Neural Networks
Learning the network: Backprop

11-785, Fall 2019
Lecture 4

Recap: The MLP can represent any

fu nction/
g(X)

 The MLP can be constructed to represent anything

e But how do we construct it?

— l.e. how do we determine the weights (and biases) of the network to
best represent a target function
* Assuming that the architecture of the network is given

Recap: How to learn the function

Y = FOGW) o \

* By minimizing expected error

—

W = argminf div(f(X; W),g(X))P(X)dX
w X

= argmin E[div(f(X; w), g(X))]
w

Recap: Sampling the function

* g(X) is unknown, so sample it

— Basically, get input-output pairs for a number of samples of
input X;

— Good sampling: the samples of X will be drawn from P(X)

e Estimate function from the samples

The Empirical risk

/

 The empirical estimate of the expected error is the average error over the samples

T
1
Elaiv(£ (X W), g(0)] ==) div(F (X W), d)
=1

* This approximation is an unbiased estimate of the expected divergence that we
actually want to estimate
— We can hope that minimizing the empirical loss will minimize the true loss
— Caveat: This hope is generally not based on anything but, well, hope.. 5

Empirical Risk Minimization

Y =f(X;W)

* Given a training set of input-output pairs (X;1,d,), (X5, d,), ..., X7, dr)
— Error on the i-th instance: div(f(X;; W), d;)
— Empirical average error on all training data:

Loss(W) = 7112 div(f(X; W), d;)

* Estimate the parameters to minimize the empirical estimate of expected
error

W = argmin Loss(W)
7%

— l.e. minimize the empirical error over the drawn samples

Empirical Risk Minimization

Y =f(X;W)

function min

|

This is an instance of

imization

(optimization)

Given a training set of input-output pairs (X, d,), (X,,d,), ..., ()FT, dr)

— Error on the i-th instance: div(f(X;; W), d;)
— Empirical average error on all training data:

Loss(W) = 7112 div(f(X; W), d;)

Estimate the parameters to minimize the empirical estimate of ex
error

W = argmin Loss(W)
7%

— l.e. minimize the empirical error over the drawn samples

pected

* A CRASH COURSE ON FUNCTION
OPTIMIZATION

Finding the minimum of a scalar
function of a multi-variate input

e,

.

* The optimum point is a turning point — the
gradient will be O

Unconstrained Minimization of
function (Multivariate)

1. Solve for the X where the gradient equation equals to
Zero

VXf(X):O

2. Compute the Hessian Matrix V2 f(X) at the candidate
solution and verify that

— Hessian is positive definite (eigenvalues positive) ->to
identify local minima

— Hessian is negative definite (eigenvalues negative) -> to
identify local maxima

Closed Form Solutions are not always
1 available

f(X)

> X

 Often it is not possible to simply solve Vy f(X) = 0

— The function to minimize/maximize may have an
intractable form

* |In these situations, iterative solutions are used

— Begin with a “guess” for the optimal X and refine it
iteratively until the correct value is obtained

f(x)

Iterative solutions

Xo X1X%2 X_r;/}\ X3
4

Iterative solutions
— Start from an initial guess x, for the optimal x
— Update the guess towards a (hopefully) “better” value of f(x)
— Stop when f(x) no longer decreases
Problems:
— Which direction to step in
— How big must the steps be

12

The Approach of Gradient Descent

A

_—

f(x)

3 >

Xo X1X%2 x;ﬂ X3
4

* |terative solution: Trivial algorithm

— Initialize x°
— While Hfo(xk)H > ¢ (or while |f(x*+1) — f(x¥)| > &)
o xk+1 — X kaf(Xk) T

— 1% is the “step size”

Overall Gradient Descent Algorithm

e |nitialize:
_ 40
—k=0

» While |f(x**1) — f(x*)| > ¢

— xktl =k _ nka(xk) T
—k=k+1

11-755/18-797

14

Convergence of Gradient Descent

* For appropriate step
size, for convex (bowl-
shaped) functions
gradient descent will
always find the
minimum.

* For non-convex
functions it will find a
local minimum or an
inflection point

15

* Returning to our problem..

Problem Statement

* Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)

* Minimize the following function

Loss(W) = 71“2 div(f(X;; W), d;)
w.rt W

* This is problem of function minimization
— An instance of optimization

Problem Setup: Things to define

* Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)
- \/

« |\What are these input-output pairs?

Loss(W) = 71‘2 div(f(X;; W), d;)

19

Problem Setup: Things to define

* Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)
- \/

« |\What are these input-output pairs?

1
Loss(W) == 2 div(f(X; W), d;)
T : \

What is f() and
what are its
parameters W?

Problem Setup: Things to define

Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)
- \/

What are these input-output pairs?

1
LOSS(VV;ZCZW(JC(XU W), d;)
T : \

What s fre | |What is O and
divergence div()?

parameters W?

Problem Setup: Things to define

* Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)

* Minimize the following function

1
Loss(W) == 2 div(f(X; W), d;)
T : \

What is f() and
what are its
parameters W?

