Homework 1
An Introduction to Neural Networks

11-785: INTRODUCTION TO DEEP LEARNING (SPRING 2019)

OUT: Jun __, 2019
DUE: August 10, 2019, 11:59 PM

Start Here

e Overview:

— Part 1: All of the problems in Part 1 are graded locally by the provided autograder. This
assignment has 8 points total.

— Part 2: Your score on this section of the homework depends on the accuracy of the predictions
of your model. A local script is provided for you to see the accuracy of your model.

The handout also contains:

— Appendix: This contains information and formulas about functions you have to implement as
part of the homework

— Glossary: This contains basic definitions to most of the technical vocabulary used in the handout
In addition, you will find the page:

http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1pl.html

extremely helpful. It contains detailed information about the key topics needed to complete the home-
work.

Bear in mind that all of the concepts mentioned will be covered in detail during the course. This is
only an introduction to help you get a head start for the course.

e Submission:

— Part 1: The compressed handout folder contains a directory named test which contains a
directory named hwil, which contains the file, hwi.py. This contains a template for solving
all of the problems and includes some useful helper functions. Make sure that all class and
function definitions originally specified (as well as class attributes and methods) in hwil.py are
fully implemented to the specification provided in this writeup and in the docstrings or comments
in hwl.py.

To test your code, you can use the local autograder: run the runner.py file located in the main
directory (part1). You will see your score for each of the functions you must implement printed
out. You do not need to submit the code anywhere.

— Part 2: You need to generate a csv file containing your model’s predictions on the test set. The
csv must have one column (no heading) which contains the labels generated by your model for
the test data. E.g you can use np.savetxt(filename, pred_-labels, delimiter=’,’))

Then call python test_mnist.py prediction.csv from the command line to evaluate the accu-
racy of your predictions.


http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html

HW Part 1: A Simple Neural Network

A neural network is a ”computer system modelled on the human brain and nervous system”. The purpose of
having such a system is to try and have a computer emulate the learning processes that occur in the human
brain. Intuitively, having fixed mathematical functions is not enough to replicate the processes in the human
brain. This led to the creation of neural networks.

For part 1 of the homework you will write your own implementation of the backpropagation algorithm for
training your own neural network, as well as a few other features such as activation and loss functions.
You are required to do this assignment in the Python (version 3) programming language. Do not use any
auto-differentiation toolboxes (PyTorch, TensorFlow, Keras, etc) - you are only permitted and recommended
to vectorize your computation using the Numpy library.

In the file hwl.py we provide you with classes whose methods you have to fill. The autograder tests will
compare the outputs of your methods and attributes of your classes with a reference solution. Therefore
we enforce for a large part the design of your code ; however, you still have a lot of freedom in your
implementation . We recommend that you look through all of the problems before attempting the first
problem. However we do recommend you complete the problems in order as the difficulty increases, and
questions often rely on the completion of previous questions.

Loss and Activation Functions

Here are some links to articles to help you better understand loss and activation functions:

e Introduction to loss functions

e Understanding activation functions

1 ReLU [4 points]

You will implement the ReLLU activation class. It comes in the form of a class which has a forward and a
derivative method. Both methods must be implemented. The Identity activation has been implemented for
you as an example. Both the Identity anf ReLU classes derive from Activation which acts as an abstract
base class / interface.

You only need to implement the two methods for ReLU. No helper functions or additional classes should be
necessary. Keep your code as concise as possible and leverage Numpy as much as possible.

Be mindful that you are working with matrices which have a given shape as well as a set of values.

The output of the activation should be stored in the self.state variable of the class. The self.state
variable should be further used for calculating the derivative during the backward pass.

You can refer to the appendix for more details on the function

2 SoftmaxCrossEntropy [4 points]

For this homework, we will be using the softmax cross entropy loss detailed in the appendix of this writeup.
Use the LogSumExp trick (see appendix) to ensure numerical stability.

