Homework 3 Part 2 (Summer 2019)

MNIST Sequence Recognition

11-785: Introduction to Deep Learning

1 Introduction

In this homework you will be working with MNIST digit-sequences. As you might already
be aware, MNIST is a hand-written digit dataset that contains numerous style examples for
every digit (0-9). We will be using sequences of digits from the MNIST dataset padded ver-
tically and shifted randomly within a given range. This task is different from HW1P2 as you
must develop networks that recognize a sequence of digits rather than just one. Alignment
and ordering are thus important. An example of the sequence before transformation (i.e.,
random shifting) is displayed below:

1 %960 9 74 ¢

Figure 1: MNIST digit sequence from our dataset

2 Dataset

Sequence images provided to you are of the shape (36 x 432), they contain 10 MNIST digits
in a random order and style. Your model must thus predict 10 digits for each sample.

2.1 Files
We have a total of 8 files for this assignment, 2 ".csv’ files, 1 ".py’ file and 5 ".npy’ files:

e mnist_train.npy: This file contains your feature data for training the model. The
training data contains 2000 images of shape (36, 432), therefore it will be of the shape
(2000, 36, 432).

e mnist_dev.npy: This file is similar to mnist_train.npy, but should be used to cal-
culate your validation losses and accuracy.



e mnist_test.npy: This file is similar to mnist_train.npy, but should be used to pre-
dict the sequence labels for the final Kaggle submission.

e mnist_train_labels.npy: This file contains the labels or sequence list for each image
in mnist_test.npy . The dimensions of the data in this file will be of the form (2000,
10) since each image contains a sequence of 10 digits.

e mnist_dev_labels.npy: This file is similar to the one above, but instead will map the
labels to the mnist_dev.npy file. You can use this for predicting validation losses and
accuracy.

e sample_submission.csv: This is an empty submission file that contains test image
Ids and dummy predictions for each image of test data.

e gold_labels.csv: This file contains the gold-standard predictions for the test data-
set. You will be scored by calculating the Levenstein distance between your network
predictions and the predictions in this file. You need not change or use this file, this
file is used by the tester script that scores your predictions.

e tester.py: This python script must be used for scoring your predictions. you must
run the script with your prediction csv file as the first argument:

python tester.py YourFile.csv

The program will print out the average Levenstein between your prediction strings and
the actual digit strings from the gold-standard data-set.

3 Getting Started

3.1 Network Architecture

In this task, you are expected to use Recurrent Neural Networks which powerful type of
neural network designed to handle sequence dependence. The Long Short-Term Memory
network or LSTM network is a type of recurrent neural network used in deep learning very
frequently. Read up more about the LSTM from the resources section. You can use the
pytorch implementaion of LSTM (nn.LSTM) for this assignment. Your architecture should
take as the input a batch of digit sequence images, run them through 3-4 LSTM layers and
finally use a classification layer ( You can use a linear layer or an MLP network) to predict
one of the 10 digits or a ”-” which means None (you will know why we need a None symbol
in the next section). Optionally, instead of directly using the images as input to the LSTM,
you can use a CNN feature extractor and use the representation from the CNN as input to
the LSTM layers. Simple cross-entropy loss will not work well in this case since we are not
aware of digit boundaries and alignments, you must use CTC decoding and Loss as described
in the next section. Finally, you will be evaluated on the basis of the average Levenstein
distance between your predictions and the gold-standard on mnist_test.npy. Our baseline
model uses a single CNN feature extractor (1D CNN, kernel size=2, stride=1) and 3 LSTM
layers (using the most intuitive hidden size is left as an exercise).



3.2 CTC Loss

In this homework, you are expected to output a sequence of 10 digits present in the given
image. This task can be thought of as a text-recognition system with 10 possible character
outputs. In order to obtain ground truth, we could specify for each horizontal position of
the image the corresponding character and then train a network for each position, much
like an extension of HW1P2, however, it is very time-consuming to annotate a data-set on
character-level in the real world and we only get character-scores and therefore need some
further processing to get the final text from it. For instance, A single character can span
multiple horizontal positions. We could get an output "mmeee” for "me” if ”e” is a wide
character in the image. We could remove duplicates, but doing this always as a rule might
hurt in cases when there are repetitions in the source text itself.

CTC loss helps us get around this problem like magic! We are only required to provide
the CTC loss function the characters that occur in the image and we ignore both the position
and width of the characters in the image. You could read up more about CTC loss from the
articles mentioned in the resources section.

Tensorflow has built-in CTC loss function. But for Pytorch, you can install the CTC-
Loss library. The required CTC-loss library, Warp-CTC, can be installed here. Follow the
download instructions. NOTE: Make sure you download the GPU supported version.

3.3 Using Warp CTC in pytorch

The module assumes the blank position is at 0. If there are n (here, 10) labels, the model
output should be of size n+1. The targets passed to the loss function should be from 1 to
n instead of from 0 to n-1. The loss function takes four inputs. The first input is a tensor
of your model network output. The second input is a tensor of all the labels should be
concatenated into one single 1D tensor. The third input is a tensor containing the size of
each output sequence from the network. The fourth input is a tensor containing the label of
each target. Your submission should contain the predicted strings (i.e., digits) for each item
in the test set.

3.4 CTC Decoding

If you are using PyTorch you can manually install the library, ctcdecode, here. They have
an implementation of beam search, use it in your code to decode the output of your model.
If you are using Tensorflow, it has it’s own implementation of beam search.

4 Evaluation and Submission

You will be evaluated using character-level string edit distance. We are using Levenshtein
distance, which counts how many additions, deletions and modifications are required to make
one sequence into another.

Your submission should be a CSV file. The first column must contain the instance id in


https://github.com/parlance/ctcdecode

numerical order and the second column must contain the predicted digit string. Refer to the
sample submission file for more details. You have been provided with a python script for
obtaining the average Levinshtein distance between your predictions and the gold-standard.
Run the file with your prediction filename as the first argument (python tester.py your-
FileName.csv).

5 Resources

1. RNNs Blog: http://www.wildml.com/2015/09 /recurrent-neural-networks-tutorial-part-
1-introduction-to-rnns/

2. Pytorch RNN: https://pytorch.org/tutorials/intermediate /char_rnn_classification_tutorial.html
3. Prof.Bhiksha’s Lecture Slides: (Click here
4. More about CTC: https://distill.pub/2017/ctc/

5. CTC Networks and Language Models: https://medium.com /corti-ai/ctc-networks-
and-language-models-prefix-beam-search-explained-c11d1ee23306
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