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Story so far
• Pattern classification tasks such as “does this picture contain a cat”, or 

“does this recording include HELLO”  are best performed by scanning for 
the target pattern

• Scanning an input with a network and combining the outcomes is 
equivalent to scanning with individual neurons hierarchically
– First level neurons scan the input
– Higher-level neurons scan the “maps” formed by lower-level neurons
– A final “decision” unit or layer makes the final decision

• Deformations in the input can be handled by “max pooling”

• For 2-D (or higher-dimensional) scans, the structure is called a convnet
• For 1-D scan along time, it is called a Time-delay neural network



A little history

• How do animals see?
– What is the neural process from eye to recognition?

• Early research: 
– largely based on behavioral studies 

• Study behavioral judgment in response to visual stimulation
• Visual illusions

– and gestalt
• Brain has innate tendency to organize disconnected bits into whole objects

– But no real understanding of how the brain processed images



Hubel and Wiesel 1959

• First study on neural correlates of vision. 
– “Receptive Fields in Cat Striate Cortex”

• “Striate Cortex”:  Approximately equal to the V1 visual cortex
– “Striate” – defined by structure, “V1” – functional definition

• 24 cats, anaesthetized, immobilized, on artificial respirators
– Anaesthetized with truth serum
– Electrodes into brain

• Do not report if cats survived experiment, but claim brain tissue was studied



Hubel and Wiesel 1959

• Light of different wavelengths incident on the retina 
through fully open (slitted) Iris
– Defines immediate (20ms) response of retinal cells

• Beamed light of different patterns into the eyes and 
measured neural responses in striate cortex



Hubel and Wiesel 1959

• Restricted retinal areas which on illumination influenced the firing of single cortical 
units were called receptive fields. 

– These fields were usually subdivided into excitatory and inhibitory regions.

• Findings:
– A light stimulus covering the whole receptive field, or diffuse illumination of the whole retina, 

was ineffective in driving most units, as excitatory regions cancelled inhibitory regions
• Light must fall on excitatory regions and NOT fall on inhibitory regions, resulting in clear patterns

– Receptive fields could be oriented in a vertical, horizontal or oblique manner.
• Based on the arrangement of excitatory and inhibitory regions within receptive fields.

– A spot of light gave greater response for some directions of movement than others.

mice

monkey

From Huberman and Neil, 2011

From Hubel and Wiesel



Hubel and Wiesel 59

• Response as orientation of input light rotates
– Note spikes – this neuron is sensitive to vertical bands



Hubel and Wiesel
• Oriented slits of light were the most effective stimuli for activating 

striate cortex neurons

• The orientation selectivity resulted from the previous level of input 
because lower level neurons responding to a slit also responded to 
patterns of spots if they were aligned with the same orientation as 
the slit. 

• In a later paper (Hubel & Wiesel, 1962), they showed that within 
the striate cortex, two levels of processing could be identified
– Between neurons referred to as simple S-cells and complex C-cells. 
– Both types responded to oriented slits of light, but complex cells were 

not “confused” by spots of light while simple cells could be confused



Hubel and Wiesel model

• ll

Transform from circular retinal 
receptive fields to elongated fields for 
simple cells.  The simple cells are 
susceptible to fuzziness and noise

Composition of complex receptive 
fields from simple cells. The C-cell 
responds to the largest output from a 
bank of S-cells to achieve oriented 
response that is robust to distortion 



Hubel and Wiesel
• Complex C-cells build from similarly oriented simple cells

– They “fine-tune” the response of the simple cell

• Show complex buildup – building more complex patterns 
by composing early neural responses
– Successive transformation through Simple-Complex 

combination layers

• Demonstrated more and more complex responses in 
later papers
– Later experiments were on waking macaque monkeys

• Too horrible to recall



Hubel and Wiesel

• Complex cells build from similarly oriented simple cells
– The “tune” the response of the simple cell and have similar response to the simple cell

• Show complex buildup – from point response of retina to oriented response of 
simple cells to cleaner response of complex cells

• Lead to more complex model of building more complex patterns by composing 
early neural responses

– Successive transformations through Simple-Complex combination layers

• Demonstrated more and more complex responses in later papers
• Experiments done by others were on waking monkeys

– Too horrible to recall



Adding insult to injury..