22

What is f()? Typical network

Input : i
P Hidden units
units T Output
S N A\ units
S
= > " 3 i 4 T.
/:{f:_'?t 22\ W
— — _/.:_

* Multi-layer perceptron

* Adirected network with a set of inputs and outputs
— No loops

e Generic terminology
— We will refer to the inputs as the input units
* No neurons here — the “input units” are just the inputs
— We refer to the outputs as the output units

— Intermediate units are “hidden” units 23

Typical network

Input

Laver Hidden Layers

A | Output
/ Layer

e -
N z W ST AL
AN A

SN
e s s as G

 We assume a “layered” network for simplicity
— We will refer to the inputs as the input layer
* No neurons here —the “layer” simply refers to inputs

— We refer to the outputs as the output layer

— Intermediate layers are “hidden” layers

24

The individual neurons

V" :
~— — p 1 |
7 Ny g I +e*
z N output layer 3
; 3
= = —Softplus
s S
W | [~ Rectifier |
> B
‘% Z 0 4 Z1 |
i 2 *{),
.'/ — Yi
552S 1 :
N : >< 3 2 1 0 1 2 3
N o s
NN [o *
o

* Individual neurons operate on a set of inputs and produce a single
output

— Standard setup: A differentiable activation function applied to an
affine combination of the input

y=f<ZWixi+b>

— More generally: any differentiable function
y =f(X1,XZ,...,xN; W) -

The individual neurons

output layer

y

=

f(x)

7‘, 1
: T+e

3
<1
0)
-1
-3

-2 -1

—Softplus
5 | Rectifier
0 1 2 3
X

Individual neurons operate on a set of inputs and produce a single

output

— Standard setup: A differentiable activation function applied to an

affine combination of the input

y=f(ZWixi+b> —

— More generally: any differentiable function

We will assume this
unless otherwise
specified

Parameters are weights

w; and bias b

y = f(x1, %2, .., x5; W)

26

Activations and their derivatives

| /() = 1+ exp(—2z)

fi(@)=f2A-f(2)

xxxxx

f(z) = tanh(2)

(@) =1~ f(2)

1,z=0

M F@) = {O,Z Z 0

f(z) = log(1 + exp(2))

f'@) = 1+ exp(—2)

* Some popular activation functions and their

derivatives

27

Vector Activations

Input :
P Hidden Layers
Layer Output
: s -
Z);e;_\ 5
= < 7 e
—) { ___‘_:::—

* We can also have neurons that have multiple coupled
outputs

[}’1, Y2, "'ryl] — f(xl'xZJ ey XK W)

— Function f () operates on set of inputs to produce set of
outputs

— Modifying a single parameter in W will affect all outputs

28

Vector activation example: Softmax

— > V1

> V2

X @ 3+ ho v

— Vi

* Example: Softmax vector activation

Zi = 2 W]lx] + bi
J

Parameters are
weighTS Wji
Gnd biClS bi

exp(z;)

%.; exp(z;)

29

Multiplicative combination: Can be
viewed as a case of vector activations

X z y

................ ﬂ
3 J
. K
=3 o
- -~
= o

AL
& Bes 8%
BRI S S

N zi =) wjxj+ b;
sreedeiRedenens > ﬂ l]l] l
(e
o & &S00
s S S
:
) Ol

: J

LAY Yi—‘ kh)”
S L
Parameters are
WeighTS Wji

and bias bi

* Alayer of multiplicative combination is a special case of vector activatiogO

Typical network

Input ;
P Hidden Layers
. Output
(A;A \Iﬂ/ Layer
S / . e ,:Z;?g; -
N -
Bt _’
1 K % T
7(;, N 7
— \a i f"\
,_»q_— .

* |n a layered network, each layer of
perceptrons can be viewed as a single vector
activation

31

Notation

(1) (2) (3)

nl

xl »,__———__7 &

m- A

-:“““/_f /\X. /’M -e_/;» output layer
s. 3 4

(1)W()) A, (4)

/ N W W :
.%’ Wi j :.ﬁ] 7 .ﬁ\] ﬁ . ‘(4'. yl
.% Qg‘.ﬁ 5.0 @&f?‘ . "'- & - E ";“‘“ h%’é‘ ‘
: = %
: .;%. BN
S 7;-0 YL

The input layer is the Ot layer

We will represent the output of the i-th perceptron of the k" layer as y-(k)

l
— Input to network: y() = X;

— Output of network: y; = yl.(N)

We will represent the weight of the connection between the i-th unit of
the k-1th layer and the jth unit of the k-th layer as W()

— The bias to the jth unit of the k-th layer is bj()
32

Problem Setup: Things to define

* Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)
- \/

« |\What are these input-output pairs?

Loss(W) = 71‘2 div(f(X;; W), d;)

33

Vector notation

N e 25 & output layer

V1

YL

Given a training set of input-output pairs (X1, d,), (X5, d>), ..., (X7, d7)
Xn = |Xn1, Xn2, .-, Xnp] is the nth input vector
d, = |d,1,dys, ..., dy] is the nth desired output

Y., = |Yn1, Vn2, -» Ynr] is the nth vector of actual outputs of the
network

We will sometimes drop the first subscript when referring to a specific
instance

34

Representing the input

Input Hidden Layers
Layer) N) Output

S 0 0% Layer

..,
=
%

P,

* Vectors of numbers
— (or may even be just a scalar, if input layer is of size 1)
— E.g. vector of pixel values
— E.g. vector of speech features

— E.g. real-valued vector representing text
* We will see how this happens later in the course

— Other real valued vectors

Representing the output

Input :
P Hidden Layers
Layer ~ Output
= =% o > Layer
= O - o
input layer) S
P % §; 3}
%
2 / SX\F e S

* If the desired output is real-valued, no special tricks are necessary
— Scalar Output : single output neuron
* d =scalar (real value)

— Vector Output : as many output neurons as the dimension of the
desired output

« d=[d; d,..d] (vector of real values)

36

Representing the output

* If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

— 1 =Yesit’s a cat
— 0= Noit’s not a cat.

37

Representing the output

o(z) =

input layer

 If the desired output is binary (is this a cat or not), use
a simple 1/0 representation of the desired output

* Output activation: Typically a sigmoid
— Viewed as the probability P(Y = 1|X) of class value 1

 Indicating the fact that for actual data, in general a feature value X
may occur for both classes, but with different probabilities

e |s differentiable .

