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Now you know :

● What Neural Networks are and what they do (lectures week 1)

● How to train networks (lectures week 2-4)

● How Pytorch helps you to define and train nets (rec 2)

● How to use Pytorch to simultaneously load data, build networks and train 

them efficiently (rec 3)

You have tried to use that knowledge in HW1P2.

It’s harder than recitations make you think.



Debugging deep learning
In Computer Science, debugging is always a big, painful part of the work.

In Deep Learning it’s even bigger and more painful. Very often:

● You have implemented a sweet model

● The code looks fine

● Accuracy is terrible/you get a weird error

● Have no idea why



Debugging deep learning
The reason DL debugging is especially hard is that there are many things that can 
make your code fail :

● Python-based error

● Pytorch-based error

● “Math” error (wrong minus somewhere)

● Modelization issue

● Training issue

● Testing issue

The hardest thing is to determine in which situation you are.



Plan for today
Today we’ll cover these cases and what you can do about them (both prevention 
and debugging)

● General tips to organize your code

● Usual Model-related errors and how to find them

● Use metrics/hyperparams visualization to help you !

Apply these before coming to Office Hours !



General coding tips
Make your code modular

Design functions/classes for each of the main subtasks

(data loading, model definition, model training,...). You will find compartmentalizing 
your code to be useful especially for upcoming homeworks.

Have these functions in separate files, and use a central script file that you call 
once.

Do not use a notebook, except for the script file.



General coding tips
Centralize your hyperparameters

Instead of hardcoding the hyperparameters you use (learning rate, nepochs, layer 
size, dropout) in the different files, write a configuration module for that (file or 
command line)

This may contain boolean flags too (use_cuda, test_only, etc).



General coding tips
Start small

Use simple models/training routines at first, with few configuration options. 

When things seem to work, increase complexity.

Implement a sanity check

Let’s look at an example.



Debugging
Coding mistakes : when your model does not do what you want it to

do (python, pytorch, math or logic).

Training mistakes : when your model does what you want it to do

but is not learning well.

Testing/decoding mistakes : when your model is learning well but

outputs bad results.

(this one should be rare in HW1 but very usual when dealing with

Language models in HW3/HW4. We won’t talk too much about it in this recitation.)

You should check for coding errors first, then training errors.



Coding errors
Signs you may have one :

● Loss does not decrease at all

● Outputs are constants

● Training stops mid-time for unclear reasons



Coding mistakes
How to find them : Print everything to look for the first moment the problem 
appears. Be methodical
What to check :

● Your data : Not iterating ? Instance-label misalignment ? (spend a good 
amount of time checking if your data is sane. This is crucial especially if 
you’re doing some preprocessing on your data before passing it to your 
network.)
● Your shapes : everything consistent ?
● Your hyperparameters : when you print them, are they what
they’re supposed to be ?



Coding mistakes

Some typical examples of coding errors are:

● You forgot to put your model in eval mode during inference time and your 
model is now producing garbage.

● You passed softmax outputs to a loss that expects raw logits. E.g. 
passing softmax outputs to nn.CrossEntropyLoss() while the 
documentation specifies: 

“The input is expected to contain raw, unnormalized scores for each class”

https://pytorch.org/docs/stable/nn.html#torch.nn.CrossEntropyLoss


Time issues
Specific case of coding error: when things work but are too slow. In your epochs, 
use the time module to check the duration of all your subtasks (data loading, 
forward, backward,...), and find the aberrant one.



Training mistakes
For those errors, usually your loss does decrease, but not enough. If you see 
absurdly low performance (~random) it’s probably a coding error.

Note: a random classification model would have a cross-entropy loss of 
~log(Number_of_classes).



Training mistakes
Different problems :

Modelization issues : your model is too small to learn patterns (or not well 
designed when the problem is complex)

Optimization issues : you cannot train your model properly

Overfitting : your model is too big/you train too long



Modelization/optimization issues
One common mistake that most people make is forgetting to overfit a single batch 
(or any random subset of your training data) first. 

This is important to check if your model is capable of doing anything at all and also 
fix any bugs in your model quickly. 

Read more about this from here: http://karpathy.github.io/2019/04/25/recipe/ an 
excellent blog on tips and tricks to train a neural net by Andrej Karpathy.

http://karpathy.github.io/2019/04/25/recipe/


Modelization/optimization issues
Sign that you have one : the training loss does not go down well enough

A good model (a simple but big enough model with no bells and whistles like 
regularizations)  will overfit a small random subset of your training set (e.g. a 
single batch) if you train it too long → you can use that to debug. 

The training loss should go to 0. If it doesn’t, you have a problem.

Once your training loss decreases to 0, you can slowly add regularizations and 
train it on the entire training set and start fine tuning. 



Optimization issues
You should check:

● Learning rate: if too small, you will learn too slowly. If too large, you will 
learn for a while then diverge. Default “good” : 0.001.
It is recommended to do learning rate decay : start large, then decrease (for 
example when loss stops improving)
● Optimizer: (default “good” : Adam)
● Initialization: (default “good” : xavier)
● Batching (just the batch size on simple problems). Default “good” : from 32 
to 256 if you can afford it.
Too deep models can create optimization problems too (vanishing gradients). 
They also lead to…



Overfitting issues
Overfitting symptom : Training loss decreases but validation loss doesn’t.
You should always have a small validation set to look at every epoch.

Things to do there :
● Verify that you shuffle your training data
● Decrease your model size/depth
● Use some of the tricks you know that help generalization : dropout, batchnorm, 
early stopping, validation-driven learning rate decay
Note : adaptative optimizers (Adam,...) overfit more.



Overfitting issues
It’s also possible to overfit on the validation set.