• “However, this model cannot accommodate 
the color, spatial frequency and many other 
features to which neurons are tuned.  The 
exact organization of all these cortical columns 
within V1 remains a hot topic of current 
research.”



Forward to 1980

• Kunihiko Fukushima

• Recognized deficiencies in the
Hubel-Wiesel model

• One of the chief problems: Position invariance of 
input
– Your grandmother cell fires even if your grandmother 

moves to a different location in your field of vision

Kunihiko Fukushima



NeoCognitron

• Visual system consists of a hierarchy of modules, each comprising  a 
layer of “S-cells” followed by a layer of “C-cells”
– ௌ is the lth layer of S cells,  is the lth layer of C cells

• Only S-cells are “plastic” (i.e. learnable), C-cells are fixed in their 
response

• S-cells respond to the signal in the previous layer
• C-cells confirm the S-cells’ response

Figures from Fukushima, ‘80



NeoCognitron

• Each simple-complex module includes a layer of S-cells and a layer of C-cells

• S-cells are organized in rectangular groups called S-planes.  
– All the cells within an S-plane have identical learned responses

• C-cells too are organized into rectangular groups called C-planes
– One C-plane per S-plane
– All C-cells have identical fixed response

• In Fukushima’s original work, each C and S cell “looks” at an elliptical region in the 
previous plane

Each cell in a plane “looks” at a slightly shifted
region of the input to the plane than the 
adjacent cells in the plane.



NeoCognitron

• The complete network
• U0 is the retina

• In each subsequent module, the planes of the S layers detect plane-
specific patterns in the previous layer (C layer or retina)

• The planes of the C layers “refine” the response of the corresponding 
planes of the S layers



Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–



Neocognitron

• S cells:  RELU like activation

– is a RELU

• C cells: Also RELU like, but with an inhibitory bias
– Fires if weighted combination of S cells fires strongly 

enough

–

Could simply replace these 
strange functions with a
RELU and a max



NeoCognitron

• The deeper the layer, the larger the receptive field of 
each neuron
– Cell planes get smaller with layer number
– Number of planes increases

• i.e the number of complex pattern detectors increases with layer



Learning in the neo-cognitron

• Unsupervised learning 
• Randomly initialize S cells, perform Hebbian learning updates in response to input

– update = product of input and output : ∆𝑤 = 𝑥𝑦

• Within any layer,  at any position, only the maximum S from all the layers is 
selected for update

– Also viewed as max-valued cell from each S column
– Ensures only one of the planes picks up any feature
– But across all positions, multiple planes will be selected

• If multiple max selections are on the same plane, only the largest is chosen
• Updates are distributed across all cells within the plane

max



Learning in the neo-cognitron

• Ensures different planes learn different features
• Any plane learns only one feature

– E.g.  Given many examples of the character “A” the different cell 
planes in the S-C layers may learn the patterns shown

• Given other characters, other planes will learn their components

– Going up the layers goes from local to global receptor fields

• Winner-take-all strategy makes it robust to distortion
• Unsupervised: Effectively clustering



Neocognitron – finale

• Fukushima showed it successfully learns to 
cluster semantic visual concepts
– E.g. number or characters, even in noise



Adding Supervision

• The neocognitron is fully unsupervised
– Semantic labels are automatically learned

• Can we add external supervision?
• Various proposals:

– Temporal correlation:  Homma, Atlas, Marks, ‘88
– TDNN:  Lang, Waibel et. al., 1989, ‘90

• Convolutional neural networks: LeCun



Supervising the neocognitron

• Add an extra decision layer after the final C layer
– Produces a class-label output

• We now have a fully feed forward MLP with shared parameters
– All the S-cells within an S-plane have the same weights

• Simple backpropagation can now train the S-cell weights in every plane of 
every layer
– C-cells are not updated

Output
class 
label(s)



Scanning vs. multiple filters

• Note: The original Neocognitron actually uses 
many identical copies of a neuron in each S 
and C plane 