Multi-class output: One-hot
representations

Consider a network that must distinguish if an input is a cat, a dog, a
camel, a hat, or a flower

We can represent this set as the following vector:
[cat dog camel hat flower]"
For inputs of each of the five classes the desired output is:
cat: [10000]T
dog: [01000]T
camel: [00100]7
hat: [00010]"
flower: [00001]T

For an input of any class, we will have a five-dimensional vector output
with four zeros and a single 1 at the position of that class

This is a one hot vector

Multi-class networks

Input
Layer A Output

Hidden Layers

WS, L7 y 77
s A"\(f'r
7 % K A
A G “ R —
R R L e > —
: O = s g
Z % ? SRR § N
SF = SFE &
% TEL R 3
7 7L = Zi
X

For a multi-class classifier with N classes, the one-hot
representation will have N binary outputs

— An N-dimensional binary vector

The neural network’s output too must ideally be binary (N-1 zeros
and a single 1 in the right place)

More realistically, it will be a probability vector
— N probability values that sum to 1.

41

Multi-class classification: Output

Input :
P Hidden Layers
Layer N N | Output
== S o= aver
7 : = i;:’ —
Z > " Za S f ——
S = =2t -
- .(:;‘25 ,: .
¥

* Softmax vector activation is often used at the output of multi-class
classifier nets

* This can be viewed as the probability y; = P(class = i|X)

Typical Problem Statement

* We are given a number of “training” data instances

* E.g.images of digits, along with information about
which digit the image represents

* Tasks:
— Binary recognition: |Is this a “2” or not
— Multi-class recognition: Which digit is this? Is this a digit in
the first place?

43

Typical Problem statement:
binary classification

Training data

(5,0) (2,1)
(#,1) (4,0)
(0,0) (2, 1)] wwoo -

pixel values

* Given, many positive and negative examples (training data),
— learn all weights such that the network does the desired job

44

Typical Problem statement:
multiclass classification

Training data

Input

Hidden Layers
(S 5) (z 2) Layer . Output
)) ST = Layer

S > N

£ RS ¥
& .

2 .
(. 2) (L{ 4) e U Ui Dol L |

s

Input: vector of Output: Class prob

(0,0) (2,2) =

* Given, many positive and negative examples (training data),
— learn all weights such that the network does the desired job

45

Problem Setup: Things to define

* Given a training set of input-output pairs
(X;,d,), (X,,d,),..., Xy, dr)

* Minimize the following function

LOSﬁZdiv(f(Xi; wW),d;)

What is the
divergence div()?

46

Examples of divergence functions

—_— S _ff::;f_::_—“> 7__4_7—-". d 1 d 2 d 3 d4
= : » i = : V ;’: :
E 3 w7 S . .
- e E&ﬁ = L, DlV() Div
Z = 7 3— > 7
— XY=
XE

* For real-valued output vectors, the (scaled) L, divergence is popular

1 1
Div(Y,d) = S IV = dlI? =) (i — dp)?
i

— Squared Euclidean distance between true and desired output
— Note: this is differentiable

dDiv(Y,d)
= (y;— d)
dyl yl l

VyDiv(Y,d) = [y, —dy,y, — dy, ...]

47

For binary classifier

input layer

For binary classifier with scalar output, Y € (0,1), d is 0/1, the cross entropy
between the probability distribution [Y, 1 — Y] and the ideal output probability
[d,1 —d] is popular
Div(Y,d) = —dlogY — (1 — d)log(1 —Y)
— Minimumwhend =Y

Derivative

1
div(v,d) _ | ~y if d=
av

-7 ifd=0

48

For binary classifier

input layer

For binary classifier with scalar output, Y € (0,1), dis 0/1, the cross entropy
between the probability distribution [Y, 1 — Y] and the ideal output probability
[d,1 —d] is popular
Div(Y,d) = —dlogY — (1 — d)log(1 —Y)
— Minimumwhend =Y

Derivative Note: wheny = d the

1 derivative is not 0
dDiv(y,d) |~y ¥ d=1
av | 1 Even though div() =0
1=y 44=0 (minimum) when y = d

49

For multi-class classification

S - O d;d,dsd,
:______‘/__ - :_;;,c:‘: — .‘--,‘_:\xf—-_ 7
-~ S @ NNz
S _:.’(,‘ :
S =) NN
s < > WB S
= 4 & ATy . .
* B = =
R = KL Div() Div
: 2
7 X Z ‘_ N
Zen\\ Y Ze
¥

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c-th position (for class c)

Actual output will be probability distribution [y, 5, ...]
The cross-entropy between the desired one-hot output and actual output:

Div(Y,d) = —z dilogy;, = —logy,
i

Derivative If y. <1, the slope is
1 negative w.r.t. y,
dDiv(Y,d))—— for the c —th component
dy: o ¢ o . . .
: 0 for remaining component Indicates Increasing y.

— will reduce divergence
VyDiv(Y,d) = [0 0 g 00 -

c

For multi-class classification

A=A d,d,ds;d,
== R NS
2
= 2 e < . .
2 s = KL Div() Div
= Zi SN
o X

Desired output d is a one hot vector [0 0...1 ...0 0 0] with the 1 in the c-th position (for class c)
Actual output will be probability distribution [y, 5, ...]
The cross-entropy between the desired one-hot output and actual output:

If y. <1, the slope is
negative w.r.t. y,

Div(Y,d) = —z dilogy; = —logy,
l. Indicates increasing y,

Derivative will reduce divergence
S 1 Note: wheny = d the
w(r, —— for the c — th component . . .
— =1 % f P derivative is not 0
' 0 for remaining component
_1 . —
v, Div(Y,d) = [00 =00 Evgn.though div() =0

Ve (minimum) wheny =d

For muIt| class classification

— d;d,d3d,
N
~ N 7 /_ : - ._]

