
Deep Learning
Recurrent Networks

Part 3

1

Story so far

• Iterated structures are good for analyzing time series
data with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series
data with long-term dependence on the past
– These are recurrent neural networks

Stock
vector

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+6)

2

Story so far

• Iterated structures are good for analyzing time series data
with short-time dependence on the past
– These are “Time delay” neural nets, AKA convnets

• Recurrent structures are good for analyzing time series
data with long-term dependence on the past
– These are recurrent neural networks

Time

X(t)

Y(t)

t=0

h-1

3

Recap: Recurrent networks can be
incredibly effective at modeling long-term

dependencies

4

Recurrent structures can do what
static structures cannot

• The addition problem: Add two N-bit numbers to produce a N+1-bit number
– Input is binary
– Will require large number of training instances

• Output must be specified for every pair of inputs
• Weights that generalize will make errors

– Network trained for N-bit numbers will not work for N+1 bit numbers

• An RNN learns to do this very quickly
– With very little training data!

1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0

MLP

1 0 1 0 1 0 1 1 1 1 0

1 0

1

RNN unitPrevious
carry

Carry
out

5

Story so far

• Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs
– Through gradient descent and backpropagation

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

6

Story so far

• Recurrent structures can be trained by minimizing
the divergence between the sequence of outputs
and the sequence of desired outputs
– Through gradient descent and backpropagation

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

Primary topic
for today

7

Story so far: stability

• Recurrent networks can be unstable
– And not very good at remembering at other times

sigmoid tanh relu 8

Vanishing gradient examples..

• Learning is difficult: gradients tend to vanish..

ELU activation, Batch gradients

Output layer

Input layer

9

The long-term dependency problem

• Long-term dependencies are hard to learn in a
network where memory behavior is an
untriggered function of the network
– Need it to be a triggered response to input

PATTERN1 […………………………..] PATTERN 2

1

Jane had a quick lunch in the bistro. Then she..

10

Long Short-Term Memory

• The LSTM addresses the problem of input-
dependent memory behavior

11

LSTM-based architecture

• LSTM based architectures are identical to
RNN-based architectures

Time
X(t)

Y(t)

12

Bidirectional LSTM

• Bidirectional version..

X(0)

Y(0)

t

hf(-1)

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

hb(inf)

13

Key Issue

• How do we define the divergence

• Also: how do we compute the outputs..

Time

X(t)

Y(t)

t=0

h-1

DIVERGENCE

Ydesired(t)

Primary topic
for today

14

What follows in this series on
recurrent nets

• Architectures: How to train recurrent networks of
different architectures

• Synchrony: How to train recurrent networks when
– The target output is time-synchronous with the input
– The target output is order-synchronous, but not time

synchronous
– Applies to only some types of nets

• How to make predictions/inference with such networks

15

Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

16

Variants on recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g phoneme recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 17

Variants

• A posteriori sequence to sequence: Generate output sequence after processing
input
– E.g. language translation

• Single-input a posteriori sequence generation
– E.g. captioning an image

Images from
Karpathy

18

Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

19

Regular MLP for processing sequences

• No recurrence in model
– Exactly as many outputs as inputs

– Every input produces a unique output

Time

X(t)

Y(t)

t=0

20

Learning in a Regular MLP

• No recurrence
– Exactly as many outputs as inputs

• One to one correspondence between desired output and actual
output

– The output at time is not a function of the output at .

Time

X(t)

Y(t)

t=0

DIVERGENCE

Ydesired(t)

21

Regular MLP

• Gradient backpropagated at each time

(௧) ௧௧

• Common assumption:

௧௧ ௧ ௧௧

௧

(௧) ௧௧ ௧ (௧) ௧௧

– ௧ is typically set to 1.0
– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

22

Regular MLP

• Gradient backpropagated at each time
(௧) ௧௧

• Common assumption:

௧௧ ௧௧

௧

(௧) ௧௧ (௧) ௧௧

– This is further backpropagated to update weights etc

Y(t)
DIVERGENCE

Ytarget(t)

Typical Divergence for classification: ௧௧ ௧௧
23

Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

24

Variants on recurrent nets

• Conventional MLP
• Time-synchronous outputs

– E.g. part of speech tagging

Images from
Karpathy

25

With a brief detour into modelling languageWith a brief detour into modelling language

