Your First Deep Learning Code

Recitation 2

11-785 Fall 2019

Recap

You have seen:

* You have seen the foundations of Python, NumPy and basics of
Linear Algebra.

* You have been given the definition of what a neural network is
and what it can model.

and

Today, we start learning how to write Deep Learning code!

Overview

1.Deep Learning Frameworks

2.Review Tensors (Math, Linear

Algebra, indexing and slicing)
3. CPU and GPU Operations

4. Backpropagation

5. Neural Network Modules

6. Optimization and Loss

7. Saving and Loading

8. Common issues to look out for

9. Full NN Example in code

Logistics

You should be able to download the notebooks from the course page.

- Tutorial-pytorch: Some code examples of what we will see today,
with more details. You can look at it in parallel or later.

- MNIST-example: A complete pytorch example that we will
walk-through at the end of this recitation.

. Pytorch_example: Another complete pytorch example for
reference.

http://deeplearning.cs.cmu.edu

Logistics

Unfortunately, we need to take some advance on the lectures, so that

you can do the homeworks.

In HW1 part 1: you are asked to write your own version of some tools

we see today.

In EVERYTHING else: you will be using these tools.

Conclusion: Pay Attention ;)

Overview

1.Deep Learning Frameworks

Let’s start with Deep Learning Frameworks

What do they provide?

* Computation (often with some NumPy support/encapsulation)
* GPU support for parallel computations

* Some basic neural layers to combine in your models

* Tools to train your models

* Enforce a general way to code your models

* And most importantly, automatic backpropagation

Which one to choose?

Framework

Main Purpose

User-Friendliness

Performance

Developed by
Google

Developed by a
Google Engineer

Developed by
Graham Neubig
(CMU) and his
group

Tensor board for effective data
visualization, and static
computation graphs.

Used mainly as a front-end
framework and to enable fast
experimentation.

A specialized framework, and
very handy when working NLP.

Hard to get use to it

Lots of online learning
resources

Easiest framework to
Learn

The framework
provides detailed
documentation

Provides very efficient
computations

High Performance as it
Uses TensorFlow or
Theano as the backend

Very high performance
in optimization

Framework - Main Usage User-Friendliness Performance

Caffe

DEEPLEARNING4)

theano

PYTHRCH

Developed by
Berkeley Al
Research
(BAIR)

Developed by
Adam Gibson,
Skymind

Developed by
University of
Montreal*

Develop by
Facebook Al
research

group

Its main usage is in image
processing, and deploying
models for smart devices

Takes advantage of distributed
frameworks (spark/Hadoop).

Mainly used for computing CNNs,
and RNNs, and as a backend for
Keras.

Mainly used in scientific
research, although use has
increase due to its dynamic
computational graphs and
backprop.

Fair amount of online
learning resources

Guides and tutorials
available. Might
present issues in
debugging

Not so easy to use, but
there are tutorials
available

Easier than TensorFlow
and lots of support by
the dev. Community.

Highly efficient when
processing images,
not so much for NLP
and RNNs

Can process huge

data sets without
reducing speed.
Performance like Caffe

Moderate
computation speed

Provides very efficient
computations

Pytorch

We recommend Pytorch 0.4 or 1.0

You should have access to an environment with it, and hopefully a GPU

LET’S START!

10

Overview

2. Review Tensors (Math,

Linear Algebra, indexing and

slicing)

11

Data Operations

* Use the

#
X

#

x1
X2
#

torch.Tensor class (~“np.ndarray)

Create uninitialized tensor
= torch.FloatTensor(2,3)
from numpy

= torch.FloatTensor (np_array)
= torch.randn(2,3)
export to numpy array

X np = x2.numpy()

Y

N S0 0 X

basic operation

= torch.arange(4,dtype=torch.float).view(2,2)
= torch.sum(x)

= torch.exp(x)

elementwise and matrix multiplication

= s*e + torch.matmul(x1l,x2.t()) # size 2%*2

-

\
Looks a lot like NumPy,
and binds with it!
check Recitation OA

—

np array = np.random.random((2,3)).astype(float)

12

https://www.youtube.com/watch?v=YdDgflXiIpc

Overview

3. CPU and GPU Operations

13

Move Tensors to the GPU

For big computations, GPUs offer huge speedups!