Supervising the neocognitron

• The Math
– Assuming square receptive fields, rather than elliptical ones
– Receptive field of S cells in lth layer is  

– Receptive field of C cells in lth layer is  

Output
class 
label(s)



Supervising the neocognitron

• This is, however, identical to “scanning” (convolving) 
with a single neuron/filter (what LeNet actually did)

Output
class 
label(s)
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Convolutional Neural Networks



Story so far
• The mammalian visual cortex contains of S cells, which capture oriented 

visual patterns and C cells which perform a “majority” vote over groups of 
S cells for robustness to noise and positional jitter

• The neocognitron emulates this behavior with planar banks of S and C 
cells with identical response, to enable shift invariance
– Only S cells are learned
– C cells perform the equivalent of a max over groups of S cells for robustness
– Unsupervised learning results in learning useful patterns

• LeCun’s LeNet added external supervision to the neocognitron
– S planes of cells with identical response are modelled by a scan (convolution) 

over image planes by a single neuron
– C planes are emulated by cells that perform a max over groups of S cells

• Reducing the size of the S planes

– Giving us a “Convolutional Neural Network”



The general architecture of a 
convolutional neural network

• A convolutional neural network comprises “convolutional” and “downsampling” layers
– Convolutional layers comprise neurons that scan their input for patterns
– Downsampling layers perform max operations on groups of outputs from the convolutional layers
– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output



The general architecture of a 
convolutional neural network

• A convolutional neural network comprises of “convolutional” and 
“downsampling” layers
– The two may occur in any sequence,  but typically they alternate

• Followed by an MLP with one or more layers

Multi-layer
Perceptron

Output



The general architecture of a 
convolutional neural network

• Convolutional layers and the MLP are learnable
– Their parameters must be learned from training data for the target 

classification task

• Down-sampling layers are fixed and generally not learnable

Multi-layer
Perceptron

Output



A convolutional layer

• A convolutional layer comprises of a series of “maps”
– Corresponding the “S-planes” in the Neocognitron

– Variously called feature maps or activation maps

Maps

Previous
layer



A convolutional layer

• Each activation map has two components
– A linear map, obtained by convolution over maps in the previous layer

• Each linear map has, associated with it, a learnable filter

– An activation that operates on the output of the convolution

Previous
layer

Previous
layer



A convolutional layer

• All the maps in the previous layer contribute 
to each convolution 

Previous
layer

Previous
layer



A convolutional layer

• All the maps in the previous layer contribute to 
each convolution 
– Consider the contribution of a single map

Previous
layer

Previous
layer



What is a convolution

• Scanning an image with a “filter”
– Note: a filter is really just a perceptron, with weights 

and a bias

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Example 5x5 image with binary
pixels

1 0 1

0 1 0

11 0

0

Example 3x3 filter bias



What is a convolution

• Scanning an image with a “filter”
– At each location, the “filter and the underlying map values are 

multiplied component wise, and the products are added along with 
the bias

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias



The “Stride” between adjacent 
scanned locations need not be 1

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “stride” of two pixels per shift

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

4
x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias



The “Stride” between adjacent 
scanned locations need not be 1

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

4 4



The “Stride” between adjacent 
scanned locations need not be 1

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

4 4

2



The “Stride” between adjacent 
scanned locations need not be 1

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

x1 x0 x1

x0 x1 x0

x1x1 x0

1 0 1
0 1 0

11 0

Filter

0

bias

• Scanning an image with a “filter”
– The filter may proceed by more than 1 pixel at a time
– E.g. with a “hop” of two pixels per shift

4 4

2 4



What really happens

• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 1, 𝑖, 𝑗 =    𝑤 1, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 =    𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)
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• Each output is computed from multiple maps simultaneously
• There are as many weights (for each output map) as 

size of the filter x no. of maps in previous layer 

Previous
layer

𝑧 2, 𝑖, 𝑗 =    𝑤 2, 𝑚, 𝑘, 𝑙 𝐼 𝑚, 𝑖 + 𝑙 − 1, 𝑗 + 𝑘 − 1 + 𝑏(2)
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A different view