Implement the methods specified in the class definition SoftmaxCrossEntropy. This class inherits the base
Criterion class.


https://blog.algorithmia.com/introduction-to-loss-functions/
https://medium.com/the-theory-of-everything/understanding-activation-functions-in-neural-networks-9491262884e0

Again no helper methods should be needed and you should stride to keep your code as simple as possible.
Use 1le-8 for eps.

You can find helpful information on implementing the function here: https://deepnotes.io/softmax-crossentropy

You can also refer to the appendix for more details on the function.

2.0.1 Forward

Implement the softmax cross entropy operation on a batch of output vectors.
Hint: Add a class attribute to keep track of intermediate values necessary for the backward computation.
e Input shapes:
— x: (batch size, 10)
— y: (batch size, 10)
e Output Shape:
— out: (batch size,)

2.0.2 Backward
Perform the ‘backward’ pass of softmax cross entropy operation using intermediate values saved in the
forward pass.
e Output shapes:
— out: (batch size, 10)

HW Part 2: MNIST Classification

This is for the summer 2019 version of 11-785 Homework 1 Part 2.
In this task, you need to implement a multi-layer perceptron to classify handwritten digits (0-9).

You will be using the MNIST dataset, which contains a collection of hand-written digits. Your task is to
classify each entry as one of the 9 digits.

You are only allowed to use MLPs, no RNNs or ConvNets. You may use auto differentiation libraries such
as PyTorch and Tensorflow

Note: we recommend Pytorch as this is what TA’s will be able to provide most support for during the semester
We suggest that you begin with a simple MLP with the following specifications:

e Linear layer: in_features = 784, out_features = 512

e ReLU layer

e Linear layer: in_features = 512, out_features = 10

Note that 784 corresponds to the number of input features of the data, and 10 corresponds the number of
output classes (see descriptions of data below)

Once you have the above model implemented and working, start playing around with the number of layers,
their sizes, the activation function, using dropout, ... whatever you would like!


https://deepnotes.io/softmax-crossentropy

Data
e train.npy: The training data. Array of shape (40,000, 784) i.e. array containing 50,000 entries each
with 784 features. Note that the 784 features correspond to the 784 pixels of the 28 * 28 images used

e train_labels.npy: The training labels. Array of shape (50,000) i.e. array containing the labels
corresponding to the entries in train.npy

e dev.npy: The dev set. Array of shape (10,000, 784) i.e. array containing 10,000 entries each with 784
features. Note that the 784 features correspond to the 784 pixels of the 28 * 28 images used

e dev_labels.npy: The dev labels. Array of shape (10,000) i.e. array containing the labels corresponding
to the entries in train.npy

e test.npy: The testing data. Array of shape (10,000, 784) i.e. array containing 10,000 entries, of the
same format as in train.npy.

Please refer to the submission section for details on seeing the accuracy of your predictions.



Appendix

A ReLU

The ReLU (Rectified Linear Unit) function is one of the most widely used activation functions.

The formula for the forward function is as follows:

ReLU(z) = max(0, )
Which is given by the following graph:

ReLU

10

R(z) =maz(0, z}

The derivative is equally as simple.

By the basic rules of calculus, the derivative of the identity function is 1, and the derivative of a horizontal
line is 0. This gives us the following formula for the derivative of the ReLU function:

lifx >0
0 otherwise

B Softmax Cross Entropy

Let’s define softmax, a useful function that offers a smooth (and differentiable) version of the max function
with a nice probabilistic interpretation. We denote the softmax function for a logit x; of K logits (outputs)
as o(z;).
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Notice that the softmax function properly normalizes the k logits, so we can interpret each o(z;) as a
probability and the largest logit x; will have the greatest mass in the distribution.

o(z;) =
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For two distributions P and @, we define cross-entropy over discrete events X as

E:ZP( 1og ZP ) log Q(x)

rzeX reX



Cross-entropy comes from information theory, where it is defined as the expected information quantified as
log % of some subjective distribution () over an objective distribution P. It quantifies how much information
we (our model Q) receive when we observe true outcomes from @ — it tells us how far our model is from the
true distribution P. We minimize Cross-Entropy when P = @. The value of cross-entropy in this case is
known simply as the entropy.

