

Homework	2	Part	1	

		
An	Introduction	to	Convolutional	Neural	Networks	

		
11-785:	Introduction	to	Deep	Learning	(Summer	2019)	
		
OUT:	May	31,	2019	
		
DUE:		NA	
		
	
1								NumPy	Based	Convolutional	Neural	Networks	

		
Your task for this homework is to implement the forward pass algorithm of a single 1D	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
convolutional layer in the layers.py file. Your implementations will be compared with	 	 	 	 	 	 	 	 	 	 	 	
PyTorch.	Python	3,	NumPy>=1.16	and	PyTorch>=1.0.0	are	suggested	for	this	homework.		
		
Your implementation is tested using the local autograder local_grader.py file we provided	 	 	 	 	 	 	 	 	 	 	 	
in the handout. This file should be in the same directory as the layers.py file. Whenever you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
want	to	test	your	implementation,	you	execute	the	following	command	from	the	command	line:		
	

python	local_grader.py
	
A	detailed	explanation	of	topics	relevant	to	this	homework	can	be	found	here:	
http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2019/www/hwnotes/hw2/hw2.html	
	
2 Convolutional	Neural	Network	(CNN)	basics	

	

In this section, some key concepts are discussed and definitions of some important terms are	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
given. Links to additional information on some of the topics are also provided and we encourage	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
you	to	use	these	resources	to	get	more	insight.	
	
2.1 What	is	a	CNN?	
	
Convolutional Neural Networks (CNNs) are a specialized kind of neural networks for processing	 	 	 	 	 	 	 	 	 	 	 	 	
data that has a known grid-like topology. Examples include time-series data, which can be	 	 	 	 	 	 	 	 	 	 	 	 	 	
thought of as a 1-D grid taking samples at regular time intervals, and image data, which can be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
thought	of	as	a	2-D	grid	of	pixels	[1].	
	
Convolutional networks have been tremendously successful in practical applications. The name	 	 	 	 	 	 	 	 	 	 	
“convolutional neural network” indicates that the network employs a mathematical operation	 	 	 	 	 	 	 	 	 	 	
called convolution. Convolution is a specialized kind of linear operation. Convolutional	 	 	 	 	 	 	 	 	 	 	

networks are simply neural networks that use convolution in place of general matrix	 	 	 	 	 	 	 	 	 	 	 	 	
multiplication	in	at	least	one	of	their	layers	[1].	
	
2.2 Kernels	and	Convolution	
	
A	filter	(or	kernel)	is	an	integral	component	of	a	CNN.	
	
Generally, it refers to an operator applied to the entirety of the image such that it transforms the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
information encoded in the pixels. In practice, however, the kernel is a smaller-sized matrix in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
comparison	to	the	input	dimensions	of	the	image,	that	consists	of	real	valued	entries.	
	
The kernels are then convolved with the input volume to obtain so-called ‘activation maps’ or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
feature maps. Activation maps indicate ‘activated’ regions, i.e. regions where features specific to	 	 	 	 	 	 	 	 	 	 	 	 	
the kernel have been detected in the input. The real values of the kernel matrix change with each	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
learning iteration over the training set, indicating that the network is learning to identify which	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
regions	are	of	significance	for	extracting	features	from	the	data.	
	
Links	relevant	to	this	topic:		
	

● http://cs231n.github.io/convolutional-networks/	
● https://blog.xrds.acm.org/2016/06/convolutional-neural-networks-cnns-illustrated-explan

ation/	
● http://machinelearninguru.com/computer_vision/basics/convolution/image_convolution_

1.html	
● http://machinelearninguru.com/computer_vision/basics/convolution/convolution_layer.ht

ml	
	

2.3 Stride	
	
A kernel is moved across the image left to right, top to bottom, with a one-pixel column change	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
on	the	horizontal	movements,	then	a	one-pixel	row	change	on	the	vertical	movements.	
	