This happens when you try a very large amount of architectures/hyperparameters 
with the same validation set : you may find one that works “by chance” and won’t 
generalize.

(In HW1P2 : if you do 200 attempts a day on kaggle, you may overfit on the public 
leaderboard and be disappointed by your results on the private leaderboard).

If you plan to look for many architectures, consider a better validation method like 
K-fold.



Testing/decoding issues
When your model learns, training and validation loss decrease, but accuracy is 
low.

Recall that losses (e.g. cross-entropy) are differentiable surrogates for the metric 
you want (e.g. accuracy). It’s always possible to have a gap between the two.

On a simple classification problem like HW1P2 this shouldn’t happen too much 
(unless there is a bug in the prediction/inference code).

However, to be safe you should look at your validation accuracy along with your 
loss.



Visualize your metrics
We repeated many times that you should look at your metrics, compare 
training/validation loss,etc.

But, just printing them in the terminal is dirty and hard to read.

That’s why you should visualize them→ Second part of this recitation



Why visualize?
● Answers the question “What  am I learning?”
● To see how your weight matrix and gradients change over time during training 

of your model, which can help determine whether you need to:
○ Remove extra layers when there is a redundancy in matrices
○ Add new layers to see if they learn something unique

● To predict the right time to stop training the model
○ It’s better to use tools to predict when to stop rather than logging loss and accuracies at each 

step of training

● Weight Initialization
○ To better understand which weight initialization method performs better for the given problem
○ We get to see why initializing with zeroes is not preferred



Tensorboard
TensorBoard is a visualization library for TensorFlow that is useful in 
understanding training runs, tensors, and graphs. 

There have been 3rd-party ports such as tensorboardX but no official support until 
now.

In PyTorch 1.1.0, TensorBoard was experimentally supported in PyTorch, and with 
PyTorch 1.2.0, it is no longer experimental - you can simply type 

from torch.utils.tensorboard import SummaryWriter 

to get started.



Why visualize?
● How well are the Activation functions performing?
● Is the Dropout rate too high?
● In general, Visualization helps to fine tune the network for better or optimal 

performance



Installing Tensorboard

However, if your PyTorch version is below 1.2.0, the import statement might not 
work because tensorboard was experimental for versions below 1.2.0. Therefore, 
check your PyTorch version first using:

import torch
print(torch.__version__)

If your PyTorch version is >=1.2.0, then you’re all set. If your PyTorch version is 
<1.2.0, then follow this blog: https://www.endtoend.ai/blog/pytorch-tensorboard/ to 
upgrade PyTorch and install tensorboard.

https://www.endtoend.ai/blog/pytorch-tensorboard/


Starting Tensorboard
Before starting tensorboard, we have to first do local port forwarding. Remember 
the -L flag you used in your ssh command in Recitation 1?

If your ssh command that you use to connect to AWS was something like this:

ssh -i KeyTest.pem -L 8000:localhost:8888 

ubuntu@ec2-34-227-222-100.compute-1.amazonaws.com

Then now you just need to add an additional -L flag forwarding Tensorboard’s port 
like this:

ssh -i KeyTest.pem -L 8000:localhost:8888 -L 6007:localhost:6006 

ubuntu@ec2-34-227-222-100.compute-1.amazonaws.com

mailto:ubuntu@ec2-34-227-222-100.compute-1.amazonaws.com
mailto:ubuntu@ec2-34-227-222-100.compute-1.amazonaws.com


Starting Tensorboard
To start Tensorboard, run the following command from your terminal in AWS (don’t 
forget to activate your pytorch_p36 virtual environment first):

tensorboard --logdir=./runs

Where ./runs is the directory for Tensorboard to search for the event files. 

Next, type the following link in your local browser to view Tensorboard’s main 
dashboard:

localhost:6007



Starting Tensorboard
If you correctly follow the instructions in the previous two slides, you should be 
seeing something like this in your browser:



Testing Tensorboard
Run the following python script to log random data to the directory you specified 
when you started tensorboard:

from torch.utils.tensorboard import SummaryWriter
import numpy as np

writer = SummaryWriter(“./runs/test”)

for n_iter in range(100):
    writer.add_scalar('Loss/train', np.random.random(), n_iter)
    writer.add_scalar('Loss/test', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/train', np.random.random(), n_iter)
    writer.add_scalar('Accuracy/test', np.random.random(), n_iter)



Testing Tensorboard
Again, if everything is working properly then this is what you should be seeing in 
your dashboard:



Create SummaryWriter
● A SummaryWriter writes all values we want to visualize to event files in a 

given directory.
● You should use different run directories (“example”) in a common root 

directory (“./runs”) for different runs of your model.

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("./runs/example")



Add values
All methods of SummaryWriter take 3 parameters: tag, value, step.
● Step is an increasing integer, usually the number of iterations, that serves as 

the x-axis value of the plot.
Each method appends a data point to a type of plot. Common methods are:
● add_scalar: line plot of one variable (value is a scalar, i.e. a float number).
● add_scalars: line plot of multiple variables (value is a dict of scalars).
● add_histogram: histogram of distributions of values (value is a tensor). Useful 

for understanding the dynamics of the network.
You can even add fancier values, like “add_image”, “add_audio”.



Example

Also included in
DataVisualization.ipynb

Notice the usage of 
add_scalars and 
add_histogram



TensorBoard UI
Manual refresh &

set default refresh rate
(Default is 30s, pretty slow)

Select type of values to display

Filter runs to display Hover over the 
plots to see 
numerical details
(see left)



Understanding histogram
● Plot histograms of gradients of 

network parameters.
● The gradient vanishing issue 

with sigmoid activation is 
obvious on the histogram 
(orange).