= A E : X i i

el = KL Div() Div

5 Z ™
= -f\ =<
¥

It is sometimes useful to set the target outputto [€ €...(1 — (K — 1)€) ...€ € €]
with the value 1 — (K — 1)e in the c-th position (for class ¢) and € elsewhere for

some small €
— “Label smoothing” -- aids gradient descent

The cross-entropy remains:
Div(Y,d) = — z d; logy;
i

Derivative

1-(K—-1)e
dDiv(Y,d) B Ve
. o €
ay; —; for remaining components
i

for the c — th component

52

Problem Setup

Given a training set of input-output pairs
(X1,dq1), (X5,d5), ..., Xr,d7)

The error on the it instance is div(Y;, d;)
The loss

1
Loss = - Z div(Y;, d;)
i

Minimize Loss w.r.t {Wl-(;(), bj(k)}

53

Recap: Gradient Descent Algorithm

* In order to minimize any function f(x) w.r.t. x
* |nitialize:

_ 50

—k=0

* While [f(x**1) — f(x*)| > ¢

— xktl =k _ nka(xk) T
—k=k+1

11-755/18-797 54

Recap: Gradient Descent Algorithm

* In order to minimize any function f(x) w.r.t. x
* |nitialize:

_ 50

—k=0

* While [f(x**1) — f(x*)| > ¢
— For every component (

k+1 _ _k k df
° X. = X; — —
l l TI dxi

—k=k+1

Explicitly stating it by component

11-755/18-797 55

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = 7‘2 Div(Yy, dy)
t

* Gradient descent algorithm: Assuming the bias is also
(k)] represented as a weight
w }
t]
— Using the extended notation: the bias is also a weight

* Do:
— For every layer k for all i, j, update:

* I|nitialize all weights and biases {

. (k) _ . (k) __dLoss
Wij = Wij T, ®
LJ

* Until Loss has converged

56

Training Neural Nets through Gradient
Descent

Total training Loss:

1
Loss = T z Div(Yy, dy)
t

Gradient descent algorithm:

e s . (k)
Initialize all weights {Wl-j }
* Do:
— For every layer k for all i, j, update:

. (k) _ . (k) _/dLoss
Wij = Wi T g, ®
L]

Until Err has converged

57

The derivative

Total training Loss:

1
Loss = T z Div(Y: d;)
t

 Computing the derivative

Total derivative:

dLoss z dDiv(Y, dy)
T

(k) (k)
]

58

The derivative

Total training Loss:

1
Loss = T Z Div(Y¢ dy)
t

Total derivative:
dLoss 1 dDiv(Y: d;)

& T k)
dw ; ra j

dwl.’

* So we must first figure out how to compute the
derivative of divergences of individual training
Inputs

Calculus Refresher: Basic rules of

calculus

For any differentiable function

y = f(x)
with derivative

dy
the fO“g\i\C/in must hold for sufficiently small A |:>A dyA

ici X ~ —
g Y y dx X

For any differentiable function

Yy = f(xl, X2, ...,xM)
with partial derivatives

dy OJy dy

a—xl ,a—xz) wun ,WM

the following must hold for sufficiently small Axq, Ax,, ..., Axy

dy dy dy
Ay ~ =—Ax; +=——Axp + -+ ——A
y o x1+6x2 Xy + +6xM XM

61

Calculus Refresher: Chain rule
For any nested function y = f(g(x))

dy 0f dg(x)
dx 0g(x) dx

Check - we can confirm that: Ay = ﬂAx

dx
z=gx) = Az = d‘zgcx) Ax

i@ =T Y0,

Calculus Refresher: Distributed Chain

rule
y = f(gl(x); gl(x)) ;gM(x))
dy __0f dg:() _Of dg:() . 0f dgu(®
dx dg{(x) dx dg,(x) dx dgy(x) dx
dy
Check: —
Ay dxAx
af af af
Ay = Agq,(x) + Ago(x) + -+ Agn(x
Y= 90,00 910 g, 492 OG0 "I
_ _0f dgi(x) df dg>(x) of dgm(x)
A =@ ax T anm ax T T o ax

_(_9f dg:(® , Of dg(® , , Of dgu®) v
Ay_(agl(x) dx +6g2(x) dx T +6gM(x) dx)Ax

Distributed Chain Rule: Influence
Diagram

v = f(g1(x), g1(x), .., gu(x)) Zl
NN,

* x affects y through each of g, ... gy

64

Distributed Chain Rule: Influence
Diagram

* Small perturbations in x cause small
perturbations in each of g4 ... g;;, each of
which individually additively perturbs y

65

Returning to our problem

dDiv(Y,d)

(k)
dwi’ j

* How to compute

66

A first closer look at the network

X1

X2

* Showing a tiny 2-input network for illustration

— Actual network would have many more neurons
and inputs

A first closer look at the network
[N o
1

1 1

e Showing a tiny 2-input network for illustration
— Actual network would have many more neurons and inputs

e Explicitly separating the weighted sum of inputs from the
activation

68

A first closer look at the network

e Showing a tiny 2-input network for illustration
— Actual network would have many more neurons and inputs
* Expanded with all weights and activations shown

 The overall function is differentiable w.r.t every weight, bias
and input

69

Computing the derivative for a single
input

2 / ,
/ * N %
4 -w?/ * S
(1
w
(3)
- 2) W31 Each yellow ellipse

represents a perceptron

* Aim: compute derivative of Div(Y, d) w.r.t. each of the
weights

e But first, lets label all our variables and activation functions

70

Computing the derivative for a single

Input
Wl(ll) /_\fl() W(z) /—fz()
(1)] 2)
i wa 3’1(: “1 9
@
V1.2 ’ @V w®
1,2

w
—
—

—

z§3> ,
@) o Div
w, wOVS Y

/’ﬁ '
J
1
B
(1)
W31 (1))
3,2 W31 (2) W3(31)

71

Computing the gradient

dDiv(Y,d)

(k)
dwi’ j

e What is:

— Derive on board?

