
CONTENTS
•
Chapter 1, Introduction: Yusuf Akgul, Sebastien Bratieres, Samira Ebrahimi,
Charlie Gorichanaz, Brendan Loudermilk, Eric Morris, Cosmin Pârvulescu
and Alfredo Solano.
•
Chapter 2, Linear Algebra: Amjad Almahairi, Nikola Banić, Kevin Bennett,
Philippe Castonguay, Oscar Chang, Eric Fosler-Lussier, Andrey Khalyavin,
Sergey Oreshkov, István Petrás, Dennis Prangle, Thomas Rohée, Gitanjali
Gulve Sehgal, Colby Toland, Alessandro Vitale and Bob Welland.
•
Chapter 3, Probability and Information Theory: John Philip Anderson, Kai
Arulkumaran, Vincent Dumoulin, Rui Fa, Stephan Gouws, Artem Oboturov,
Antti Rasmus, Alexey Surkov and Volker Tresp.
•
Chapter 4, Numerical Computation: Tran Lam AnIan Fischer and Hu
Yuhuang.
•
Chapter 5, Machine Learning Basics: Dzmitry Bahdanau, Justin Domingue,
Nikhil Garg, Makoto Otsuka, Bob Pepin, Philip Popien, Emmanuel Rayner,
Peter Shepard, Kee-Bong Song, Zheng Sun and Andy Wu.
•
Chapter 6, Deep Feedforward Networks: Uriel Berdugo, Fabrizio Bottarel,
Elizabeth Burl, Ishan Durugkar, Jeff Hlywa, Jong Wook Kim, David Krueger
and Aditya Kumar Praharaj.
•
Chapter 7, Regularization for Deep Learning: Morten Kolbæk, Kshitij Lauria,
Inkyu Lee, Sunil Mohan, Hai Phong Phan and Joshua Salisbury.
•
Chapter 8, Optimization for Training Deep Models: Marcel Ackermann, Peter
Armitage, Rowel Atienza, Andrew Brock, Tegan Maharaj, James Martens,
Kashif Rasul, Klaus Strobl and Nicholas Turner.
•
Chapter 9, Convolutional Networks: Martín Arjovsky, Eugene Brevdo, Kon-
stantin Divilov, Eric Jensen, Mehdi Mirza, Alex Paino, Marjorie Sayer, Ryan
Stout and Wentao Wu.
•
Chapter 10, Sequence Modeling: Recurrent and Recursive Nets: Gökçen
Eraslan, Steven Hickson, Razvan Pascanu, Lorenzo von Ritter, Rui Rodrigues,
Dmitriy Serdyuk, Dongyu Shi and Kaiyu Yang.
• Chapter 11, Practical Methodology: Daniel Beckstein.
•
Chapter 12, Applications: George Dahl, Vladimir Nekrasov and Ribana
Roscher.
x