• ..A stacked arrangement of planes

• We can view the joint processing of the various 
maps as processing the stack using a three-
dimensional filter

Stacked arrangement
of kth layer of maps

Filter applied to kth layer of maps
(convolutive component plus bias)



Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

bias



Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

One map

bias



Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

All maps

bias



Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

bias



Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes
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Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes
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Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

bias



Extending to multiple input maps

• The computation of the convolutive map at any 
location sums the convolutive outputs at all 
planes

bias



Convolutional neural net: 
Vector notation

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
65



Engineering consideration: The size of 
the result of the convolution

• Recall: the “stride” of the convolution may not be one pixel
– I.e. the scanning neuron may “stride” more than one pixel at a time

• The size of the output of the convolution operation depends on 
implementation factors
– And may not be identical to the size of the input
– Lets take a brief look at this for completeness sake

bias



The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• “Stride”: 1
• Output size = ?



The size of the convolution

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias

• Image size: 5x5
• Filter: 3x3
• Stride: 1
• Output size = ?



The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4



The size of the convolution

• Image size: 5x5
• Filter: 3x3
• Stride: 2
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0

Filter

0

bias 4 4

2 4



The size of the convolution

• Image size: 
• Filter: 
• Stride: 1
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?



The size of the convolution

• Image size: 
• Filter: 
• Stride: 
• Output size = ?

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?



The size of the convolution

• Image size: 
• Filter: 
• Stride: 
• Output size (each side) = 

– Assuming you’re not allowed to go beyond the edge of the input

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

Filter

0

bias
?



Convolution Size
• Simple convolution size pattern:

– Image size: 
– Filter: 
– Stride: 
– Output size (each side) = 

• Assuming you’re not allowed to go beyond the edge of the input

• Results in a reduction in the output size
– Even if 
– Sometimes not considered acceptable

• If there’s no active downsampling, through max pooling and/or 
, then the output map should ideally be the same size as the 

input 



Solution

• Zero-pad the input
– Pad the input image/map all around

• Add PL rows of zeros on the left and PR rows of zeros on the right
• Add PL rows of zeros on the top and PL rows of zeros at the bottom

– PL and PR chosen such that:
• PL = PR   OR  | PL – PR| = 1
• PL+ PR = M-1

– For stride 1, the result of the convolution is the same size as the original 
image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0



Solution

• Zero-pad the input
– Pad the input image/map all around
– Pad as symmetrically as possible, such that..
– For stride 1, the result of the convolution is the 

same size as the original image

1 1 1 0 0

0 1 1 1 0

1 1 10 0

0 0 01 1

0 1 01 0

1 0 1
0 1 0

11 0
Filter

0
bias

0

0

0

0

0

0

0

0

0

0

0 0 0 0 00 0

0 0 0 0 00 0



Zero padding
• For an width filter:

– Odd : Pad on both left and right with columns of zeros
– Even :  Pad one side with columns of zeros, and the other with 



ଶ
columns of zeros

– The resulting image is width  
– The result of the convolution is width 

• The top/bottom zero padding follows the same rules to maintain 
map height after convolution

• For hop size , zero padding is adjusted to ensure that the size 
of the convolved output is 
– Achieved by first zero padding the image with 

columns/rows of zeros and then applying above rules



Why convolution?

• Convolutional neural networks are, in fact, equivalent to scanning 
with an MLP
– Just run the entire MLP on each block separately, and combine results

• As opposed to scanning (convolving) the picture with individual neurons/filters

– Even computationally, the number of operations in both computations 
is identical

• The neocognitron in fact views it equivalently to a scan

• So why convolutions?