72

Computing the gradient

dDiv(Y,d)

(k)
dw 0]

e What is:

 Derive on board?

* Note: computation of the derivative requires
intermediate and final output values of the
network in response to the input

BP: Scalar Formulation

X Wi fi fe-1 Wi fx

* The network again

AN

/\
YA

4 N
AN PON
()

; Y /h
o el
)

)

Setting yl.(o = x; for notational convenience

k) _ 0
J

Assuming wéj and yék) = 1 -- assuming the bias is a weight and extending

the output of every layer by a constant 1, o account for the biases

AN
\

A
r OV o
R A48

N Wi Ny
)~ /-

folol
K

A
WADAN

Jh

)
A
P

oy % Expanding it out
/ 2(1)

VACAVAZAV:
, Y= W

N17/ASEAN
)

/’«/»\

il (& Alg}y
N~ A
y = P

Lol

'I
O

y© = x %

@Y O
W/ i/

VV/ Vl’
o

A
g

N
l@y 7
N

]

K
A%

' yo 40
MM 2N
AR o AV 7 AN
Nl 'Ol
Al B /AN
NN AN
O e Oni e

\/
M
‘M

/‘l»‘/;\
/"V

Vi

«4.

l
3) (3),@
2 _ZW @ 1@ = £, ()
l

Vi
Vi

«4.

Jm
)y(
uis
‘v

//\

yi
1
)
= fn-
(N
1
)
A
W (N
N
(N
1
)
N
Ful(2)

YO = x Forward Computation

/ z() a y&) 7(N-1) a y(N-1)

y(l) 7(2) y(2) 7(3)

Valavalawy
\’/ \\'/ \\'/ Z(N) yt
‘\ Q'I?A A‘\ Q'I?A A‘\ Oi’él @A‘V‘H

o 0 0
I)WI»W% @

i, my

//A@ /A@ /A@

O~

o/

ITERATE FOR k= LN g, j = l:layer-width

0 (k) _ (k). (k=1)
yp = X 4= L
i

yj(k) Ji (Zj(k))

Forward “Pass”

Input: D dimensional vectorx = [x;, j =1...D]

Set:
— Dy = D, is the width of the 0t (input) layer

0 . k=1..N
—yj()=xj,]=1...D; yé)=x0=1
Forlayerk =1..N
— Forj = 1...D;, | Dyis the size of the kth layer

Zj(k) _ Z?:k(;l i(,;?) i(k_l)
o (K _ (F)
L (Zj)
Output:

N) .
—Y=yj(),]=1..DN

85

Computing derivatives

y(N'Z)

y(1)

We have computed all these intermediate values in the
forward computation

We must remember them - we will need them to compute
the derivatives

Computing derivatives

Div(Y,d)

First, we compute the divergence between the output of the nety = y(N) and the
desired output d

Computing derivatives

We then compute 7, v div(.) the derivative of the divergence w.r.t. the final output of the
network y(N)

Computing derivatives

Div(Y,d)

We then compute 7, v div(.) the derivative of the divergence w.r.t. the final output of the
network y(N)

We then compute V7, v)div(.) the derivative of the divergence w.r.t. the pre-activation affine
combination z(N) using the chain rule

Computing derivatives

Div(Y,d)

Continuing on, we will compute V,,,ivydiv(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Computing derivatives

Div(Y,d)

Continuing on, we will compute V,,,ivydiv(.) the derivative of the divergence with respect
to the weights of the connections to the output layer

Then continue with the chain rule to compute V,,v-1)div(.) the derivative of the
divergence w.r.t. the output of the N-1th layer

Computing derivatives

yn2) i

Div(Y,d)

Div(Y,d)
>

Div(Y,d)
>

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

Backward Gradient Computation

e Lets actually see the math..

99

Computing derivatives

Div(Y,d)

Computing derivatives

y(N'Z)

y(1)

The derivative w.r.t the actual output of the
network is simply the derivative w.r.t to the
output of the final layer of the network

aDiv(Y,d) aDiv(Y,d)

0y oyN)

l

Computing derivatives

y(N'Z)

y(1)

Div(Y,d)

Computing derivatives

y(N'Z)

y(1)

Div(Y,d)

Already computed

Computing derivatives

y(N'Z)

E y(1) z(N-2) z(N-1) y(N'1) l

Div(Y,d)

fi (")

Derivative of

— activation function
dDiv 63’10@%"”
d

Computing derivatives

y(N'Z)

E y(1) z(N-2) z(N-1) y(N'1) l

fi (e}

Derivative of
(N) activation function
dDiv [0y, \ﬁiv
Computed in forward
5, }’y(m Sass

Computing derivatives

Div(Y,d)

Computing derivatives

Div(Y,d)

Computing derivatives

y(N'Z)

y(1)

Div(Y,d)

) aDiv

™)~ 4) 5.)
6W11 6W11 621

dDiv 0z

Computing derivatives

y(N'Z)

y(1)

Div(Y,d)

apiv _ 3z"[aDiv
awl(’l") - awl(llv aziN) Just computed

Computing derivatives

y(N'Z)

y(1)

Div(Y,d)
>
Because
dDiv aziN) Div yl(N_l) ZiN) = W1(11\I)y1(N—1) + other terms

(N) (N) R, (N)
6W11 6W11 Zy

Computing derivatives

y(N'Z)

y(1)

Div(Y,d)
>
Because
N—1 _
dDiv aziN) Div 3’1(: ZfN) = W1(11\I)y1(N Y 4 other terms
(N) (N) /., (V)
ow,, ow;,’ Pz,

Computed in forward pass

Computing derivatives

Div(Y,d)

Computing derivatives

Computing derivatives

y(N'Z) l |

y(1)