Time synchronous network

• Network produces one output for each input
– With one-to-one correspondence
– E.g. Assigning grammar tags to words

• May require a bidirectional network to consider both past
and future words in the sentence

26

two

CD

h-1

roads diverged a yellow wood

NNS VBD DT JJ NN

in

IN

Time-synchronous networks:
Inference

• Process input left to right and produce output
after each input

27

X(0)

Y(0)

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

Time-synchronous networks:
Inference

• For bidirectional networks:
– Process input left to right using forward net
– Process it right to left using backward net
– Combine their hidden outputs to produce one output per input symbol

• Rest of the lecture(s) will not specifically consider bidirectional nets, but the
discussion generalizes 28

X(0)

Y(0)

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

X(0) X(1) X(2) X(T-2) X(T-1) X(T)

How do we train the network

• Back propagation through time (BPTT)

• Given a collection of sequence training instances comprising input
sequences and output sequences of equal length, with one-to-one
correspondence
– , where

– , ,்

– , ,்

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

29

Training: Forward pass

• For each training input:
• Forward pass: pass the entire data sequence through the network,

generate outputs

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

30

Training: Computing gradients

• For each training input:
• Backward pass: Compute gradients via backpropagation

– Back Propagation Through Time

X(0)

Y(0)

t

h-1

X(1) X(2) X(T-2) X(T-1) X(T)

Y(1) Y(2) Y(T-2) Y(T-1) Y(T)

31

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

• The divergence computed is between the sequence of outputs
by the network and the desired sequence of outputs

• This is not just the sum of the divergences at individual times
 Unless we explicitly define it that way

32

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

First step of backprop: Compute for all t

The rest of backprop continues from there

33

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

34

(భ)

First step of backprop: Compute for all t

And so on!

Back Propagation Through Time

h-1

𝑋(0) 𝑋(1) 𝑋(2) 𝑋(𝑇 − 2) 𝑋(𝑇 − 1) 𝑋(𝑇)

𝑌(0) 𝑌(1) 𝑌(2) 𝑌(𝑇 − 2) 𝑌(𝑇 − 1) 𝑌(𝑇)

𝐷(1. . 𝑇)

𝐷𝐼𝑉

35

First step of backprop: Compute for all t

• The key component is the computation of this derivative!!
• This depends on the definition of “DIV”

Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

௧௧ ௧௧

௧

(௧) ௧௧ (௧) ௧௧

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

36

Time-synchronous recurrence

• Usual assumption: Sequence divergence is the sum of the divergence at
individual instants

௧௧ ௧௧

௧

(௧) ௧௧ (௧) ௧௧

Time

X(t)

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

Ytarget(t)

37Typical Divergence for classification: ௧௧ ௧௧

Simple recurrence example: Text
Modelling

• Learn a model that can predict the next
character given a sequence of characters
– Or, at a higher level, words

• After observing inputs it predicts

h-1

 ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ

38

Simple recurrence example: Text
Modelling

• Input presented as one-hot vectors
– Actually “embeddings” of one-hot vectors

• Output: probability distribution over characters
– Must ideally peak at the target character

Figure from Andrej Karpathy.

Input: Sequence of characters (presented
as one-hot vectors).

Target output after observing “h e l l” is “o”

39

Training

• Input: symbols as one-hot vectors
• Dimensionality of the vector is the size of the “vocabulary”

• Output: Probability distribution over symbols
𝑌 𝑡, 𝑖 = 𝑃(𝑉|𝑤 … 𝑤௧ିଵ)

• 𝑉 is the i-th symbol in the vocabulary

• Divergence

𝐷𝑖𝑣 𝑌௧௧ 1 … 𝑇 , 𝑌(1 … 𝑇) = 𝑋𝑒𝑛𝑡 𝑌௧௧ 𝑡 , 𝑌(𝑡)

௧

= − log 𝑌(𝑡, 𝑤௧ାଵ)

௧

Time

Y(t)

t=0

h-1

Y(t)
DIVERGENCE

 ଵ ଶ ଷ ସ ହ

ଵ ଶ ଷ ସ ହ

The probability assigned
to the correct next word

40

Brief detour: Language models

• Modelling language using time-synchronous
nets

• More generally language models and
embeddings..

41

Which open source project?

42

Language modelling using RNNs

• Problem: Given a sequence of words (or
characters) predict the next one

Four score and seven years ???