Correlation, not Convolution

• The operation performed is technically a correlation, not a convolution
• Correlation:

 



 


– Shift the “filter” to “look” at the input block beginning at 

• Convolution:
 



 



• Effectively “flip” the filter, right to left, top to bottom

image filter CorrelationConvolution



Cost of Correlation

• Correlation:
 



 



• Cost of scanning an image with an filter: ଶ ଶ

– ଶ multiplications at each of ଶ positions
• Not counting boundary effects

– Expensive, for large filters

Correlation

M
N



Correlation in Transform Domain

• Correlation usind DFTs:

• Cost of doing this using the Fast Fourier Transform to 
compute the DFTs: 
– Significant saving for large filters
– Or if there are many filters

Correlation

M

N



Returning to our problem

• … From the world of size engineering …



A convolutional layer

• The convolution operation results in a convolution map
• An Activation is finally applied to every entry in the map

Previous
layer

Previous
layer



Convolutional neural net: 
The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x = 1:Wl-1-Kl+1 

for y = 1:Hl-1-Kl+1

segment = Y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,x,y) = W(l,j).segment #tensor inner prod.

Y(l,j,x,y) = activation(z(l,j,x,y))

Y = softmax( {Y(L,:,:,:)} )
84



The other component 
Downsampling/Pooling

• Convolution (and activation) layers are followed intermittently by 
“downsampling”  (or “pooling”) layers
– Often, they alternate with convolution, though this is not necessary

Multi-layer
Perceptron

Output



Recall: Max pooling

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input

Max

3 1

4 6
Max

6



Recall: Max pooling

Max

1 3

6 5
Max

6 6

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input



Recall: Max pooling

Max

3 2

5 7
Max
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• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input



Recall: Max pooling
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• Max pooling selects the largest from a pool of 
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• Pooling is performed by “scanning” the input



Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input



Recall: Max pooling

Max

• Max pooling selects the largest from a pool of 
elements

• Pooling is performed by “scanning” the input



“Strides”

• The “max” operations may “stride” by more 
than one pixel

Max



“Strides”

• The “max” operations may “stride” by more 
than one pixel

Max



“Strides”

• The “max” operations may “stride” by more 
than one pixel

Max



“Strides”

• The “max” operations may “stride” by more 
than one pixel

Max



“Strides”

• The “max” operations may “stride” by more 
than one pixel

Max



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

Pooling: Size of output

• An picture compressed by a pooling
filter with stride results in an output map of side 

• Typically do not zero pad



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Mean pool with 2x2 
filters and stride 2 3.25 5.25

2 2

Alternative to Max pooling: 
Mean Pooling

• Compute the mean of the pool, instead of the max



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

P-norm with 2x2 filters 
and stride 2,  = 5 4.86 8

2.38 3.16

Alternative to Max pooling: 
P-norm

• Compute a p-norm of the pool

ଶ 


 

,





1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

Network applies to each 
2x2 block and strides by 
2 in this example

6 8

3 4

Other options

• The pooling may even be a learned filter
• The same network is applied on each block

• (Again, a shared parameter network)

Network in network



Or even an “all convolutional” net

• Downsampling may even be done by a simple convolution 
layer with stride larger than 1
– Replacing the maxpooling layer with a conv layer

Just a plain old convolution
layer with stride>1



Fully convolutional network
(no pooling)

The weight W(l,j)is now a 3D Dl-1xKlxKl tensor (assuming 
square receptive fields)

The product in blue is a tensor inner product with a 
scalar output

Y(0) = Image

for l = 1:L  # layers operate on vector at (x,y)

for j = 1:Dl
for x,m = 1:stride(l):Wl-1-Kl+1 # double indices

for y,n = 1:stride(l):Hl-1-Kl+1

segment = y(l-1,:,x:x+Kl-1,y:y+Kl-1) #3D tensor

z(l,j,m,n) = W(l,j).segment #tensor inner prod.

Y(l,j,m,n) = activation(z(l,j,m,n))

Y = softmax( {Y(L,:,:,:)} )
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Story so far
• The convolutional neural network is a supervised version of a 

computational model of mammalian vision
• It includes

– Convolutional layers comprising learned filters that scan the outputs 
of the previous layer

– Downsampling layers that vote over groups of outputs from the 
convolutional layer

• Convolution can change the size of the output. This may be 
controlled via zero padding.

• Downsampling layers may perform max, p-norms, or be learned 
downsampling networks

• Regular convolutional layers with stride > 1 also perform 
downsampling
– Eliminating the need for explicit downsampling layers



Setting everything together

• Typical image classification task
– Assuming maxpooling..