1 # create a tensor
=t h. d(3,2 .

: :; geeh pand(3,2) Tensors can be copied between CPU and

3 copy to GPU

ty = x.cuda() GPU. It is important that everything involved

5 # copy back to CPU

6 z = y.cpu() in a calculation is on the same device.

7 # get CPU tensor as numpy arrqﬂ

8 # cannot get GPU tensor as num array directl . . .

o | try: 7 = 7 g This portion of the tutorial may not work
1 y-nuspy() for you if you do not have a GPU available.
11 except RuntimeError as e:

12 print(e)
TypeError Traceback (most recent call last)

<ipython-input-18-ad31a5261faa> in ,
S # cannot get GPU tensor as numpy array directly
10 try:
--=> 11 y.numpy ()
12 except RuntimeError as e:
13 print(e)

TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

14

Move Tensors to the GPU

Operations between GPU and CPU tensors will fail. Operations require all
arguments to be on the same device.

X = torch.rand(3,5) # CPU tensor
y = torch.rand(5,4).cuda() # GPU tensor
try:
torch.mm(x,y) # Operation between CPU and GPU fails
except TypeError as e:
print(e)

torch.mm received an invalid combination of arguments - got (torch.FloatTensor, torc
h.cuda.FloatTensor), but expected one of:

* (torch.FloatTensor source, torch.FloatTensor mat2)
didn't match because some of the arguments have invalid types: (torch.FloatTens

or, torch.cuda.FloatTensor)
¥ (torch.SparseFloatTensor source, torch.FloatTensor mat2)
didn't match because some of the arguments have invalid types: (torch.FloatTens

or, torch.cuda.FloatTensor)

15

Move Tensors to the GPU

Typical code should be compatible with both CPU & GPU. Include if statements or

utilize helper functions so it can operate with or without the GPU.

Put tensor on CUDA if available
? x = torch.rand(3,2)
if torch.cuda.is_available():
x = x.cuda()
print(x, x.dtype)

’ # Do some calculations
8 |y = x ¥k 2
3 print(y)

11 # Copy to CPU if on GPU
12 if y.is_cuda:
y = y.cpu()
print(y, y.dtype)

tensor([[©.1084, ©.5432],

[0.2185, ©.3834],

[0.3720, ©.5374]], device='cuda:@') torch.float32
tensor([[0.0117, ©.2951],

[0.0477, ©.1470],

[0.1383, ©.2888]], device='cuda:0"')
tensor([[©.0117, ©.2951],

[0.0477, ©.1470],

[0.1383, ©.2888]]) torch.float32

16

Overview

4. Backpropagation

17

Backpropagation

*You haven’t seen it yet (mentioned last wednesday)
* Backpropagation in a nutshell:

*You have seen gradient descent, and you know that to train a
network you need to compute gradients, i.e. derivatives, of some loss
(~divergence) over every parameter (weights, biases).

* To compute them (with the chain rule), we first do a forward pass to
compute the output, the loss and store all intermediate results

*Then in the backward pass we compute a possible partial derivatives

18

Backpropagation in Pytorch

Pytorch can retro-compute gradients for any succession of operations,
when you ask for it. Use the .backward() method

l # Create differentiable tensor
> X = torch.tensor(torch.arange(@,4), requires grad=True)
3 print(x.dtype)

C:\Users\lendy\Anaconda3\envs\DL\1lib\site-packages\ipykernel launcher.py:2: UserWarning: To copy construct from a tensor, it is

recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires grad (True), rather than torch.tenso
r(sourceTensor).