H= Y P(x) logP ZP ) log P(z)

reX

This is the irreducible information we receive when we observe the outcome of a random process. Consider
a coin toss. Even if we know the Bernoulli parameter p (the probability of heads) ahead of time, we will
never have absolute certainty about the outcome until we actually observe the toss. The greater p is, the
more certain we are about the outcome and the less information we expect to receive upon observation.

We can normalize our network output using softmax and then use Cross-Entropy as an objective function.
Our softmax outputs represent (), our subjective distribution. We will denote each softmax output as ¢; and
represent the true distribution P with output labels y; = 1 when the label is for each output. We let y; =1
when the label is j and y; = 0 otherwise. The result is a degenerate distribution that will aim to estimate
P when averaged over the training set. Let’s formalize this objective function and take the derivative.
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The next step is a little bit more subtle, but recall there is only a single true label for each example and
therefore only a single y; is equal to 1; all others are 0. Therefore we can imagine expanding the sum over ¢
in the second term and only one term of this sum will be 1 and all the others will be zero.

aLa(gj Y (Z —y;z; + log Z e“)



Now we take the partial derivative and remember that the derivative of a sum is the sum of the derivative
of its terms and that any term without x; can be discarded.

That second term looks very familiar, huh?

OL(y, e%i
= —y; + o(z;)
=o(z;) —yj
=Y —Yj

After all that work we end up with a very simple and elegant expression for the derivative of softmax with
cross-entropy divergence with respect to its input. What this is telling us is that when y; = 1, the gradient is
negative and thus the opposite direction of the gradient is positive: it is telling us to increase the probability
mass of that specific output through the softmax.

C LogSumExp

The LogSumExp trick is used to prevent numerical underflow and overflow which can occur when the
exponent is very large or very small. For example, look at the results of trying to exponentiate in python
shown in the image below:

>>> import math

>>> math.e**1000

Traceback (most recent ca
File "<pyshell#l> n

math.e**1000

OverflowError: (34, 'Result too large')

>>> math.e** (-1000)

0.0

1, in <module>

" -
r LIl

As you can see, for exponents that are too large, python throws an overflow error, and for exponents that
are too small, it rounds down to zero.

We can avoid these errors by using the LogSumExp trick:



n n

log Z e’ — a + log Z e’

You can read more about the derivation of the equivalence here and here

Glossary

Activation function:

An activation function defines a threshold which specifies when a given neuron in our network fires, i.e.
what combinations of weights and biases lead the neuron to output a signal. They are modelled based on
activation potentials in the brain, which mean neurons only ”fire” when the signals are above the threshold.

Auto-differentiation libraries:

Libraries such as PyTorch and Tensorflow which allow internal calculations of partial derivatives.
A comprehensive explanation of auto-differentiation can be found here

Bias:

Biases act the same way as weights in a neural network, except unlike weights, biases are not dependent on
activity, but rather are always “on”.

Backpropagation:

Short for ”backwards propagation”, backpropagation is an algorithm for learning using gradient descent.
Backpropagation is a specific type of autodifferentiation.

More details can be found here
Forward:

The forward pass of a neural network refers to the calculations of outputs, and the comparison of these to
the desired outputs (in supervised learning)

Gradient descent:

Gradient descent is an optimization algorithm. Optimizers are introduced on the supplementary pagel, but
you’ll have to wait for class to go more in depth.

Loss:

A loss function measures the difference between the output of the neural network (prediction) and the actual
desired output (label). The aim is to reduce the value of the loss function.

Multi-Layer Perceptron (MLP):

An MLP is a network of multiple perceptrons, which, as a combination of linear classifiers can be used to
classfy more complex shapes.

Perceptron:

A perceptron is a linear classifier. Meaning it can be used to distinguish which side of a linear function a
given point lies.

Weight:

Weights define the strength of the ”connections” between neurons in the network. A weight is a multiplier,
and defines how much of a signal is transmitted through the corresponding connection.


https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/
https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://towardsdatascience.com/automatic-differentiation-explained-b4ba8e60c2ad
https://brilliant.org/wiki/backpropagation/
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/HW1p1.html
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