Div(Y,d)

dDiv -y 07" 8Div

(N-1) 57_(N)
dy, 3 dy, azj

Computing derivatives

Div(Y,d)

~
oDiv Z 0z (9Div >\
(N-1) — (N—1 () Already computed
dy, jayl azj "

Computing derivatives

y(N'Z) l |

y(1)

Div(Y,d)
>
/\ Because
_ 3y . - _
dDiv _ /Z] dDiv Wl(jv Dl Wl(l.V)yl(N Y 4 other terms
(N-1) (N-1)/5_(N) ! !
ayl j N aZj

Computing derivatives

y(N'Z) l
N-1 N-1

Div(Y,d)

Computing derivatives

y(N'Z) l
N-1 N-1

Div(Y,d)

Computing derivatives

y(1)

We continue our way backwards in the order shown

aDlv P ((N—l)) aDlv
N-1) IN-1\% N—1
920D) 5y@D

We continue our way backwards in the order shown

(N-1)

dDiv B

(N—-2) dDiv
=Y 5,1
]

For the bias term yéN_z) =1

Div(Y,d)

Div(Y,d)

We continue our way backwards in the order shown

dDiv (N-1) dDiv
P (N-2) = z Wij 0 (N-1)
Vi j %

Div(Y,d)

We continue our way backwards in the order shown

aDlv P ((N—Z)) aDlv
PRCE RRPLEA Y)|
aZi() l 6yl()

Div(Y,d)

We continue our way backwards in the order shown

dDiv 2) ODiv
- LY 5@
dy, 7 azj

We continue our way backwards in the order shown

dDiv dDiv
r (1)

= A

aZi(l) 1(L)

Div(Y,d)
>

dDiv (1) 0Div

We continue our way backwards in the order shown aWi(jl) y azj(l)

Gradients: Backward Computation

7(k-1) ylet) 70

9
Y
‘AEQZA‘

‘M‘A'
0\

O+

7(N-1) y(N-1)

"vQ‘

%

y(N)

Div(Y,d)
Div(Y,d)

Initialize: Gradient
w.r.t network output

dDiv_ dDiv(Y,d)
0y; ayi(N)
dDiv dDiv

e

o0 TR

Fork = N—1..0

Fori = 1:layer width

dDiv

d V; >

_ (k+1) dDiv
o Wl] 97 (k+1)

Backward Pass

e Output layer (N) :

— Fori=1..Dy
, 9Div _ dDiv(Y,d)
dy; ayi(N)

dDiv _ dDiv ayM

9z ay™ 9z

* Forlayerk = N — 1 downto 0

— Fori=1..D,
, 9Div =y D dDiv
ayl(k)] ij aZ](-k+ 1)

oDiv oDiv ,((k))
° = Z.
0z " ay® fi\#

, _0Div (k) dDiv
owD — Yj 5 6D
ji i

forj =1..Dg41

127

Backward Pass

. : Called "Backpropagation” because
Output layer (N} : the derivative of the loss is

— Fori =1..Dy propagated “backwards" through

. 9Div _ dDiv(v,d) the network

dy; B ayi(N)
, ODiv _ 9Div ayN
9z ay™ 9z Very analogous to the forward pass:
 Forlayerk =N —1downto 0
— Fori=1..Dg Backward weighted combination

(k+1) _9Div / of next layer

, 9Div _ Y. w
(k) Jij aZ](_k+1)

9y . L
Vi Backward equivalent of activation
® = yAa
aZi(k) ayl(k) fk i
oDiv (k) ODiv

forj=1..Dk4q

) 6W(.{(+1) B yj az.(k+1)
ji i

128

For comparison: the forward pass
again
Input: D dimensional vectorx = [x;, j =1...D]

Set:
— Dy = D, is the width of the 0t (input) layer

0 . k=1..N
—yj()=xj,]=1...D; yé)=x0=1
Forlayerk =1..N
— Forj=1..Dy

- zj(k) = yNE l,(j) l.("‘l)
Output:
(N)

—Y:y] ,]:1DN

129

Special cases

e Have assumed so far that

1. The computation of the output of one neuron does not directly affect
computation of other neurons in the same (or previous) layers

2. Outputs of neurons only combine through weighted addition
3. Activations are actually differentiable
— All of these conditions are frequently not applicable

* Will not dwell on the topic in class, but explained in slides

— Will appear in quiz. Please read the slides .

Special Case 1. Vector activations

ylk)

e Vector activations: all outputs are functions of
all inputs

Special Case 1. Vector activations

Scalar activation: Modifying a z;
only changes corresponding y;

(k-1)

\
J

Vector activation: Modifying a
z; potentially changes all, y; ... yy

p

132

“Influence” diagram

y(k)

Scalar activation: Each z; Vector activation: Each z;
influences one v; influences all, y; ... vy

133

The number of outputs

y(k)
g —®

y(k)

* Note: The number of outputs (y¥)) need not be the

same as the number of inputs (z(¥))
 May be more or fewer

134

Scalar Activation: Derivative rule

aDiv dDiv dy,
029y dz

l

* In the case of scalar activation functions, the
derivative of the error w.r.t to the input to the
unit is a simple product of derivatives

135

Derivatives of vector activation

ylkl) z(K) vy
: . (k)
j dDiv Z dDiv 0Y;
—o k) k k
. 9z%" . ay.() 97"
Div ‘ ;oo
=9
Note: derivatives of scalar activations
are just a special case of vector
activations:
—® g0
Yi o . .
5,0 = 0 for i #j

 For vector activations the derivative of the error w.r.t.
to any input is a sum of partial derivatives

— Regardless of the number of outputs yj(k) -

Special cases

 Examples of vector activations and other
special cases on slides

— Please look up
— Will appear in quiz!

