
	
Homework	2	Part	2	(Simplified)	

	
Image	Recognition	via	Convolutional	Neural	Networks	

	
11-785:	Introduction	to	Deep	Learning	
	
OUT:	June	1,	2019	
	
DUE:		NA	
	
	
1 Introduction	

	
Given	an	image	of	a	mutually	exclusive	class,	the	task	of	classifying	the	type	of	the	class	is	
known	as	image	classification.	The	data	of	interest	is	CIFAR-10.		[1]	
	
In	this	assignment,	you	will	use	convolutional	neural	networks	(CNNs)	to	design	an	end-to-end	
system	for	image	classification.	For	the	classification	task,	your	system	will	be	given	an	image	of	
a	class	as	input	and	will	output	the	ID	class	of	the	image.		
	
To	this	end,	you	will	train	the	CNN	on	a	dataset	with	a	few	thousand	images	of	labeled	ID's	(i.e.,	
a	set	of	images,	each	labeled	by	an	ID	that	uniquely	identifies	the	category).	In	doing	so,	you	will	
gain	experience	with	the	concept	of	embeddings	(in	this	case,	embeddings	for	image	
information),	optionally	several	relevant	loss	functions,	and,	of	course,	convolutional	layers	as	
effective	shift-invariant	feature	extractors.		
	
1.1 Overview	
	
Convolutional	Neural	Networks	(CNNs)	are	a	class	of	deep	learning	neural	networks.	CNNs	
represents	a	huge	breakthrough	in	image	recognition.	They’re	most	commonly	used	to	analyze	
visual	imagery	and	are	frequently	working	behind	the	scenes	in	image	classification.	They	can	be	
found	at	the	core	of	everything	from	Facebook’s	photo	tagging	to	self-driving	cars.	They’re	
working	hard	behind	the	scenes	in	everything	from	healthcare	to	security.	
	
In	this	exercise,	your	task	is	to	create	a	Convolutional	Neural	Network(CNN)	based	image	
classifier	for	the	CIFAR-10	dataset	of	images	[4].	Feel	free	to	experiment	with	different	
architectures,	hyper-parameters,	and	training	procedures	to	make	yourself	familiar	with	training	
and	tuning	CNN	models.	Please	refer	to	the	papers	listed	below	for	inspiration.	
	
The	dataset	you	will	be	using	is	the	CIFAR-10	Dataset	which	consists	of	a	collection	of	60,000	
images	of	32x32	pixels	with	three	8-bit	RGB	channels.	Note	that,	in	some	ML	frameworks,	this	
data	set	can	be	downloaded	directly	into	data	structures	useful	for	processing	in	the	CNN.	
	

You	will	be	evaluated	based	on	the	percentage	of	labels	that	you	predicted	correctly	i.e.	
classification	accuracy.	
	
1.2 Key	Concepts	
	
1.2.1 Sources	

	
Lecture	8: http://deeplearning.cs.cmu.edu/slides.spring19/lec8.CNN.pdf	
Lecture	9: http://deeplearning.cs.cmu.edu/slides.spring19/lec9.CNN.pdf	
Lecture	10: http://deeplearning.cs.cmu.edu/slides.spring19/lec10.CNN.pdf	
Matt	Zeiler: https://youtu.be/ghEmQSxT6tw			(What	the	CNNs	Sees)	

	
1.2.2	 Frequently	Used	Terms	

	
Convolutional	Layers	:	These	layers	consist	of	filters	(see	slide	213),	strides	(see	slide	215),	and	
channels.	It	is	important	to	understand	how	these	relate	to	each	other,	so	the	reader	is	encouraged	
to	review	Spring	19,	Lecture	8	on	CNNs.	
	
Pooling	Layers	:	Are	used	for	dimensionality	reduction	by	combining	two	or	more	parameters	
into	one	(see	slide	31).	The	reader	is	encouraged	to	refer	to	slide	Spring	19,	lecture	10	on	CNNs.	
	
Embedding	Layer	:	Are	layers	that	function	similar	to	fully-connected	layers,	which	was	
discussed	in	the	previous	assignment	on	MLPs.	Most	CNNs	are	followed	by	an	embedding	layer.	
	
