GRU_Cell, is the most time-consuming task of this homework.

This method takes as input delta, and must calculate the gradients wrt the parameters and returns the
derivative wrt the inputs, x; and hy, to the cell.

The partial derivative input you are given, delta, is the summation of the derivative of the loss wrt the
input of the next layer x;11 + and the derivative of the loss wrt the input hidden-state at the next time-step
hyyq.

Using these partials, you will need to compute the partial derivative of the loss wrt each of the siz weight
matrices (see Equations 1-4), and the partial derivative of the loss wrt the input x¢, and the hidden state hy.

Specifically, there are eight gradients that need to be computed:

1. 88\? , stored in self.dWrx

aL :
2. W stored in self.dWrh

3. 6\8)\% , stored in self.dWzx

4. Be\ih’ stored in self.dWzh

5. %7 stored in self.dWx

aaTth stored in self.dWh
g—XLt, returned by the method

® N o

aa—lft, returned by the method

You will need to derive the formulae for the back-propagation in order to complete this section of the
assignment.

1.4 GRU Inference (10 Points)

In this section you will use the GRU Cell implemented in the previous section and a linear layer (provided
to you) to compose a neural net. This neural net will unroll over the span of inputs to provide a set of logits
per time step of input.

You will compose the neural network with the CharacterPredictor class in gru.py and use the inference
function (also in gru.py) to use the neural network that you have created to get the outputs.

The inference accepts the net, an instance of CharacterPredictor, and inputs, a tensor of shape
seq_len X feature dim. You will unwrap the net to seq_len time steps and return a logits sequence
of shape seq_len X num_classes.

2 Part 1B: Greedy Search and Beam Search (10 + 30 Points)

In this part you will implement greedy search and beam search. Greedy search greedily picks the label with
maximum probability at each time step to compose the output sequence. Beam search is a more effective
decoding technique to to obtain a sub-optimal result out of sequential decisions, striking a balance between
a greedy search and an exponential exhaustive search by keeping a beam of top-k scored sub-sequences at
each time step. In the context of CTC, you would also consider a blank symbol and repeated characters, and
merge the scores for several equivalent sub-sequences. For details you are referring to P186-195 in Lecture
15 slides.


http://deeplearning.cs.cmu.edu/document/lecture/lec14.recurrent.pdf
http://deeplearning.cs.cmu.edu/document/lecture/lec14.recurrent.pdf

You need to implement functions GreedySearch and BeamSearch in file BeamSearch.py. For both the
functions you will be provided with SymbolSets which is a list of symbols that can be predicted except
for the blank symbol; y_probs, an array of shape (len(SymbolSets) + 1 , seq_length, batch_size
) which is the probability distribution over all symbols including the blank symbol at each time step
(note that probability of blank for all time steps is the first row of y_probs ). The batch_size is
1 for all test cases.

3 Part 1 Bonus: Forward-Backward and BPTT

We will give you a bonus part for this assignment, including forward-backward algorithm for computing
posteriori-based divergence, and BPTT. We will release a separate writeup later for details and you could
gain up to 10 bonus points for submission.
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