Convolutional Neural Networks

• Input: 1 or 3 images
– Black and white or color
– Will assume color to be generic



• Input: 3 pictures

Convolutional Neural Networks



• Input: 3 pictures

Convolutional Neural Networks



Preprocessing

• Typically works with square images
– Filters are also typically square

• Large networks are a problem
– Too much detail
– Will need big networks

• Typically scaled to small sizes, e.g. 32x32 or 
128x128
– Based on how much will fit on your GPU



• Input: 3 pictures

Convolutional Neural Networks



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks
K1 total filters
Filter size:  



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Filters are typically 5x5, 3x3, or even 1x1

Convolutional Neural Networks

What on earth is this?

Small enough to capture fine features
(particularly important for scaled-down images)

K1 total filters
Filter size:  



• A 1x1 filter is simply a perceptron that operates over 
the depth of the map, but has no spatial extent
– Takes one pixel from each of the maps (at a given location) 

as input

The 1x1 filter



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or 

even 1x1(x3)

Convolutional Neural Networks
K1 total filters
Filter size:  



• Input is convolved with a set of K1 filters
– Typically K1 is a power of 2, e.g. 2, 4, 8, 16, 32,..
– Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
– Typical stride:  1 or 2

Convolutional Neural Networks

Total number of parameters: 

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 

K1 total filters
Filter size:  



• The input may be zero-padded according to 
the size of the chosen filters

Convolutional Neural Networks
K1 total filters
Filter size:  



• First convolutional layer:  Several convolutional filters
– Filters are “3-D” (third dimension is color)
– Convolution followed typically by a RELU activation

• Each filter creates a single 2-D output map
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ଵ

Convolutional Neural Networks
K1 filters of size:  

𝐿 × 𝐿 × 3

𝑧
ଵ

(𝑖, 𝑗) =    𝑤
ଵ

𝑐, 𝑘, 𝑙 𝐼 𝑖 + 𝑘, 𝑗 + 𝑙 + 𝑏
(ଵ)



ୀଵ



ୀଵ

 

∈{ோ,ீ,}

The layer includes a convolution operation
followed by an activation (typically RELU)



Learnable parameters in the first 
convolutional layer

• The first convolutional layer comprises filters, 
each of size 
– Spatial span: 
– Depth : 3 (3 colors)

• This represents a total of parameters
– “+ 1” because each filter also has a bias

• All of these parameters must be learned



• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value
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𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

భ

ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool

The layer pools PxP blocks
of Y into a single value
It employs a stride D between
adjacent blocks
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

ଵ
ଵ

ଶ
ଵ

𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

Parameters to choose:
Size of pooling block 
Pooling stride 

pool

Choices: Max pooling or
mean pooling?
Or learned pooling?
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• First downsampling layer: From each block of each 
map, pool down to a single value
– For max pooling, during  training keep track of which position 

had the highest value

ଵ
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ଶ
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𝐼/𝐷 × (𝐼/𝐷

Convolutional Neural Networks

ଵ
ଵ

ଶ
ଵ

Filter size:  
𝐿 × 𝐿 × 3

pool
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• First pooling layer: Drawing it differently for 
convenience
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• First pooling layer: Drawing it differently for 
convenience



1

ଵ
ଵ

ଶ
ଵ

1

𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

Convolutional Neural Networks

1

భ

ଵ
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Jargon: Filters are often called “Kernels”
The outputs of individual filters are called “channels”
The number of filters ( 1, 2, etc) is the number of channels



• Second convolutional layer: ଶ 3-D filters resulting in ଶ 2-D maps
– Alternately,  a kernel with ଶ output channels
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• Second convolutional layer: ଶ 3-D filters resulting in ଶ 2-D maps
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Convolutional Neural Networks
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𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

1
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Total number of parameters: 
All these parameters must be learned

Parameters to choose: , and 
1.  Number of filters 
2.  Size of filters 
3.  Stride of convolution 
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Convolutional Neural Networks
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𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