Shift	Invariance	:	In	terms	of	how	the	information	is	processed,	and	for	what	we	are	trying	to	
learn	when	applying	a	CNN	to	an	image,	the	property	of	shift	invariance	(see	slide	18)	is	
certainly	beneficial.	This	allows	convolutional	layers	to	make	sense	of	images	or	other	data	types	
in	a	way	that	is	not	inherent	or	less	intuitive	for	other	networks.	
	
Receptive	Fields	:	When	using	convolutional	layers,	it	helps	to	consider	their	receptive	fields	(see	
slide	213),	since	they	determine	the	amount	of	information	that	is	processed	at	any	given	scan	of	
the	filter.	If	the	receptive	field	is	too	small,	there	might	not	be	enough	information	to	learn	
something	meaningful,	and	if	the	receptive	field	is	too	large,	the	model	might	have	trouble	
picking	up	on	details.	You	are	again	encouraged	to	review	Spring19,	Lecture	8	on	CNNs.	
	
Feature	Extraction	:	Fundamentally,	CNNs	are	a	feature	extractor	(see	slide	161),	which	
motivates	their	use	not	only	in	and	of	themselves	but	also	in	combination	with	other	networks.	
You	are	again	encouraged	to	review	Spring19,	Lecture	8	on	CNNs.	There	is	also	an	interesting	
dissertation	on	the	subject	by	Matt	Zeiler...	
	
	
2 Image	Classification	

	
An	input	to	your	system	is	an	image	and	you	have	to	predict	the	ID	of	the	image.	The	true	image	
ID	will	be	present	in	the	training	data	and	so	the	network	will	be	doing	10-way	classification	to	

get	the	prediction.	You	are	provided	with	the	train	set	and	have	the	option	to	split	it	into	a	
training	and	validation	set.	With	the	validation	set,	you	can	fine-tune	the	model	based	on	the	
accuracy	you	get.	
	
	
3 Dataset	

	
To	download	data	for		Local		development:	
	
import	torch	
import	torchvision	
from	torchvision.datasets	import	CIFAR10	
	
TRAIN_TRANSFORMS	=	torchvision.transforms.ToTensor()	
TEST_TRANSFORMS	=	TRAIN_TRANSFORMS	
BATCH_SIZE	=	16	
	
###	DO	NOT	MODIFY	ANY	CODE	STARTING	HERE	###	
	
cifar_train	=	CIFAR10('./data',	download=True,	train=True,		

transform=TRAIN_TRANSFORMS)	
cifar_test	=	CIFAR10('./data',	download=True,	train=False,	 	
																					transform=TEST_TRANSFORMS)	
	
train_dataloader	=	torch.utils.data.DataLoader(cifar_train,		
																																															batch_size=BATCH_SIZE,		
																																															shuffle=True)	
test_dataloader	=	torch.utils.data.DataLoader(cifar_test,		
																																														batch_size=BATCH_SIZE,		
																																														shuffle=False)	
	
del	cifar_train,	cifar_test	
	
###	END	OF	CODE	NOT	TO	MODIFY	###	

	
This	dataset	is	not	large,	less	than	1GB,	and	you	may	wish	to	take	advantage	of	this	by	running	
multiple	experiments	at	a	time.	As	a	kind	reminder	here,	Colab	is	a	free	computing	environment	
provided	by	Google,	and	the	ease	of	importing	this	data	would	make	that	environment	preferred.	
Make	sure	to	save	a	copy	of	your	code	to	your	Drive,	and	you	can	open	it	from	that	same	
location.	If,	for	whatever	reason,	you	want	to	save	data	to	the	drive,	then	you	must	first	mount	
the	drive	to	your	Colab	notebook	before	specifying	the	path.	In	this	regard,	the	following	may	be	
useful:	
	

Google	Colab	Setup: https://colab.research.google.com/notebooks/io.ipynb	
	

The	data	contains	images	of	size	32	by	32,	each	with	3	channels.	For	classification,	you	will	be	
given	an	object	in	an	image.	What	you	need	to	do	is	to	learn	to	classify	this	image	into	correct	
image	IDs.		
	