A B R A H A M L I N C O L ??

43

Language modelling: Representing
words

• Represent words as one-hot vectors
– Pre-specify a vocabulary of N words in fixed (e.g. lexical) order

• E.g. [A AARDVARK AARON ABACK ABACUS… ZZYP]

– Represent each word by an N-dimensional vector with N-1 zeros
and a single 1 (in the position of the word in the ordered list of
words)
• E.g. “AARDVARK” [0 1 0 0 0 …]
• E.g. “AARON” [0 0 1 0 0 0 …]

• Characters can be similarly represented
– English will require about 100 characters, to include both cases,

special characters such as commas, hyphens, apostrophes, etc.,
and the space character

44

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

 ଵ ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ଶ

ିଵ

45

Predicting words

• Given one-hot representations of … , predict

• Dimensionality problem: All inputs … are both
very high-dimensional and very sparse

 ଵ ିଵ

Four score and seven years ???

Nx1 one-hot vectors

0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ଶ

ିଵ

46

The one-hot representation

• The one hot representation uses only N corners of the 2N corners of a unit
cube
– Actual volume of space used = 0

• (1, 𝜀, 𝛿) has no meaning except for 𝜀 = 𝛿 = 0

– Density of points: ே

ಿ

• This is a tremendously inefficient use of dimensions

(1,0,0)

(0,1,0)

(0,0,1)

47

Why one-hot representation

• The one-hot representation makes no assumptions about the relative
importance of words
– All word vectors are the same length

• It makes no assumptions about the relationships between words
– The distance between every pair of words is the same

(1,0,0)

(0,1,0)

(0,0,1)

48

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

ಾ

– If properly learned, the distances between projected points will capture semantic
relations between the words

(1,0,0)

(0,1,0)

(0,0,1)

49

Solution to dimensionality problem

• Project the points onto a lower-dimensional subspace
– The volume used is still 0, but density can go up by many orders of magnitude

• Density of points: 𝒪 ே

ಾ

– If properly learned, the distances between projected points will capture semantic relations
between the words

• This will also require linear transformation (stretching/shrinking/rotation) of the subspace

(1,0,0)

(0,1,0)

(0,0,1)

50

The Projected word vectors

• Project the N-dimensional one-hot word vectors into a lower-dimensional space
– Replace every one-hot vector 𝑊 by 𝑃𝑊

– 𝑃 is an 𝑀 × 𝑁 matrix
– 𝑃𝑊 is now an 𝑀-dimensional vector
– Learn P using an appropriate objective

• Distances in the projected space will reflect relationships imposed by the objective

 ଵ ଶ ିଵ

Four score and seven years ???
0
0
⋮
1
0
0
0
1
⋮
0

1
0
⋮
0
0

0
1
⋮
0
0

ଵ

ଶ

ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

51

“Projection”

• P is a simple linear transform
• A single transform can be implemented as a layer of M neurons with linear activation
• The transforms that apply to the individual inputs are all M-neuron linear-activation subnets with

tied weights

 ଵ ଶ ିଵ

(1,0,0)

(0,1,0)

(0,0,1)

0
1
⋮
0
0

0
0
⋮
1
0

0
0
1
⋮
0

1
0
⋮
0
0

ଵ

ଶ

ିଵ

52

Predicting words: The TDNN model

• Predict each word based on the past N words
– “A neural probabilistic language model”, Bengio et al. 2003
– Hidden layer has Tanh() activation, output is softmax

• One of the outcomes of learning this model is that we also learn low-dimensional
representations of words

ଵ ଶ ଷ ସ ହ ଼ ଽ

ହ ଼ ଽ ଵ

53

Alternative models to learn
projections

• Soft bag of words: Predict word based on words in
immediate context
– Without considering specific position

• Skip-grams: Predict adjacent words based on current
word

• More on these in a future recitation?

