
Homework 4 Part 1 (Summer Version)

Language Modeling using RNNs

11-785: Introduction to Deep Learning (Fall 2019)

OUT: June, 2019
DUE: September, 2019

Start Here

• Collaboration policy:

– You are expected to comply with the University Policy on Academic Integrity and Plagiarism.

– You are allowed to talk with / work with other students on homework assignments

– You can share ideas but not code, you must submit your own code. All submitted code will be
compared against all code submitted this semester and in previous semesters using MOSS.

• Overview:

– Part 1: All of the problems in Part 1 will be tested by yourself. You can download the starter
code from Course Page.

1 Introduction

In part 1 of homework 4, we will be training a recurrent neural network on the WikiText-2 language modeling
dataset. You will practice using a recurrent network to model and generate texts.
The below sections will describe the dataset and what your model is expected to do. You are responsible for
the organization of your codes.
Here are the papers and blogs we recommend you to read:
1. Regularizing and Optimizing LSTM Language Models for information on how to properly construct,
train, and regularize an LSTM language model.
2. CS224n: Natural Language Processing with Deep Learning for the basic ideas of language model and
Recurrent Neural Networks.
3. 11747: Nerual Networks for NLP for the references for RNNs and language model.

Our tests are extremely easy and you only have to make the negative log-likelihood decrease. These tests
require that you train the model by yourself, generating the predictions and plotting the loss curves. Details
follow below.

1.1 Files in the Handout

The template provided to you is in the form of a Jupyter notebook. There are TODO sections in the
notebook that you need to complete. The Classes provided for training your model are provided to help you
organize your training. Ideally, you wouldn’t need to change the rest of the notebook, as these parts integrate
your blocks of code to run the training, save models/predictions and also generate plots. However, if you do
choose to (maybe to implement early stopping for example), be careful. Every time you run training, the
notebook creates a new experiment folder under experiments/ with a run id (which is CPU clock time for
uniqueness). All your model weights, predictions will be saved here. The notebook trains the model, prints

1

https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
https://theory.stanford.edu/~aiken/moss/
https://arxiv.org/pdf/1708.02182.pdf
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes05-LM_RNN.pdf
http://www.phontron.com/class/nn4nlp2019/schedule/rnn.html


the NLL on the dev set and creates the generation and prediction files on the test dataset, per epoch.
Your solutions will be tested locally by your self.
make runid=<your run id> epoch=<epoch number>

You can find the run ID in your Jupyter notebook (its just the CPU time when you ran your experiment).
You can choose the best epoch using epoch number.

2 Dataset

A pre-processed WikiText-2 dataset is included in the template tarball.

• vocab.npy: a NumPy file containing the words in the vocabulary

• vocab.csv: a human-readable CSV file listing the vocabulary

• wiki.train.npy: a NumPy file containing training text

• wiki.valid.npy: a NumPy file containing validation text

The vocabulary file contains an array of strings. Each string is a word in the vocabulary. There are 33,278
vocabulary items. The train and validation file contain an array of articles. Each article is an array of integers,
corresponding to words in the vocabulary. There are 579 articles in the training set. For example, the first
article in the training set contains 3803 integers. The first 6 integers of the first article are [1420 13859

3714 7036 1420 1417]. Looking up these integers in the vocabulary reveals the first line: = Valkyria

Chronicles III = <eol>.

2.1 DataLoader

To make the most out of our data, we need to make sure the sequences we feed into the model are different
every epoch. An easy way to do this is by using Pytorch’s DataLoader class but overwriting the iter

method. What this method should do is to:

1. Randomly shuffle all the articles from the WikiText-2 dataset.

2. Concatenate all text in one long string.

3. Run a loop that returns a tuple of (input, label) on every iteration with yield. (look at iterators
in python if this sounds unfamiliar)

3 Training

You are free to structure the training and engineering of your model as you see fit. Follow the protocols
in the paper as closely as you are able in order to guarantee maximal performance. Refer to the paper for
additional details and please ask for clarification on Piazza. Your model will likely take around 3-6 epochs,
to achieve a validation NLL below 5. Performance reported in the paper is 4.18, so you have room for
error. Data is provided as a collection of articles. You may concatenate those articles to perform batching
as described in the paper. It is advised to shuffle articles between epochs if you take this approach.

3.1 Language Model

In traditional problem of language modelling, a trained language model would learn the likelihood of occur-
rence of a word based on the previous words. Therefore, the input of your model is the previous texts. Of
course, language models could be operated at different levels, such as character level, n-gram level, sentence

2

https://arxiv.org/pdf/1708.02182.pdf


Figure 1: A successful training plot sample

level and so on. In the part 1, the character level is recommended. And it would be better to choose to use
the fixed length input. You do not have to use packed sequence as the input.

4 Problems

4.1 Prediction of a Single Word (50 points)

Complete the function prediction in class TestLanguageModel in the notebook. This function takes as
input a batch of sequences, shaped [batch size, sequence length]. This function should use your trained
model and perform a forward pass. Return the scores for the next word after the provided sequence for each
sequence. The returned array should be [batch size, vocabulary size] (float). These input sequences
will be drawn from the unseen test data. Your model will be evaluated based on the score it assigns to
the actual next word in the test data. Note that scores should be raw linear output values. Do not apply
softmax activation to the scores you return.

4.2 Generation of a Sequence (50 points)

Complete the function generation in the class TestLanguageModel in the notebook. As before, this function
takes as input a batch of sequences, shaped [batch size, sequence length]. Instead of only scoring the
next word, this function should generate an entire sequence of words. The length of the sequence you should
generate is provided in the forward parameter. The returned shape should be [batch size, forward]

(int). This function requires sampling the output at one time-step and using that as the input at the next
time-step. In the future, you will learn more about these details. If your outputs make sense, they will have
a reasonable NLL. If your outputs do not reasonably follow the given outputs, the NLL will be poor.

3



5 Testing

In the handout you will find a template Jupyter notebook that also contains tests that you run locally on
the dev set to see how your network is performing as you train. In other words, the template contains a test
that will run your model and print the generated text. Good luck! May the global optimum be with you!

4


	Introduction
	Files in the Handout

	Dataset
	DataLoader

	Training
	Language Model

	Problems
	Prediction of a Single Word (50 points)
	Generation of a Sequence (50 points)

	Testing