The amount of movement between applications of the filter to the input image is referred to as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the stride. I.e. stride is the number of pixels with which we slide our filter, horizontally or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
vertically.	It	is	almost	always	symmetrical	in	height	and	width	dimensions.	
	
The default stride or strides in two dimensions is (1, 1) for the height and the width movement,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
performed when needed. And this default works well in most cases. The stride can be changed,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
which has an effect both on how the filter is applied to the image and, in turn, the size of the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
resulting	feature	map.	
	
For example, the stride can be changed to (2, 2). This has the effect of moving the filter two	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
pixels left for each horizontal movement of the filter and two pixels down for each vertical	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
movement	of	the	filter	when	creating	the	feature	map.	
	

Links	relevant	to	this	topic:	
	

● https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529	
● https://machinelearningmastery.com/padding-and-stride-for-convolutional-neural-networ

ks/	
	
2.4 Channels	
	
Color images have multiple channels, typically one for each color channel, such as red, green,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and blue. From a data perspective, that means that a single image provided as input to the model	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
is,	in	fact,	three	images.	
	
A filter must always have the same number of channels as the input, often referred to as “depth“.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
If an input image has 3 channels (e.g. a depth of 3), then a filter applied to that image must also	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
have 3 channels (e.g. a depth of 3). In this case, a 3×3 filter would in fact be 3x3x3 or [3, 3, 3]	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
for rows, columns, and depth. Regardless of the depth of the input and depth of the filter, the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
filter	is	applied	to	the	input	using	a	dot	product	operation	which	results	in	a	single	value.	
	
This means that if a convolutional layer has 32 filters, these 32 filters are not just	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
two-dimensional for the two-dimensional image input, but are also three-dimensional, having	 	 	 	 	 	 	 	 	 	 	
specific filter weights for each of the three channels. Yet, each filter results in a single feature	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
map. Which means that the depth of the output of applying the convolutional layer with 32 filters	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
is	32	for	the	32	feature	maps	created.	
	
Links	relevant	to	this	topic:	
	

● https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-netwo
rks/	

	
3 Convolutional	layer	

	
Implement the forward function in the Conv1D class in layers.py	. The class Conv1D has	 	 	 	 	 	 	 	 	 	 	 	 	 	
four arguments: in_channel	, out_channel	, kernel_size and stride	. They are all	 	 	 	 	 	 	 	 	 	
positive integers. You can find the details of these arguments in the following PyTorch	 	 	 	 	 	 	 	 	 	 	 	 	 	
documentation:	

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d	.		
	
We	do	not	consider	other	arguments	such	as	padding.	
		
Implement the Conv1D class so that it has similar usage and functionality to	 	 	 	 	 	 	 	 	 	 	 	 	
torch.nn.Conv1d	.		
		
Note	: changing the shape/name of the provided attributes is not allowed. Like in HW1P1 we will	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
check	the	value	of	these	attributes.	

		
3.1 Forward	pass	
	
Here, you are expected to implement the forward algorithm (shown below) of a single 1D CNN	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
layer. The input x is the input of the convolutional layer and the shape of x is (batch_size	,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

in_channel	, in_width)	. The return value is the output of the convolutional layer and the	 	 	 	 	 	 	 	 	 	 	 	 	 	
shape is (batch_size	, out_channel	, out_width)	. Note that in_width is an arbitrary	 	 	 	 	 	 	 	 	 	 	
positive integer and out_width is determined by in in	_	width	, kernel_size and	 	 	 	 	 	 	 	 	 	 	
stride	.	
	
Below	is	a	very	high	level	description	of	the	steps	you	can	follow:	
	

1. Compute	the	width	of	the	output	feature	map:	
	

Where:	
	

N	is	the	width	of	the	input	sequence.	
M	is	the	size	of	the	kernel.	
S	is	the	stride.	

	
Note	the	floor	(⌊	⌋)	function.	