𝑃

Mean pooling

𝑊ଵ

𝑃

𝑊ଶ

𝑃

𝑊ଷ

𝑃

𝑊ହ

𝑃

𝑊

𝑃

𝑊

𝑊ସ

𝑃

𝑊

𝑊ହ 𝑊 𝑊଼ 𝑊ଽ 𝑊ଵ𝑊ସ

Color indicates
shared parameters

54

Embeddings: Examples

• From Mikolov et al., 2013, “Distributed Representations of Words
and Phrases and their Compositionality” 55

Generating Language: The model

• The hidden units are (one or more layers of) LSTM units
• Trained via backpropagation from a lot of text

ଵ ଶ ଷ ସ ହ ଼ ଽ

ହ ଼ ଽ ଵଶ ଷ ସ

56

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution
over words
– Outputs an N-valued probability distribution rather than a one-hot vector

ଵ ଶ ଷ

57

Generating Language: Synthesis

• On trained model : Provide the first few words
– One-hot vectors

• After the last input word, the network generates a probability distribution over words
– Outputs an N-valued probability distribution rather than a one-hot vector

• Draw a word from the distribution
– And set it as the next word in the series

ଵ ଶ ଷ

ସ

58

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହସ

59

Generating Language: Synthesis

• Feed the drawn word as the next word in the series
– And draw the next word from the output probability distribution

• Continue this process until we terminate generation
– In some cases, e.g. generating programs, there may be a natural termination

ଵ ଶ ଷ

ହ ଼ ଽ ଵସ

60

Which open source project?

Trained on linux source code

Actually uses a character-level
model (predicts character sequences)

61

Composing music with RNN

http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/62

Returning to our problem

• Divergences are harder to define in other
scenarios..

63

Variants on recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g phoneme recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 64

Example..

• Question answering

• Input : Sequence of words

• Output: Answer at the end of the question
65

Blue

Example..

• Speech recognition
• Input : Sequence of feature vectors (e.g. Mel spectra)
• Output: Phoneme ID at the end of the sequence

– Represented as an N-dimensional output probability vector,
where N is the number of phonemes

 ଵ ଶ

/AH/

66

Inference: Forward pass

• Exact input sequence provided
– Output generated when the last vector is processed

• Output is a probability distribution over phonemes

• But what about at intermediate stages?

 ଵ ଶ

/AH/

67

Forward pass

• Exact input sequence provided
– Output generated when the last vector is processed

• Output is a probability distribution over phonemes

• Outputs are actually produced for every input
– We only read it at the end of the sequence

 ଵ ଶ

/AH/

68

Training

• The Divergence is only defined at the final input
–

• This divergence must propagate through the net
to update all parameters

 ଵ ଶ

/AH/

Div

Y(2)

69

Training

• The Divergence is only defined at the final input
–

• This divergence must propagate through the net
to update all parameters

 ଵ ଶ

/AH/

Div

Y(2)

Shortcoming: Pretends there’s no useful
information in these

70

Training

• Exploiting the untagged inputs: assume the same output for the
entire input

• Define the divergence everywhere

௧௧ ௧

௧

 ଵ ଶ

/AH/

Div

Y(2)

Fix: Use these
outputs too.

These too must
ideally point to the
correct phoneme

/AH/

Div

/AH/

Div

71

Training

• Define the divergence everywhere

௧௧ ௧

௧

• Typical weighting scheme for speech: all are equally important
• Problem like question answering: answer only expected after the question ends

– Only ் is high, other weights are 0 or low

 ଵ ଶ

/AH/

Div

Y(2)

Fix: Use these
outputs too.

These too must
ideally point to the
correct phoneme

/AH/

Div

/AH/

Div

72

Blue

Div

Y(2)

DivDiv

Variants on recurrent nets

• Sequence classification: Classifying a full input sequence
– E.g phoneme recognition

• Order synchronous , time asynchronous sequence-to-sequence generation
– E.g. speech recognition
– Exact location of output is unknown a priori 73

A more complex problem

• Objective: Given a sequence of inputs, asynchronously
output a sequence of symbols
– This is just a simple concatenation of many copies of the simple

“output at the end of the input sequence” model we just saw

• But this simple extension complicates matters..

 ଵ ଶ

/B/

ସ ହ

/AH/

 ଼ ଽ

/T/

ଷ

74

The sequence-to-sequence problem

• How do we know when to output symbols
– In fact, the network produces outputs at every time
– Which of these are the real outputs