It's	very	important	to	note	that,	for	classification,	the	train,	validation,	and	test	contain	the	same	
set	of	images.	what	it	means	is	that	your	network	cannot	classify	images	unless	it	has	seen	it	
before,	and	the	dataset	is	set	up	that	way.	In	other	words,	the	exact	images	are	not	the	same	
between	the	train,	validation,	and	test	set	but	rather	they	are	all	sampled	from	the	same	
distribution.	
	
	
3.1 Using	the	Data	

	
You	will	have	one	folder	that	will	download	after	you	run	the	provided	script.	Further,	two	data	
loaders	will	be	generated:	
	

train_dataloader	
test_dataloader	

	
You	are	encouraged	to	follow	this	tutorial	on	data	loaders	to	better	understand	what	they	are	and	
why	we	are	using	them.	
	

DataLoader	Usage: https://pytorch.org/tutorials/beginner/data_loading_tutorial.html	
	
Data	loaders	will	become	invaluable	in	this	course.	
	
4 Getting	Started	

	
The	script	provided	will	allow	you	to	load	subsets	of	the	training	data	while	prototyping	and	
experimenting.	Your	job	is	to	create	the	architecture	to	utilize	the	data	loader	for	training	with	
N-way	classification	on	the	32x32	images.		
	
4.1 Preprocessing	
	
In	this	homework,	there	is	not	much	of	pre-processing	to	be	done	on	the	images.	Though	
optional,	you	are	encouraged	to	explore	the	torchvision	transformations	described	here:	
	

Torchvision	Transforms: https://pytorch.org/docs/stable/torchvision/transforms.html	
	
Here	is	an	example	of	usage:	
	
	
	
	

import	torch	
import	torchvision	
from	torchvision.datasets	import	CIFAR10	
	
TRAIN_TRANSFORMS	=	transforms.Compose([
												transforms.RandomHorizontalFlip(),	
												transforms.ToTensor(),	
												transforms.Normalize([0.45,	0.45,	0.45],		
																																	[0.25,	0.25,	0.25])		
])	
	
TEST_TRANSFORMS	=	torchvision.transforms.ToTensor()	
	
BATCH_SIZE	=	16	
	
###	DO	NOT	MODIFY	ANY	CODE	STARTING	HERE	###	
	
.	.	.	
	
###	END	OF	CODE	NOT	TO	MODIFY	###	

	
4.2 Getting	Up-and-running	
	
Throughout	the	course,	you	will	be	introduced	to	a	variety	of	complex	and	nuanced	topics	so	it	is	
often	helpful	to	see	them	used	end-to-end	in	an	applied	context.	Knowing	this,	we	strongly	
recommend	you		first		reference	the	official	PyTorch	repositories	to	give	you	an	idea	of	what	is	
expected	of	you.	They	can	be	found	at	the	following	links:	
	

Official	Page:	 https://pytorch.org/tutorials	
Repository: https://github.com/pytorch/tutorials	
Documentation: https://pytorch.org/docs/stable/index.html	

	
There	are,	however,	many	topics	that	we	will	be	covering	for	which	there	is	no	official	PyTorch	
documentation.	If	this	is	the	case,	you	are	encouraged	to	search	and	review	other	tutorials	out	
there.	
	
	
5 Submission	

	
If	you	are	developing	locally,	simply	compare	your	train	and	validation	accuracy	to	that	of	your	
test	accuracy.	Be	careful	not	to	accidentally	use	the	test	data	during	development,	and	try	to	only	
compare	to	the	test	set	infrequently.	Verifying	with	respect	to	the	test	set	too	often	can	cause	
overfitting.	
	

Though	not	required,	we	encourage	you	to	practice	writing	a	one-page	write	up	for	your	own	
reference	describing	what	model	architecture,	loss	function,	hyperparameters,	any	other	
interesting	detail	led	to	your	best	result	for	the	above	two	competitions.	Such	a	write-up	should	
limit	the	content	to	one	page.	
	
6 Kaggle	

	
Once	you	have	finished	testing	locally,	and	you	want	a	more	realistic	homework	part	2	
experience,	then	we	have	set	up	a	Kaggle	page	for	you.	This	can	be	your	first	time	using	Kaggle,	
at	least	in	the	context	of	this	course!	The	page	is	here:	
	

Kaggle	Page: https://www.kaggle.com/c/homework-2-part-2-simplified	
	
The	only	difference	between	local	development	and	Kaggle	development	is	that	the	former	has	
access	to	the	test	labels	while	the	latter	does	not.	
	