RuntimeError Traceback (most recent call last)
<ipython-input-29-e52532f7b323> in

1 # Create differentiable tensor
----> 2 x = torch.tensor(torch.arange(0,4), requires _grad=True)

3 print(x.dtype)

RuntimeError: Only Tensors of floating point dtype can require gradients

For results, gradients are computed but not retained

19

Backpropagation in Pytorch

1 # Create differentiable tensor
2 x = torch.tensor(torch.arange(@,4), requires_grad=False)
2 print(x.dtype)

4 # Calculate y=sum(x**2)

57| yii= XD

6 # Calculate gradient (dy/dx=2x)
7 y.sum().backward()

8 # Print values

9 print(x)
1@ print(y)
11 print(x.grad)

C:\Users\Wendy\Anaconda3\envs\DL\1lib\site-packages\ipykernel launcher.py:2: UserWarning: To copy construct from a tensor, it is
recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tenso
r{sourceTensor).

torch.int64

RuntimeError Traceback (most recent call last)
<ipython-input-31-aabc86498b51> in <module>
SN =X e)
6 # Calculate gradient (dy/dx=2x)
----> 7 y.sum().backward()
8 # Print values
2 print(x)
~\Anaconda3\envs\DL\1lib\site-packages\torch\tensor.py in backward(self, gradient, retain_graph, create_graph)
116 products. Defaults to "~ False ~
117 i
--> 118 torch.autograd.backward(self, gradient, retain_graph, create_graph)
119
120 def register_hook(self, hook):
~\Anaconda3\envs\DL\1lib\site-packages\torch\autograd__init_ .py in backward(tensors, grad_tensors, retain_graph, create_graph,
grad_variables)
o1 Variable._ execution_engine.run_backward(
92 tensors, grad_tensors, retain_graph, create_graph,
---> 93 allow unreachable=True) # allow unreachable flag
o4
=13

RuntimeError: element © of tensors does not require grad and does not have a grad_+n

20

Backpropagation in Pytorch

Solution

1 # Create differentiable tensor
x = torch.tensor(torch.arange(0,4)).float().requires_grad (True)
3 print(x.dtype)
4 # Calculate y=sum(x**2)
y = x*¥2
6 # Calculate gradient (dy/dx=2x)
7 y.sum().backward()
8 # Print values
9 print(x)
10 print(y)
1 print(x.grad)

p—

C:\Users\Wendy\Anaconda3\envs\DL\1ib\site-packages\ipykernel launcher.py:2: UserWarning: To copy construct from a tensor, it is

recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires grad (True), rather than torch.tenso
r(sourceTensor).

torch.float32

tensor([0., 1., 2., 3.], requires_grad=True)
tensor([0., 1., 4., 9.], grad fn=<PowBackward>)
tensor([0., 2., 4., 6.])

21

Overview

5. Neural Network Modules

22

Neural Networks in Pytorch

As you know a neural network:
* |s a function connecting an input to an output

* Depends on (a lots of) parameters

In Pytorch, a neural network is a class that implements the base class
torch.nn.Module

You are provided with some pre-implemented networks such as
torch.nn.Linear which is a single layer perceptron

net = torch.nn.Linear(4,2)

23

Neural Networks in Pytorch

* The .forward() method applies the function

X = torch.arange(0,4).float()
y = net.forward(x)

y = net(x) # Alternatively
print(y

tensor([-0.4807, -0.7048])

* The .parameters() method gives access to all of the network parameters

for param in net.parameters():
print (param)

Parameter containing:

tensor([[-0.1506, 0.3700, -0.4565, 0.4557],
[-0.4525, -0.0645, -0.3689, 0.4634]1])

Parameter containing:

tensor([0.1931, 0.3287])
24

Let’s

write an MLP

The worst way ever:

class MyNet(O(nn.Module):

def

def

~_init (self,input size, hidden size, output size):

super (MyNetworkWithParams,self). init ()

self.layerl weights = nn.Parameter(torch.randn(input size,hidden size))
self.layerl bias = nn.Parameter(torch.randn(hidden size))

self.layer2 weights = nn.Parameter(torch.randn(hidden size,output size))
self.layer2 bias = nn.Parameter(torch.randn(output size))

forward(self,x):

hl = torch.matmul (x,self.layerl weights) + self.layerl bias

hl act = torch.max(hl, torch.zeros(hl.size())) # ReLU

output = torch.matmul(hl act,self.layer2 weights) + self.layer2 bias
return output

net=MyNet0(4,16,2

All Attributes of Parameter type become network parameters

25

Let’s write an MLP

A better way:

class MyNetl(torch.nn.Module):
def init (self,input size, hidden size, output size):
super()._ init ()
self.layerl = torch.nn.Linear(input size,hidden size)
self.layer2 = torch.nn.Sigmoid()
self.layer3 = torch.nn.Linear(hidden size,output size)

def forward(self, input val):
h = input val
h = self.layerl(h)
h = self.layer2(h)
h = self.layer3(h)
return h
net = MyNetl(4,16,2)