Overall Approach

For each data instance

— Forward pass: Pass instance forward through the net. Store all
intermediate outputs of all computation

— Backward pass: Sweep backward through the net, iteratively compute
all derivatives w.r.t weights

Actual loss is the sum of the divergence over all training instances

Loss = Z Div(Y(X), d(X))
[{X3

Actual gradient is the sum or average of the derivatives computed

for each training instance

ViyLoss = z VwDiv(Y (X),d(X)) W « W —nV, LossT

[{X}

Training by BackProp

* Initialize all weights (W(l), w®, .., W(K))
* Do:

SN . . . i e dErr
— Initialize Err = 0; Forall i, j, k, |n|t|aI|zeW =0
Wi,j

— Forallt = 1:T (Loop over training instances)

* Forward pass: Compute
— Output Y,
— Err+= DiV(yt, dt)

* Backward pass: Forall i, j, k:
dDiv(Y,d
— Compute w((,ﬁ) 2
dwi’j
dETrTr dDiv(Yt,dt)
— Compute +=
T T

— Forall i, j, k, update:

W(k) _ W(k) _ﬂ dErr
i W T S (R)
dw; ;

e Until Err has converged

Vector formulation

* For layered networks it is generally simpler to
think of the process in terms of vector operations

— Simpler arithmetic
— Fast matrix libraries make operations much faster

* We can restate the entire process in vector terms
— On slides, please read
— This is what is actually used in any real system
— Will appear in quiz

Vector formulation

— k — - k =
y(1) X4 zf) 3’1()
1 X2 (k) G
X=| . |z _ |y,
Zx = |2 Vi = |72
(1) XD : ,
= (k) (k)
X y2 _ZDk A _ka]
_ (k) -
r o (k) (k) : k) 1 b
Wiim Wy - Wp,_1 b%k)
(k) (k) . (k) -
w,=|Wi2 W' * Wp_.2 by 2
w6 %
(1) Wip, Wap, °° Wp,_.D,. S

* Arrange all inputs to the network in a vector X
* Arrange the inputs to neurons of the kth layer as a vector z,
* Arrange the outputs of neurons in the kth layer as a vector yy

* Arrange the weights to any layer as a matrix W,
— Similarly with biases

Vector formulation

— k — - k =
y(1) X1 zf) 3’1()
*1 %2 1))
X = YA . y2
Zx = |2 Vi = |72
(1) XD : ,
(k) (k)
X2 72 “Dy - YDy
(k) (k) (k) - (k) -
Wiim Wy Wp,_ i1 b§)
(k) (k) (k)
w, =| Wiz Wz Whi_12 b, =
© W)
(1) Wip, Wap, WD —1Dx L7 D14

(1)
Wpp

The computation of a single layer is easily expressed in matrix
notation as (setting yp = X):

z = Wiyk—1 + by Vi = fr(zk)

The forward pass: Evaluating the
network

The forward pass

Z1 = W1X + b1

The forward pass

y1 = f1(z1)
The Complete computation
yi = fl(wlx + b,) 159

The forward pass

The Complete computation
y1 = fi(Wix + by) 160

The forward pass

The Complete computation
y2 = f2(W2f1(Wix + by) + by)

The forward pass

Y zy = Wyyy_1 + by

The Complete computation
y2 = f2(W2f1(Wix + by) + by) 162

The forward pass

The Complete computation
Y = fy(Wyfy-1(.. L(Wof1(Wix + by) +b3) ...) + by) 163

Forward pass

Forward pass:
Initialize

For k=1 to N:

Output

Z, = Wiy + by

Vi = fr(zy)

Y=yn

The Forward Pass

¢ SetyO =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr—1 + by
Vi = [fr(Zi)
* Qutput:
Y=yy

The backward pass

e The network is a nested function

Y = fn(Wyfn_1(o. f2(Wofi (Wix + by) + by) ...) + by)
* The error for any X is also a nested function

Div(Y,d) = Div(fy(Wyfn-1(... L(Wof;(Wix+by) +by)...) + by),d)

Calculus recap 2: The Jacobian

* The derivative of a vector function w.r.t. vector input is called
a Jacobian

* Itis the matrix of partial derivatives given below

V2 _f Z2 dzy 0z, d0zp
: : dy, 0y 0y,
M. 2D. ly@) =\0z, 8z, 9z

Using vector notation -
y=/@ D Ow . Ou
| dzy 02y dzp

Check: | Ay = J,(z)Az

167

Jacobians can describe the derivatives
of neural activations w.r.t their input

z

* For Scalar activations

=0

C

Y

]y(z) —

a
dZ1
d
, D
de
0 0

— Number of outputs is identical to the number of inputs

e Jacobian is a diagonal matrix

— Diagonal entries are individual derivatives of outputs w.r.t inputs

— Not showing the superscript “(k)” in equations for brevity

0

0

dyp

dZD_

168

Jacobians can describe the derivatives
of neural activations w.r.t their input

: O“y v = f(z)
__/ ' (y1) 0 0
- pay=| 0 SO 0
.0 0 - M)
_

* For scalar activations (shorthand notation):
— Jacobian is a diagonal matrix
— Diagonal entries are individual derivatives of outputs w.r.t inputs

169

For Vector activations

Lo,

. age .
......
.

