
1 

Homework 3 Part 2 

Utterance to Phoneme Mapping 

11-785: Introduction to Deep Learning (Fall 2019) 

OUT: October 21st, 2019 

DUE: November 9th, 2019, 11:59 PM 

1 Introduction 

In this homework you will again be working with speech data. We are going to be using unaligned labels in this 
contest, which means the correlation between the features and labels is not given explicitly and your model 
will have to figure this out by itself. Hence your data will have a list of phonemes for each utterance, but not 
which frames correspond to which phonemes. 

Your main task for this assignment will be to predict the phonemes contained in utterances in the test set. You 
are not given aligned phonemes in the training data, and you are not asked to produce alignment for the test 
data. 

2 Dataset 

Similar to HW1P2, you will be provided with mel-spectrograms that have 40 band frequencies for each time 
step of the speech data. However in this assignment, the labels will not have a direct mapping to each time step 
of your feature, instead they are simply the list of phonemes in the utterance [0-45]. There are 46 phoneme 
labels. The phoneme array will be as long as however many phonemes are in the utterance. We provide a look-

up, mapping each phoneme to a single character for the purposes of this competition. 

The feature data is an array of utterances, whose dimensions are (frames, time step, 40), and the labels will be 

of the dimension (frames, frequencies). The second dimension, viz., frequencies will have variable length which 

has no correlation to the time step dimension in feature data. 

You can download the data files from the Kaggle competition link here or as a tar file here. 

2.1 File Structure 

In total, we have 7 files for this assignment, including 1 ’.csv’ file, 1 ’.py’ file and 5 ’.npy’ files. Their functions and 

structure of organization are explained below. 

• wsj0 train.npy: This file contains your feature data for training the model. It will be of the shape (frames, 

time step, 40), where the second dimension will be variable as in HW1P2. 

• wsj0 dev.npy: This file is similar to wsj0 train.npy, but should be used to calculate your validation losses 

and accuracy. 

• wsj0 test.npy: This file is similar to wsj0 train.npy, but should be used to predict the phoneme labels for 

the final Kaggle submission. 

• wsj0 train merged labels.npy: This file contains the labels or phoneme list for each utterance of the wsj0 

train.npy file. The dimensions of the data in this file will be of the form (frames, frequencies) where the 

second dimension is variable. 

https://www.kaggle.com/c/11785-s19-hw3p2/data
https://cmu.box.com/shared/static/i8s6xkpwoewz9kw1n7j5kx42bva9jaqk.tar


2 

• wsj0 dev merged labels.npy: This file is similar to the one above, but instead will map the labels to the 

wsj0dev.npy file. You can use this for predicting validation losses and accuracy. 

• sample submission.csv: This is an empty submission file that contains the headers in the first row, followed 

by the test utterance Id and predictions for each utterance of test data. 

• phoneme list.py: This file contains the phoneme list and the mapping of each phoneme in the list to their 

respective sounds. Your submission file should contain these sounds as output and not the phoneme or 
their corresponding integer. 

3 Getting Started 

3.1 CTC Loss 

As described above, there is no alignment between utterances and their corresponding phonemes. Thus, train 
your network using CTC loss. Decode your predictions, preferably using beam search. Use the list of phonemes 
provided on the data page to make each prediction into a text string. 

Tensor flow has built-in CTC loss function. But for Pytorch, you can install the CTC-Loss library. The required 
CTC-loss library, Warp-CTC, can be installed here. Follow the download instruction. NOTE: Make sure you 

download the GPU supported version. 

3.2 CTC Decoding 

If you are using PyTorch you can manually install the library, ctcdecode, here. They have an implementation of 
beam search, use it in your code to decode the output of your model. If you are using Tensorflow, it has it’s own 
implementation of beam search. 

3.3 Using Beam Search for CTC Decode 

You have already implemented Beam Search in BeamSearch.py in your part-1, you can use that implementation 
here. The Beam Search implementation of part-1 outputs 2 arguments one of which is the best sequence path 

which can be used to predict your sequence of phoneme. 

 

4 Evaluation & Submission 

You will be evaluated using Kaggle’s character-level string edit distance. Since we mapped each phoneme to a 

single character, that means you are being evaluated on phoneme edit-distance. 

We are using Levenshtein distance, which counts how many additions, deletions and modifications are required 

to make one sequence into another. 

Your submission should be a CSV file. The headers should be ”Id”, and ”Predicted” - Id refers to the 0-based 

index of utterance in the test set and Predicted is the phoneme string. Please note that the headers are case-

sensitive. 

See sample submission for details. 

https://github.com/SeanNaren/warp-ctc
https://github.com/parlance/ctcdecode
https://en.wikipedia.org/wiki/Levenshtein_distance
https://www.kaggle.com/c/11785-s19-hw3p2/download/sample_submission.csv


3 

5 Conclusion 

That’s all. As always, feel free to ask on Piazza if you have any questions. 

Good luck and enjoy the challenge! 