You can use small networks inside big networks. Parameters of subnetworks
will be “absorbed”

26

Let’s write an MLP

Even better:

def generate net(input size,hidden size, output size):
return nn.Sequential (nn.Linear(input size, hidden size),
nn.RelLU(),
nn.Linear (hidden size,output size))

net = generate net(4,16,2)

This is a shortcut for simple feedforward networks.
So all you need in HW1 P2,, but probably not in later homeworks

27

Let’s write an MLP

Your own classes can also be use in bigger networks:

def relu mlp(size list):
layers = []
for i in range(len(size list)-2):
layers.append(nn.Linear(size list[1],size list[i+l]))
layers.append(nn.ReLU())
layers.append(nn.Linear(size list[-2],size list[-1]))
return nn.Sequential(*layers)

my big MLP = nn.Sequential (
relu mlp([1000,512,512,256]),
nn.Sigmoid(),
relu mlp([256,128,64,32,10]1))

Allows a sort of “tree structure”

28

Overview

6. Optimization and Loss

29

Final Layers and Losses

torch.nn.CrossEntropylLoss includes both the softmax and the loss criterion,
and is stable (uses the log softmax)

X = torch.tensor([np.arange(4), np.zeros(4),np.ones(4)]).float()
y = torch.tensor([(0,1,0])
criterion = nn.CrossEntropyLoss()

output = net(x)
loss = criterion(output,y)
print(loss)

tensor(2.4107)

Contrary to before the input x is 2-dimensional: it is a batch of input vectors
(which is usually the case)

30

Use the optimizer

You must use an optimizer, subclass of torch.nn.Optimizer
The optimizer is initialized with the parameters that you want to
update.

optimizer = torch.optim.SGD(net.parameters(), lr=0.01

The .step() method will apply gradient descent on all these parameters,
using the gradients they contain

optimizer.step()

31

Use the optimizer

Remember that backpropagation in pytorch accumulates.

If you want to apply several iterations of gradient descent, gradients must be
set to zero before each optimization step.

n iter = 100
for 1 in range(n iter):
optimizer.zero grad() # equivalent to net.zero grad()
output = net(x)
loss = criterion(output,y)
loss.backward()
optimizer.step

32

Overview

7. Saving and Loading

33

Saving and Loading

N

net = torch.nn.Seguential(
torch.nn.Linear(28%28,256),
torch.nn.Sigmoid(),
torch.nn.Linear(256,10))

print(net.state_dict().keys())

(o R~ W

(&)}

odict keys(['@.weight’', '@.bias’, '2.weight’, "2.bias’])

1 # save a dictionary

2 torch.save(net.state dict(), test.t7’)

3 # load a dictionary

net.load state dict(torch.load('test.t7'))

| Y

<All keys matched successfully>

get dictionary of keys to weights using "state dict’

34

Overview

8. Common issues to look out for

35

Common Issues to Look Out For

Tensor Operations
« GPU + CPU

* Size mismatch in vector multiplications

* (*) is not matrix multiplication

X 2* torch.ones(2,2)
Y 3* torch.ones(2,2)
print(x * yv)

print (x.matmul(y))

tensor([[6., 6.1,

[6., 6.]11])
tensor([[12., 12.],
[12:; 12:]11)

36

Common Issues to Look Out For

Tensor Operations
* .view() is not transposition

X = torch.tensor([[1,2,3]1,[4,5,6]])
print(x)

print({x.t())

print(x.view(3,2))

tensor([[1, 2, 3],
[4, 5, 6]])
tensoxr([[1, 4],
[2, 51,
[3, 611)

censor(fl 1+ 21
[3, 4],
[5, 611])

37

Common Issues to Look Out For

Broadcasting

X = torch.ones(4,5)

y = torch.arange(5)

print (x+y)

y = torch.arange(4).view(-1,1)
print (x+y)

y = torch.arange(4)

print(x+y) # exception

tensor([[1., 2., 3., 4., b5.],
[1.’ 2.' 3., 4.’ 5']'
[1., 2:, 30, 40, 50]'
[1.y 2., 3a;, 4., 5.]1)
tensor([[1., l.;, 1l., 1l., 1l.],
2., 2-, 20' 2-, 20]'
3.y Bey ey 3Bayp 3e]s
4" 4" 4., 40, 4.]])