• Outputs that represent the definitive occurrence of a symbol

 ଵ ଶ ସ ହ ଼ ଽଷ

/B/ /AH/ /T/

75

The actual output of the network

• At each time the network outputs a probability
for each output symbol

 ଵ ଶ ସ ହ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ଵ

ଶ

ଷ

ସ

ହ

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ

ଵ

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ

ଶ

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ

ଷ

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ

ସ

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ

ହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ସ

ହ

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼

଼

76

The actual output of the network

• Option 1: Simply select the most probable
symbol at each time

 ଵ ଶ ସ ହ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ଵ

ଶ

ଷ

ସ

ହ

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ

ଵ

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ

ଶ

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ

ଷ

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ

ସ

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ

ହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ସ

ହ

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼

଼

77

The actual output of the network

• Option 1: Simply select the most probable symbol at each
time
– Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

 ଵ ଶ ସ ହ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ଵ

ଶ

ଷ

ସ

ହ

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ

ଵ

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ

ଶ

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ

ଷ

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ

ସ

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ

ହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ସ

ହ

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼

଼
/G/

/F/

/IY/

/D/

78

The actual output of the network

• Option 1: Simply select the most probable symbol at each
time
– Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

 ଵ ଶ ସ ହ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ଵ

ଶ

ଷ

ସ

ହ

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ

ଵ

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ

ଶ

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ

ଷ

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ

ସ

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ

ହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ସ

ହ

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼

଼
/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

79

The actual output of the network

• Option 1: Simply select the most probable symbol at each
time
– Merge adjacent repeated symbols, and place the actual emission

of the symbol in the final instant

 ଵ ଶ ସ ହ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ଵ

ଶ

ଷ

ସ

ହ

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ

ଵ

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ

ଶ

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ

ଷ

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ

ସ

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ

ହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ସ

ହ

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼

଼
/G/

/F/

/IY/

/D/

Cannot distinguish between an extended symbol and
repetitions of the symbol

/F/

Resulting sequence may be meaningless (what word is “GFIYD”?)

80

The actual output of the network

• Option 2: Impose external constraints on what sequences are
allowed
– E.g. only allow sequences corresponding to dictionary words
– E.g. Sub-symbol units (like in HW1 – what were they?)

 ଵ ଶ ସ ହ ଼ଷ

/AH/

/B/

/D/

/EH/

/IY/

/F/

/G/

ଵ

ଶ

ଷ

ସ

ହ

ଵ
ଵ

ଵ
ଶ

ଵ
ଷ

ଵ
ସ

ଵ
ହ

ଵ

ଵ

ଶ
ଵ

ଶ
ଶ

ଶ
ଷ

ଶ
ସ

ଶ
ହ

ଶ

ଶ

ଷ
ଵ

ଷ
ଶ

ଷ
ଷ

ଷ
ସ

ଷ
ହ

ଷ

ଷ

ସ
ଵ

ସ
ଶ

ସ
ଷ

ସ
ସ

ସ
ହ

ସ

ସ

ହ
ଵ

ହ
ଶ

ହ
ଷ

ହ
ସ

ହ
ହ

ହ

ହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

ସ

ହ

଼
ଵ

଼
ଶ

଼
ଷ

଼
ସ

଼
ହ

଼

଼

81

The sequence-to-sequence problem

 ଵ ଶ ସ ହ ଼ ଽଷ

/B/ /AH/ /T/

82

• How do we know when to output symbols
– In fact, the network produces outputs at every time
– Which of these are the real outputs

• How do we train these models?

Partially Addressed
We will revisit this though

Training

• Given output symbols at the right locations
– The phoneme /B/ ends at X2, /AH/ at X6, /T/ at X9

 ଵ ଶ

/B/

ସ ହ

/AH/

 ଼ ଽ

/T/

ଷ

83

Training

• Either just define Divergence as:

• Or..

 ଵ ଶ

/B/

ସ ହ ଼ ଽଷ

Div Div Div

/AH/ /T/

ଶ ଽ

84

• Either just define Divergence as:

• Or repeat the symbols over their duration

 ଵ ଶ

/B/

ସ ହ ଼ ଽଷ

Div Div Div

/AH/ /T/

ଶ ଽ

DivDivDivDivDivDivDiv

85

 ଵ ଶ ସ ହ ଼ ଽଷ

Problem: No timing information provided

• Only the sequence of output symbols is
provided for the training data
– But no indication of which one occurs where

• How do we compute the divergence?
– And how do we compute its gradient w.r.t.

/B/ /AH/ /T/

? ? ? ? ? ? ? ? ? ?
 ଵ ଶ ସ ହ ଼ ଽଷ

86

Next Class

• Training without aligned truth..
– Connectionist Temporal Classification
– Separating repeated symbols

• The CTC decoder..

87