.
.
.
1

Y

>

]y(z) —

e Jacobian is a full matrix

— Entries are partial derivatives of individual outputs
w.r.t individual inputs

0y1 O
dzy 0z,
9y2 0y
dzy 0z,
dyy 0Ym

| dzy 02y

0y

6ZD
ay;

6ZD

%Y

aZD_

170

Special case: Affine functions

Zz=Wy+b

4

]Z(Y) =W

* Matrix W and bias b operating on vector y to
produce vector z

* The Jacobian of z w.r.t y is simply the matrix W

171

Vector derivatives: Chain rule

e We can define a chain rule for Jacobians
* For vector functions of vector inputs:

z=g(x) |
y = f(z)

y=f(g (X))f Jy(X) = Jy(2)](%)
@ Check

Az = J,(x)Ax
Ay =]y(z)AZ

Ay =]y(z)]z(X)AX —]y(X)AX

Note the order: The derivative of the outer function comes first

172

Vector derivatives: Chain rule

e The chain rule can combine Jacobians and Gradients

* For scalar functions of vector inputs (g () is vector):

D= f(gx))

U

z = g(x)
D = f(z)

VD = V,(D)],(x)

Check [Az = J,(xX)Ax
AD = V,(D)Az

AD =V, (D)],(x)Ax = V, DAx

Note the order: The derivative of the outer function comes first 173

Special Case

e Scalar functions of Affine functions

Derivatives w.r.t
parameters

D = f(Wy + b) V,D = 7,(D)W
Zz=Wy+b "D = 1(D)
VwD = yV,(D)
D= f(z) 1

Note reversal of order. This is in fact a simplification
of a product of tensor terms that occur in the right order

174

The backward pass

v

Y — Div

\ 4

In the following slides we will also be using the notation VY to represent
the Jacobian Jy(z) to explicitly illustrate the chain rule

In general V,b represents a derivative of b w.r.t. a and could be a gradient (for scalar b)
Or a Jacobian (for vector b)

The backward pass

— Div

First compute the gradient of the divergence w.r.1.Y.
The actual gradient depends on the divergence function.

The backward pass

Vo, Div = VyDiv. V, Y

Already computed New term

The backward pass

Vo Div = VyDiv Jy(zy)

Already computed New term

The backward pass

Wy Div =V, Div.Vy Zy

Already computed New term

The backward pass

74

yn_. Div =V, Div Wy Vyy_, Div

Already computed New term

The backward pass

Y — Div

%4

ynv_, Div =V, Div Wy

VWNDI:U = yN_lvaDiv
VpDiv =V, Div

The backward pass

Y — Div

v

ZN-1

Div =YV,

YN-1

Div.Vzy_,YNn-1

Already computed New term

The backward pass

/\
O—On

-1
Div = VYN—lDiUIYN—l(ZN_l) ﬂ

7, Div

N-1

Y — Div

V.,

ZN-1

The Jacobian will be a diagonal
matrix for scalar activations

The backward pass

Wy, Div =V, Div.Vy Zy_q

The backward pass

VYN—ZDiU = \7ZN_1Div WN—l

The backward pass

Y — Div

VWN_lDiU = VnN-=2 VZN_lDiU
Vby_ Div =V, Div

ZN—-1

VYN—ZDiU = \7ZN_1Div WN—l

The backward pass

v, Div =V, Div], (z)

The backward pass

Y — Div

leDiU = XVleiv In some problems we will also want to compute
: : the derivative w.r.t. the input
Vb, Div =1 Div P

The Backward Pass

* Setyy =Y,yp =X
* Initialize: Compute Iy, Div = VyDiv

* For layer k =N downto 1:
— Compute Jy (zy)
* Will require intermediate values computed in the forward pass
— Recursion:
V., Div =V, Div |, (Z)
Vyk_lDiv = \7ZkDiv W,
— Gradient computation:
Vw, Div = yy_1V;, Div
kaDiU = ‘7sziV

189

The Backward Pass

* Setyy =Y,yp =X
* Initialize: Compute Iy, Div = VyDiv

* For layer k =N downto 1:

— Compute Jy (zy)
* Will require intermediate values computed in the forward pass

— Recursion: Note analogy to forward pass
Vo, Div = Vy Div Jy (Zy)
W._,Div =1 Div Wy,
— Gradient computation:
Vw, Div = yy_1V;, Div

kaDiU = ‘7sziV

190

For comparison: The Forward Pass

¢ SetyO =X

* Forlayer k=1 to N:

— Recursion:
Z = Wiyr—1 + by
Vi = [fr(Zi)
* Qutput:
Y=yy

Neural network training algorithm

* Initialize all weights and biases (W;, b, W,,b,, ..., Wy, by,)
* Do:

— Err=20

— Forall k, initialize Wy, Err = 0, Vy, Err =0

— Forallt = 1:T

* Forward pass : Compute
— Output Y(X,)
— Divergence Div(Y,, d;)
— Err += Div(Y, d,)
* Backward pass: For all k compute:
- W, Div="V, 1 Div W,
—- W, Div =", Div]y, (2;)
- Wy Div(Y, d,); W, Div(Y,, dy)
— Vw,Err +=Vy, Div(Yy, d,); Vy Err+= "V, Div(Y,, d;)

— Forall k, update:
_ n T _ n T
Wk = Wk —; (VWkET'T') ; bk = bk —; (VWRET'T')
* Until Err has converged

192

Setting up for digit recognition

Training data

(5, 0) (%, 1)
(&, 1) (H, 0)
(©,0) (=,1)

input layer

AN
Sigmoid output
W neuron

* Simple Problem: Recognizing “2” or “not 2”

* Single output with sigmoid activation

- Y €(0,1)
— diseither 0or1

 Use KL divergence

e Backpropagation to learn network parameters 193

Recognizing the digit

Training data

(3,0) (Z,1)
(# 1) (+,0)
(60,0) (2, 1)

* More complex problem: Recognizing digit

Network with 10 (or 11) outputs

— First ten outputs correspond to the ten digits
* Optional 11th is for none of the above

Softmax output layer:
— ldeal output: One of the outputs goes to 1, the othersgoto 0

Backpropagation with KL divergence to learn network o

Issues

Convergence: How well does it learn
— And how can we improve it

How well will it generalize (outside training
data)

What does the output really mean?
Etc..

Next up

* Convergence and generalization