) e p—

RuntimeError Traceback (most recent call last)
<ipython-input-47-8799al16e988f> in <module>()

6 print(x+y)

7 y = torch.arange(4)
~-=-==> 8 print(x+y) # exception

RuntimeError: The size of tensor a (5) must match the size of tensor b (4) at non-singleton dimension 1

38

Common Issues to Look Out For
GPU Memory Error

net = nn.Sequential(nn.Linear(2048,2048),nn.RelLU(),
nn.Linear(2048,2048) ,nn.ReLU(),
nn.Linear(2048,2048),nn.ReLU(),
nn.Linear(2048,2048),nn.RelLU(),
nn.Linear(2048,2048),nn.ReLU(),
nn.Linear(2048,2048),nn.ReLU(),
nn.Linear(2048,120))

X = torch.ones(256,2048)

y = torch.zeros(256).long()

net.cuda()

x.cuda()

crit=nn.CrossEntropyLoss()

out = net(x)

loss = crit(out,vy)

loss.backward()

Common Issues to Look Out For

net = nn.Linear(4,2)
X = torch.tensor([1,2,3,4])
vy = net(x)
print(y)
Is there a problem?

What is it?...

40

Common Issues to Look Out For

Type error

net = nn.Linear(4,2)

X = torch.tensor([1,2,3,4])
y = net(x)

print(y)

RuntimeError: Expected object of type torch.LongTensor but found type torch.FloatTensor

X.float()
torch.tensor([1l.,2.,3.,4.])

<
nu

41

Common Issues to Look Out For

class MyNet(nn.Module):

def

def

__init (self,n hidden layers):

super (MyNet,self). init ()

self.n hidden layers=n_hidden layers

self.final layer = nn.Linear(128,10)

self.act = nn.ReLU()

self.hidden = []

for i in range(n_hidden layers):
self.hidden.append(nn.Linear(128,128))

forward(self,x):

h =x

for 1 in range(self.n hidden layers):
h = self.hidden[i](h)
h = self.act(h)

out = self.final_layer(h)
return out

What’s the problem?

42

Common Issues to Look Out For

Parameter Issue

class MyNet(nn.Module):

def

def

__init (self,n hidden layers):

super (MyNet,self). init ()

self.n _hidden layers=n hidden layers

self.final layer = nn.Linear(128,10)

self.act = nn.ReLU()

self.hidden = []

for 1 in range(n_hidden layers):
self.hidden.append(nn.Linear(128,128))

forward(self,x):
h =x
for i in range(self.n hidden layers):
h = self.hidden[i](h)

h = self.act(h)
out = self.final layer(h)

return out

Hidden layers are
not module
parameters

They will not be
optimized

43

Common Issues to Look Out For

Solution

class MyNet(nn.Module):

def

def

__init (self,n hidden layers):

super (MyNet,self). init ()

self.n _hidden layers=n_hidden_ layers

self.final layer = nn.Linear(128,10)

self.act = nn.ReLU()

self.hidden = []

for i in range(n _hidden layers):
self.hidden.append(nn.Linear(128,128))

self.hidden = nn.ModuleList(self.hidden)

forward(self,x):
h =x
for i in range(self.n hidden layers):
h = self.hidden[i](h)

h = self.act(h)
out = self.final layer(h)

return out

44

Pytorch Debugging in One Slide

If you have an error/bug in your code, or question about Pytorch:

* Always try to figure it out by yourself first, that’s how you learn the
most, for a strange behavior in your code, try printing the
outputs/inputs/parameters/errors

* Use the debugger: import pdb; pdb.set _trace()

* Tons of online resources, great pytorch documentation, and basically
every error is somewhere on stackoverflow.

* Use Piazza.- First check if someone else have encountered the same
error, if not ask us!

« Come to office hours.

45

Overview

9. Full NN Example in code

46

Pytorch Example

Open the notebook MNIST example.ipynb

47