The	data	for	the	assignment	can	be	downloaded	using	a	similar	script,	but	you	will	have	the	
testing	labels	removed.	This	is	more	realistic,	because	we	will	never	provide	you	with	the	testing	
labels	on	the	homework.		
	
To	download	data	for		Kaggle		development:	
	
(see	next	page)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

import	torch	
import	torchvision	
from	torchvision.datasets	import	CIFAR10	
	
TRAIN_TRANSFORMS	=	torchvision.transforms.ToTensor()	
TEST_TRANSFORMS	=	TRAIN_TRANSFORMS	
BATCH_SIZE	=	16	
	
###	DO	NOT	MODIFY	ANY	CODE	STARTING	HERE	###	
	
cifar_train	=	CIFAR10('./data',	download=True,	train=True,		

transform=TRAIN_TRANSFORMS)	
cifar_test	=	CIFAR10('./data',	download=True,	train=False,	 	
																					transform=TEST_TRANSFORMS)	
	
temp_dataloader	=	torch.utils.data.DataLoader(cifar_test,		
																																														batch_size=10000,		
																																														shuffle=False)	
temp_data	=	next(iter(temp_dataloader))[0]	
	
train_dataloader	=	torch.utils.data.DataLoader(cifar_train,		
																																															batch_size=BATCH_SIZE,		
																																															shuffle=False)	
test_dataloader	=	torch.utils.data.DataLoader(temp_data,		
																																														batch_size=BATCH_SIZE,		
																																														shuffle=False)	
	
del	cifar_train,	cifar_test,	temp_dataloader,	temp_data	
	
###	END	OF	CODE	NOT	TO	MODIFY	###	

	
The	following	tutorial	might	be	helpful	for	those	who	are	new	and	would	like	to	see	an	example	
workflow	from	start	to	end	using	the	Titanic	dataset.	
	

Example:		https://www.kaggle.com/jlawman/complete-beginner-your-first-titanic-submission	
	
	
7 Conclusion	

	
That's	all.	As	always,	feel	free	to	ask	on	Piazza	if	you	have	any	questions.	
	
Good	luck	and	enjoy	the	challenge!	
	
	
8 References	

	

[1]	CIFAR10	Dataset:	Learning	Multiple	Layers	of	Features	from	Tiny	Images,	Alex	
Krizhevsky,	2009.	Images	collected	by	Alex	Krizhevsky,	Vinod	Nair,	and	Geoffrey	Hinton	of	
the	Canadian	Institute	For	Advanced	Research,	available	at:	
https://www.cs.toronto.edu/~kriz/cifar.html.	

	
[2]	Sandler,	M.;	Howard,	A.;	Zhu,	M.;	Zhmoginov,	A.;	Chen,	L.C.	Mobilenetv2:	Inverted	

residuals	and	linear	bottlenecks.	In	Proceedings	of	the	IEEE	Conference	on	Computer	Vision	
and	Pattern	Recognition	(CVPR),	Salt	Lake	City,	UT,	USA,	18–22	June	2018;	pp.	
4510–4520.	

	
[3]	Handwritten	digit	recognition	with	a	back-propagation	network,	Y.	LeCun,	In	Proc.	

Advances	in	Neural	Information	Processing	Systems,	(1990).	
	
[4]	ImageNet	Classification	with	Deep	Convolutional	Neural	Networks,	Krizhevsky,	A.,	

Sutskever,	I.	and	Hinton,	G.	E.,	NIPS:	Neural	Information	Processing	Systems,	(2012).	
	
[5]	Receptive	fields	of	single	neurons	in	the	cat's	striate	cortex,	Hubel,	D.H.;	Wiesel,	T.N.,	J	

Physiol.	148	(3),	(1959).	
	
[6]	Deep	learning,	LeCun,	Y.,	Bengio,	Y.,	and	Hinton,	G.,	Nature,	521,	May,	(2015).	
	
[7]	Neocognitron:	A	self-organizing	neural	network	model	for	a	mechanism	of	pattern	

recognition	unaffected	by	shift	in	position,	K.	Fukushima,	Biological	Cybernetics,	36,	4,	
April	(1980).	

	