1

2

• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps
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• Second convolutional layer: ଶ 3-D filters resulting in 2 2-D maps
• Second pooling layer: ଶ Pooling operations: outcome ଶ reduced 2D 

maps
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Parameters to choose:
Size of pooling block 2

Pooling stride 2
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𝐾1 × 𝐼 × 𝐼 𝐾1 × 𝐼/𝐷 × 𝐼/𝐷

1
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• This continues for several layers until the final convolved output is fed to 
a softmax
– Or a full MLP i
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The Size of the Layers
• Each convolution layer maintains the size of the image

– With appropriate zero padding
– If performed without zero padding it will decrease the size of the input

• Each convolution layer may increase the number of maps from the previous 
layer

• Each pooling layer with hop decreases the size of the maps by a factor of 

• Filters within a layer must all be the same size, but sizes may vary with layer
– Similarly for pooling, may vary with layer

• In general the number of convolutional filters increases with layers



Parameters to choose (design choices)
• Number of convolutional and downsampling layers

– And arrangement (order in which they follow one another)

• For each convolution layer:
– Number of filters 

– Spatial extent of filter  

• The “depth” of the filter is fixed by the number of filters in the previous layer 𝐾ିଵ

– The stride 

• For each downsampling/pooling layer:
– Spatial extent of filter  

– The stride 

• For the final MLP:
– Number of layers, and number of neurons in each layer



Digit classification



Training

• Training is as in the case of the regular MLP
– The only difference is in the structure of the network

• Training examples of (Image, class) are provided
• Define a divergence between the desired output and true output of the 

network in response to any input
• Network parameters are trained through variants of gradient descent
• Gradients are computed through backpropagation
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Learning the network

• Parameters to be learned:
– The weights of the neurons in the final MLP
– The (weights and biases of the) filters for every convolutional layer
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Learning the CNN

• In the final “flat” multi-layer perceptron, all the weights and biases 
of each of the perceptrons must be learned

• In the convolutional layers the filters must be learned
• Let each layer have  maps

–  is the number of maps (colours) in the input

• Let the filters in the th layer be size  

• For the th layer we will require  ିଵ 
ଶ filter parameters

• Total parameters required for the convolutional layers:  
 ିଵ 

ଶ 
∈௩௨௧ ௬௦
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Defining the loss
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• The loss for a single instance

convolve convolve

Div()

d(x)

y(x)

Input: x

Div (y(x),d(x))



Problem Setup
• Given a training set of input-output pairs 

• The loss on the ith instance is 
• The total loss

• Minimize w.r.t 
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Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 

• Do:
– For every layer for all filter indices update:

•

• Until has converged
137

Total training loss:

Assuming the bias is also
represented as a weight



Training CNNs through Gradient Descent

• Gradient descent algorithm:

• Initialize all weights and biases 

• Do:
– For every layer for all filter indices update:

•

• Until has converged
138

Total training loss:

Assuming the bias is also
represented as a weight



The derivative

• Computing the derivative

139

Total derivative:

Total training loss:



The derivative

• Computing the derivative

140

Total derivative:

Total training loss:



Backpropagation: Final flat layers

• Backpropagation continues in the usual manner 
until the computation of the derivative of the 
divergence w.r.t the inputs to the first “flat” layer
– Important to recall: the first flat layer is only the 

“unrolling” of the maps from the final convolutional 
layer
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Conventional backprop until here



Backpropagation: Convolutional and 
Pooling layers

• Backpropagation from the flat MLP requires 
special consideration of 
– The shared computation in the convolution layers

– The pooling layers (particularly maxout)
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Need adjustments here

()



Backprop through a CNN

• In the next class…



Learning the network

• Have shown  the derivative of divergence w.r.t every intermediate output, 
and every free parameter (filter weights)

• Can now be embedded in gradient descent framework to learn the 
network
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Story so far

• The convolutional neural network is a supervised 
version of a computational model of mammalian vision

• It includes
– Convolutional layers comprising learned filters that scan 

the outputs of the previous layer

– Downsampling layers that operate over groups of outputs 
from the convolutional layer to reduce network size

• The parameters of the network can be learned through 
regular back propagation
– Continued in next lecture..