	
2. Loop	through	the	width	of	the	input	sequence.	

	
3. Take a slice of the input that has the same size as the kernel. Let the slice be denoted by	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

the	variable		segment	.	
	

4. Compute the output. The output is simply the sum of the dot product between segment	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

and the weight matrix (denoted in the layers.py file as self.W), and the bias (denoted as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
self.b).	I.e.		
	

Output	=	segment.dot(self.W.T)	+	self.b

	
The	weight	matrix	and	bias	are	already	initialized	for	you	with	the	proper	shape.	
	

5. Repeat steps 2-4 until it is impossible for you to slide the kernel anymore. Note: there is	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
no	padding.	

	
	
	
	
	

Note	:		
	
1. You have to know across which dimension to slice the input and which dimensions to index	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
into.		
	
2.	This	approach	may	require	you	to	reshape	variables		segment		and		self.W	.

You are NOT obliged to follow the above steps to arrive at the solution. In fact, there are other	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
ways of solving the problem. For example, you can use NumPy’s tensordot routine (instead	 	 	 	 	 	 	 	 	 	 	 	 	
of the regular dot routine) to perform element-wise matrix multiplication and followed by	 	 	 	 	 	 	 	 	 	 	 	
summing (which is basically convolution). Have a look at the following resources on how to use	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
tensordot		for	convolution:	
	

● https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tenso
rdot	

● https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-netwo
rks/	
	

Test	: To test your implementation, we compare the results of your implementation with Pytorch	 	 	 	 	 	 	 	 	 	 	 	 	 	
class torch.nn.Conv1d	. Details can be found in function	 	 	 	 	 	 	 	
test_cnn_correctness_once in the local_grader.py file. Below is a code snippet	 	 	 	 	 	 	 	 	 	
showing	the	logic	that	is	used	to	test	your	solution.	
	
import		torch	
		
import		torch.nn	as	nn	
		
import		numpy	as	np	
		
from			torch.autograd		import		Variable	
		
from		layers		import		Conv1D	
		
##		initialize	your	layer	and	PyTorch	layer		
	
net1	=	Conv1D(8,	12,	3,	2)		#	your	layer	
		
net2	=	torch.nn.Conv1d(8,	12,	3,	2)		#	PyTorch	layer	
	
##		initialize	the	inputs	
		
x1	=	np.random.rand(3,	8,	20)	
		
x2	=	Variable(torch.tensor(x1),requires_grad=True)	
		
##		Copy	the	parameters	from	the	Conv1D	class	to	PyTorch	layer		
	
net2.weight	=	nn.Parameter(torch.tensor(net1.W))	

21

		
net2.bias	=	nn.Parameter(torch.tensor(net1.b))	
		
##		Your	forward	
		
y1	=	net1(x1)	
	 	
##		PyTorch	forward	
		
y2	=	net2(x2)	
	
##		Compare	
		
def		compare(x,y):	
		

y	=	y.detach().numpy()	
		

print	(abs	(x-y).	max	())	
		

return	
	
compare(y1,	y2)	
	
1.7763568394002505e-15		##	example	of	good	MAE	
	

	
As you can see in the local_grader.py file, we check the maximum absolute error of the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
tensor elements. We run your codes 15 times to test your solution with different combinations of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
input channel, output channel, kernel size, stride, batch size, and input width. If the values your	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
implementation returns can have a MAE smaller than 1e-12 (like the one shown in the above	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
code	snippet),	then	we	think	your	implementation	is	right.	
	
	
4 References	

	

[1] I. Goodfellow, Y. Bengio and A. Courville, Deep learning. Cambridge (EE. UU.): MIT Press,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2016,	p.	321.	
		
5 Conclusion	

		
That's	all.	As	always,	feel	free	to	ask	on	Piazza	if	you	have	any	questions.	
		
Good	luck	and	enjoy	the	challenge!	
	
	

